1
|
Butterworth LJ, Welikala MU, Klatt CW, Rheney KE, Trakselis MA. Replisomal coupling between the α-pol III core and the τ-subunit of the clamp loader complex (CLC) are essential for genomic integrity in Escherichia coli. J Biol Chem 2025; 301:108177. [PMID: 39798872 PMCID: PMC11869525 DOI: 10.1016/j.jbc.2025.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025] Open
Abstract
Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli. Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains. These α-Pol III mutations eliminated the interaction with τ-CLC but retained WT polymerase and exonuclease activities. The most severely affected mutant strains, dnaE:Y1119A and dnaE:L1097/8S, had significantly reduced doubling times, reduced fitness, and increased cellular length phenotypes as a result of this targeted decoupling of the replisome and the generation of replication stress. Those strains also showed significant SOS induction from unwound but unreplicated regions within the genome. In support, significant ssDNA gaps were detected by fluorescence microscopy and quantified by fluorescence activated cytometry using an in situ PLUG assay for those dnaE:mut strains. By comparing the biochemical and genomic consequences of disrupting the τ-CLC-α-Pol III coupling contacts, we have unveiled a more cohesive picture and mechanistic understanding of replisome dynamics and the essential interactions required to maintain overall fitness through a stable genome.
Collapse
Affiliation(s)
| | - Malisha U Welikala
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Cody W Klatt
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Kaitlyn E Rheney
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA.
| |
Collapse
|
2
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
3
|
Shaz H, Nandi P, Sengupta S. Site directed mutagenesis reveals functional importance of conserved amino acid residues within the N-terminal domain of Dpb2 in budding yeast. Arch Microbiol 2024; 207:14. [PMID: 39690285 DOI: 10.1007/s00203-024-04214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
In spite of being dispensable for catalysis, Dpb2, the second largest subunit of leading strand DNA polymerase (Polymerase ε) is essential for cell survival in budding yeast. Dpb2 physically connects polymerase epsilon with the replicative helicase (CMG,Cdc45-Mcm-GINS) by interacting with its Psf1 subunit. Dpb2-Psf1 interaction has been shown to be critical for incorporating polymerase ε into the replisome. Site-directed mutagenesis studies on conserved amino acid residues within the N-terminal domain of Dpb2 led to identification of key amino acid residues involved in interaction with Psf1 subunit of GINS. These amino acid residues are found to be well conserved among Dpb2 orthologues in higher eukaryotes thereby indicating the protein-protein interaction to be evolutionarily conserved. Replicating cells are known to mount a strong replicative stress response and DNA damage response upon exposure to diverse range of stressors. Here, we show that the absence of the N-terminal domain of Dpb2 increases the vulnerability of the budding yeast cells towards the cytotoxic effects of hydroxyurea (HU) and methyl methane sulphonate (MMS). Our results illustrate the importance of N-terminal domain of Dpb2 not only during replisome assembly but also in coordinating stress response in budding yeast. Considering high degree of sequence conservation across eukaryotes, Dpb2 subunit of leading-strand DNA polymerase appears to have important implications in maintenance of genome integrity.
Collapse
Affiliation(s)
- Huma Shaz
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Prakash Nandi
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
4
|
Welikala MU, Butterworth LJ, Behrmann MS, Trakselis MA. Tau-mediated coupling between Pol III synthesis and DnaB helicase unwinding helps maintain genomic stability. J Biol Chem 2024; 300:107726. [PMID: 39214305 PMCID: PMC11470591 DOI: 10.1016/j.jbc.2024.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The τ-subunit of the clamp loader complex physically interacts with both the DnaB helicase and the polymerase III (Pol III) core α-subunit through domains IV and V, respectively. This interaction is proposed to help maintain rapid and efficient DNA synthesis rates with high genomic fidelity and plasticity, facilitating enzymatic coupling within the replisome. To test this hypothesis, CRISPR-Cas9 editing was used to create site-directed genomic mutations within the dnaX gene at the C terminus of τ predicted to interact with the α-subunit of Pol III. Perturbation of the α-τ binding interaction in vivo resulted in cellular and genomic stress markers that included reduced growth rates, fitness, and viabilities. Specifically, dnaX:mut strains showed increased cell filamentation, mutagenesis frequencies, and activated SOS. In situ fluorescence flow cytometry and microscopy quantified large increases in the amount of ssDNA gaps present. Removal of the C terminus of τ (I618X) still maintained its interactions with DnaB and stimulated unwinding but lost its interaction with Pol III, resulting in significantly reduced rolling circle DNA synthesis. Intriguingly, dnaX:L635P/D636G had the largest induction of SOS, high mutagenesis, and the most prominent ssDNA gaps, which can be explained by an impaired ability to regulate the unwinding speed of DnaB resulting in a faster rate of in vitro rolling circle DNA replication, inducing replisome decoupling. Therefore, τ-stimulated DnaB unwinding and physical coupling with Pol III acts to enforce replisome plasticity to maintain an efficient rate of synthesis and prevent genomic instability.
Collapse
Affiliation(s)
- Malisha U Welikala
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | | | - Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA.
| |
Collapse
|
5
|
Behrmann M, Perera H, Welikala M, Matthews J, Butterworth L, Trakselis M. Dysregulated DnaB unwinding induces replisome decoupling and daughter strand gaps that are countered by RecA polymerization. Nucleic Acids Res 2024; 52:6977-6993. [PMID: 38808668 PMCID: PMC11229327 DOI: 10.1093/nar/gkae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
The replicative helicase, DnaB, is a central component of the replisome and unwinds duplex DNA coupled with immediate template-dependent DNA synthesis by the polymerase, Pol III. The rate of helicase unwinding is dynamically regulated through structural transitions in the DnaB hexamer between dilated and constricted states. Site-specific mutations in DnaB enforce a faster more constricted conformation that dysregulates unwinding dynamics, causing replisome decoupling that generates excess ssDNA and induces severe cellular stress. This surplus ssDNA can stimulate RecA recruitment to initiate recombinational repair, restart, or activation of the transcriptional SOS response. To better understand the consequences of dysregulated unwinding, we combined targeted genomic dnaB mutations with an inducible RecA filament inhibition strategy to examine the dependencies on RecA in mitigating replisome decoupling phenotypes. Without RecA filamentation, dnaB:mut strains had reduced growth rates, decreased mutagenesis, but a greater burden from endogenous damage. Interestingly, disruption of RecA filamentation in these dnaB:mut strains also reduced cellular filamentation but increased markers of double strand breaks and ssDNA gaps as detected by in situ fluorescence microscopy and FACS assays, TUNEL and PLUG, respectively. Overall, RecA plays a critical role in strain survival by protecting and processing ssDNA gaps caused by dysregulated helicase activity in vivo.
Collapse
Affiliation(s)
- Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Malisha U Welikala
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Jacquelynn E Matthews
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Lauren J Butterworth
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| |
Collapse
|
6
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
McMillan SD, Keck JL. Biochemical characterization of Escherichia coli DnaC variants that alter DnaB helicase loading onto DNA. J Biol Chem 2024; 300:107275. [PMID: 38588814 PMCID: PMC11087952 DOI: 10.1016/j.jbc.2024.107275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
DNA replication in Escherichia coli starts with loading of the replicative helicase, DnaB, onto DNA. This reaction requires the DnaC loader protein, which forms a 6:6 complex with DnaB and opens a channel in the DnaB hexamer through which single-stranded DNA is thought to pass. During replication, replisomes frequently encounter DNA damage and nucleoprotein complexes that can lead to replication fork collapse. Such events require DnaB re-loading onto DNA to allow replication to continue. Replication restart proteins mediate this process by recruiting DnaB6/DnaC6 to abandoned DNA replication forks. Several dnaC mutations that bypass the requirement for replication restart proteins or that block replication restart have been identified in E. coli. To better understand how these DnaC variants function, we have purified and characterized the protein products of several such alleles. Unlike wild-type DnaC, three of the variants (DnaC 809, DnaC 809,820, and DnaC 811) can load DnaB onto replication forks bound by single-stranded DNA-binding protein. DnaC 809 can also load DnaB onto double-stranded DNA. These results suggest that structural changes in the variant DnaB6/DnaC6 complexes expand the range of DNA substrates that can be used for DnaB loading, obviating the need for the existing replication restart pathways. The protein product of dnaC1331, which phenocopies deletion of the priB replication restart gene, blocks loading through the major restart pathway in vitro. Overall, the results of our study highlight the utility of bacterial DnaC variants as tools for probing the regulatory mechanisms that govern replicative helicase loading.
Collapse
Affiliation(s)
- Sarah D McMillan
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
8
|
McHenry CS. Life at the replication fork: A scientific and personal journey. J Biol Chem 2024; 300:105658. [PMID: 38219819 PMCID: PMC10850973 DOI: 10.1016/j.jbc.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Affiliation(s)
- Charles S McHenry
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
9
|
Langston LD, Georgescu RE, O'Donnell ME. Mechanism of eukaryotic origin unwinding is a dual helicase DNA shearing process. Proc Natl Acad Sci U S A 2023; 120:e2316466120. [PMID: 38109526 PMCID: PMC10756200 DOI: 10.1073/pnas.2316466120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
DNA replication in all cells begins with the melting of base pairs at the duplex origin to allow access to single-stranded DNA templates which are replicated by DNA polymerases. In bacteria, origin DNA is presumed to be melted by accessory proteins that allow loading of two ring-shaped replicative helicases around single-strand DNA (ssDNA) for bidirectional unwinding and DNA replication. In eukaryotes, by contrast, two replicative CMG (Cdc45-Mcm2-7-GINS) helicases are initially loaded head to head around origin double-strand DNA (dsDNA), and there does not appear to be a separate origin unwinding factor. This led us to investigate whether head-to-head CMGs use their adenosine triphosphate (ATP)-driven motors to initiate duplex DNA unwinding at the origin. Here, we show that CMG tracks on one strand of the duplex while surrounding it, and this feature allows two head-to-head CMGs to unwind dsDNA by using their respective motors to pull on opposite strands of the duplex. We further show that while CMG is capable of limited duplex unwinding on its own, the extent of unwinding is greatly and rapidly stimulated by addition of the multifunctional CMG-binding protein Mcm10 that is critical for productive initiation of DNA replication in vivo. On the basis of these findings, we propose that Mcm10 is a processivity or positioning factor that helps translate the work performed by the dual CMG motors at the origin into productive unwinding that facilitates bidirectional DNA replication.
Collapse
Affiliation(s)
- Lance D. Langston
- The Rockefeller University, New York City, NY10065
- HHMI, New York City, NY10065
| | - Roxana E. Georgescu
- The Rockefeller University, New York City, NY10065
- HHMI, New York City, NY10065
| | | |
Collapse
|
10
|
Duckworth AT, Ducos PL, McMillan SD, Satyshur KA, Blumenthal KH, Deorio HR, Larson JA, Sandler SJ, Grant T, Keck JL. Replication fork binding triggers structural changes in the PriA helicase that govern DNA replication restart in E. coli. Nat Commun 2023; 14:2725. [PMID: 37169801 PMCID: PMC10175261 DOI: 10.1038/s41467-023-38144-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
Bacterial replisomes often dissociate from replication forks before chromosomal replication is complete. To avoid the lethal consequences of such situations, bacteria have evolved replication restart pathways that reload replisomes onto prematurely terminated replication forks. To understand how the primary replication restart pathway in E. coli (PriA-PriB) selectively acts on replication forks, we determined the cryogenic-electron microscopy structure of a PriA/PriB/replication fork complex. Replication fork specificity arises from extensive PriA interactions with each arm of the branched DNA. These interactions reshape the PriA protein to create a pore encircling single-stranded lagging-strand DNA while also exposing a surface of PriA onto which PriB docks. Together with supporting biochemical and genetic studies, the structure reveals a switch-like mechanism for replication restart initiation in which restructuring of PriA directly couples replication fork recognition to PriA/PriB complex formation to ensure robust and high-fidelity replication re-initiation.
Collapse
Affiliation(s)
- Alexander T Duckworth
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Peter L Ducos
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Sarah D McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kenneth A Satyshur
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katelien H Blumenthal
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Haley R Deorio
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joseph A Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Steven J Sandler
- Department of Microbiology, University of Massachusetts at Amherst, Amherst, MA, 01003, USA.
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, USA.
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
11
|
Tashjian TF, Chien P. Clamp Loader Processing Is Important during DNA Replication Stress. J Bacteriol 2023; 205:e0043722. [PMID: 36728506 PMCID: PMC9945568 DOI: 10.1128/jb.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
The DNA clamp loader is critical to the processivity of the DNA polymerase and coordinating synthesis on the leading and lagging strands. In bacteria, the major subunit of the clamp loader, DnaX, has two forms: the essential full-length τ form and shorter γ form. These are conserved across bacterial species, and three distinct mechanisms have been found to create them: ribosomal frameshift, transcriptional slippage, and, in Caulobacter crescentus, partial proteolysis. This conservation suggests that DnaX processing is evolutionarily important, but its role remains unknown. Here we find a bias against switching from expression of a wild-type dnaX to a nonprocessable τ-only allele in Caulobacter. Despite this bias, cells are able to adapt to the τ-only allele with little effect on growth or morphology and only minor defects during DNA damage. Motivated by transposon sequencing, we find that loss of the gene sidA in the τ-only strain slows growth and increases filamentation. Even in the absence of exogenous DNA damage treatment, the ΔsidA τ-only double mutant shows induction of and dependence on recA, likely due to a defect in resolution of DNA damage or replication fork stalling. We find that some of the phenotypes of the ΔsidA τ-only mutant can be complemented by expression of γ but that an overabundance of τ-only dnaX is also detrimental. The data presented here suggest that DnaX processing is important during resolution of DNA damage events during DNA replication stress. Although the presence of DnaX τ and γ forms is conserved across bacteria, different species have developed different mechanisms to make these forms. This conservation and independent evolution of mechanisms suggest that having two forms of DnaX is important. Despite having been discovered more than 30 years ago, the purpose of expressing both τ and γ is still unclear. Here, we present evidence that expressing two forms of DnaX and controlling the abundance and/or ratio of the forms are important during the resolution of DNA replication stress. IMPORTANCE Though the presence of DnaX τ and γ forms is conserved across bacteria, different species have developed different mechanisms to make these forms. This conservation and independent evolution of mechanisms suggest that having two forms of DnaX is important. Despite having been discovered more than 30 years ago, the purpose of expressing both τ and γ is still unclear. Here, we present evidence that expressing two forms of DnaX and controlling the abundance and/or ratio of the forms is important during the resolution of DNA replication stress.
Collapse
Affiliation(s)
- Tommy F. Tashjian
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
12
|
Newcomb ESP, Douma LG, Morris LA, Bloom LB. The Escherichia coli clamp loader rapidly remodels SSB on DNA to load clamps. Nucleic Acids Res 2022; 50:12872-12884. [PMID: 36511874 PMCID: PMC9825162 DOI: 10.1093/nar/gkac1169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Single-stranded DNA binding proteins (SSBs) avidly bind ssDNA and yet enzymes that need to act during DNA replication and repair are not generally impeded by SSB, and are often stimulated by SSB. Here, the effects of Escherichia coli SSB on the activities of the DNA polymerase processivity clamp loader were investigated. SSB enhances binding of the clamp loader to DNA by increasing the lifetime on DNA. Clamp loading was measured on DNA substrates that differed in length of ssDNA overhangs to permit SSB binding in different binding modes. Even though SSB binds DNA adjacent to single-stranded/double-stranded DNA junctions where clamps are loaded, the rate of clamp loading on DNA was not affected by SSB on any of the DNA substrates. Direct measurements of the relative timing of DNA-SSB remodeling and enzyme-DNA binding showed that the clamp loader rapidly remodels SSB on DNA such that SSB has little effect on DNA binding rates. However, when SSB was mutated to reduce protein-protein interactions with the clamp loader, clamp loading was inhibited by impeding binding of the clamp loader to DNA. Thus, protein-protein interactions between the clamp loader and SSB facilitate rapid DNA-SSB remodeling to allow rapid clamp loader-DNA binding and clamp loading.
Collapse
Affiliation(s)
- Elijah S P Newcomb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Leslie A Morris
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Linda B Bloom
- To whom correspondence should be addressed. Tel: +1 352 294 8379; Fax: +1 352 392 2953;
| |
Collapse
|
13
|
McKenzie AM, Henry C, Myers KS, Place MM, Keck JL. Identification of genetic interactions with priB links the PriA/PriB DNA replication restart pathway to double-strand DNA break repair in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac295. [PMID: 36326440 PMCID: PMC9713433 DOI: 10.1093/g3journal/jkac295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2023]
Abstract
Collisions between DNA replication complexes (replisomes) and impediments such as damaged DNA or proteins tightly bound to the chromosome lead to premature dissociation of replisomes at least once per cell cycle in Escherichia coli. Left unrepaired, these events produce incompletely replicated chromosomes that cannot be properly partitioned into daughter cells. DNA replication restart, the process that reloads replisomes at prematurely terminated sites, is therefore essential in E. coli and other bacteria. Three replication restart pathways have been identified in E. coli: PriA/PriB, PriA/PriC, and PriC/Rep. A limited number of genetic interactions between replication restart and other genome maintenance pathways have been defined, but a systematic study placing replication restart reactions in a broader cellular context has not been performed. We have utilized transposon-insertion sequencing to identify new genetic interactions between DNA replication restart pathways and other cellular systems. Known genetic interactors with the priB replication restart gene (uniquely involved in the PriA/PriB pathway) were confirmed and several novel priB interactions were discovered. Targeted genetic and imaging-based experiments with priB and its genetic partners revealed significant double-strand DNA break accumulation in strains with mutations in dam, rep, rdgC, lexA, or polA. Modulating the activity of the RecA recombinase partially suppressed the detrimental effects of rdgC or lexA mutations in ΔpriB cells. Taken together, our results highlight roles for several genes in double-strand DNA break homeostasis and define a genetic network that facilitates DNA repair/processing upstream of PriA/PriB-mediated DNA replication restart in E. coli.
Collapse
Affiliation(s)
- Aidan M McKenzie
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
14
|
Abstract
In bacterial cells, DNA damage tolerance is manifested by the action of translesion DNA polymerases that can synthesize DNA across template lesions that typically block the replicative DNA polymerase III. It has been suggested that one of these translesion DNA synthesis DNA polymerases, DNA polymerase IV, can either act in concert with the replisome, switching places on the β sliding clamp with DNA polymerase III to bypass the template damage, or act subsequent to the replisome skipping over the template lesion in the gap in nascent DNA left behind as the replisome continues downstream. Evidence exists in support of both mechanisms. Using single-molecule analyses, we show that DNA polymerase IV associates with the replisome in a concentration-dependent manner and remains associated over long stretches of replication fork progression under unstressed conditions. This association slows the replisome, requires DNA polymerase IV binding to the β clamp but not its catalytic activity, and is reinforced by the presence of the γ subunit of the β clamp-loading DnaX complex in the DNA polymerase III holoenzyme. Thus, DNA damage is not required for association of DNA polymerase IV with the replisome. We suggest that under stress conditions such as induction of the SOS response, the association of DNA polymerase IV with the replisome provides both a surveillance/bypass mechanism and a means to slow replication fork progression, thereby reducing the frequency of collisions with template damage and the overall mutagenic potential.
Collapse
|
15
|
Chang S, Thrall ES, Laureti L, Piatt SC, Pagès V, Loparo JJ. Compartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis. Nat Struct Mol Biol 2022; 29:932-941. [PMID: 36127468 PMCID: PMC9509481 DOI: 10.1038/s41594-022-00827-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
Processivity clamps tether DNA polymerases to DNA, allowing their access to the primer-template junction. In addition to DNA replication, DNA polymerases also participate in various genome maintenance activities, including translesion synthesis (TLS). However, owing to the error-prone nature of TLS polymerases, their association with clamps must be tightly regulated. Here we show that fork-associated ssDNA-binding protein (SSB) selectively enriches the bacterial TLS polymerase Pol IV at stalled replication forks. This enrichment enables Pol IV to associate with the processivity clamp and is required for TLS on both the leading and lagging strands. In contrast, clamp-interacting proteins (CLIPs) lacking SSB binding are spatially segregated from the replication fork, minimally interfering with Pol IV-mediated TLS. We propose that stalling-dependent structural changes within clusters of fork-associated SSB establish hierarchical access to the processivity clamp. This mechanism prioritizes a subset of CLIPs with SSB-binding activity and facilitates their exchange at the replication fork.
Collapse
Affiliation(s)
- Seungwoo Chang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth S Thrall
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Fordham University, New York City, NY, USA
| | - Luisa Laureti
- CRCM (Cancer Research Center of Marseille): Team DNA Damage and Genome Instability, Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Sadie C Piatt
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Harvard Graduate Program in Biophysics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Vincent Pagès
- CRCM (Cancer Research Center of Marseille): Team DNA Damage and Genome Instability, Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Lo CY, Gao Y. Assembling bacteriophage T7 leading-strand replisome for structural investigation. Methods Enzymol 2022; 672:103-123. [PMID: 35934471 DOI: 10.1016/bs.mie.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Replicative helicase and polymerase form the leading-strand replisome that unwinds parental DNA and performs continuous leading-strand DNA synthesis. Uncoupling of the helicase-polymerase complex results in replication stress, replication errors, and genome instability. Although numerous replisomes from different biological systems have been reconstituted and characterized, structural investigations of the leading-strand replisome complex are hindered by its large size and dynamics. We have determined the first replisome structure on a fork substrate with bacteriophage T7 replisome as a model system. Here, we summarized our protocols to prepare and characterize the coupled T7 replisome complex. Similar methods can potentially be applied for structural investigations of more complicated replisomes.
Collapse
|
17
|
Behrmann MS, Trakselis MA. In vivo fluorescent TUNEL detection of single stranded DNA gaps and breaks induced by dnaB helicase mutants in Escherichia coli. Methods Enzymol 2022; 672:125-142. [DOI: 10.1016/bs.mie.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Singh A, Patel SS. Quantitative methods to study helicase, DNA polymerase, and exonuclease coupling during DNA replication. Methods Enzymol 2022; 672:75-102. [PMID: 35934486 PMCID: PMC9933136 DOI: 10.1016/bs.mie.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genome replication is accomplished by highly regulated activities of enzymes in a multi-protein complex called the replisome. Two major enzymes, DNA polymerase and helicase, catalyze continuous DNA synthesis on the leading strand of the parental DNA duplex while the lagging strand is synthesized discontinuously. The helicase and DNA polymerase on their own are catalytically inefficient and weak motors for unwinding/replicating double-stranded DNA. However, when a helicase and DNA polymerase are functionally and physically coupled, they catalyze fast and highly processive leading strand DNA synthesis. DNA polymerase has a 3'-5' exonuclease activity, which removes nucleotides misincorporated in the nascent DNA. DNA synthesis kinetics, processivity, and accuracy are governed by the interplay of the helicase, DNA polymerase, and exonuclease activities within the replisome. This chapter describes quantitative biochemical and biophysical methods to study the coupling of these three critical activities during DNA replication. The methods include real-time quantitation of kinetics of DNA unwinding-synthesis by a coupled helicase-DNA polymerase complex, a 2-aminopurine fluorescence-based assay to map the precise positions of helicase and DNA polymerase with respect to the replication fork junction, and a radiometric assay to study the coupling of DNA polymerase, exonuclease, and helicase activities during processive leading strand DNA synthesis. These methods are presented here with bacteriophage T7 replication proteins as an example but can be applied to other systems with appropriate modifications.
Collapse
|
19
|
Abstract
Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.
Collapse
|
20
|
Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. PLoS Genet 2021; 17:e1009886. [PMID: 34767550 PMCID: PMC8612530 DOI: 10.1371/journal.pgen.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork. DNA replication is a vital biological process, and the proteins involved are structurally and functionally conserved across all domains of life. As our fundamental knowledge of genes and genetics grows, so does our awareness of links between acquired genetic mutations and disease. Understanding how genetic material is replicated accurately and efficiently and with high fidelity is the foundation to identifying and solving genome-based diseases. E. coli are model organisms, containing core replisome proteins, but lack the complexity of the human replication system, making them ideal for investigating conserved replisome behaviors. The helicase enzyme acts at the forefront of the replication fork to unwind the DNA helix and has also been shown to help coordinate other replisome functions. In this study, we examined specific mutations in the helicase that have been shown to regulate its conformation and speed of unwinding. We investigate how these mutations impact the growth, fitness, and cellular morphology of bacteria with the goal of understanding how helicase regulation mechanisms affect an organism’s ability to survive and maintain a stable genome.
Collapse
Affiliation(s)
- Megan S. Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Himasha M. Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Joy M. Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Trisha A. Venkat
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Bryan J. Visser
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Determining translocation orientations of nucleic acid helicases. Methods 2021; 204:160-171. [PMID: 34758393 PMCID: PMC9076756 DOI: 10.1016/j.ymeth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.
Collapse
|
22
|
Single-molecule studies of helicases and translocases in prokaryotic genome-maintenance pathways. DNA Repair (Amst) 2021; 108:103229. [PMID: 34601381 DOI: 10.1016/j.dnarep.2021.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.
Collapse
|
23
|
Hoffman RA, MacAlpine HK, MacAlpine DM. Disruption of origin chromatin structure by helicase activation in the absence of DNA replication. Genes Dev 2021; 35:1339-1355. [PMID: 34556529 PMCID: PMC8494203 DOI: 10.1101/gad.348517.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
Prior to initiation of DNA replication, the eukaryotic helicase, Mcm2-7, must be activated to unwind DNA at replication start sites in early S phase. To study helicase activation within origin chromatin, we constructed a conditional mutant of the polymerase α subunit Cdc17 (or Pol1) to prevent priming and block replication. Recovery of these cells at permissive conditions resulted in the generation of unreplicated gaps at origins, likely due to helicase activation prior to replication initiation. We used micrococcal nuclease (MNase)-based chromatin occupancy profiling under restrictive conditions to study chromatin dynamics associated with helicase activation. Helicase activation in the absence of DNA replication resulted in the disruption and disorganization of chromatin, which extends up to 1 kb from early, efficient replication origins. The CMG holohelicase complex also moves the same distance out from the origin, producing single-stranded DNA that activates the intra-S-phase checkpoint. Loss of the checkpoint did not regulate the progression and stalling of the CMG complex but rather resulted in the disruption of chromatin at both early and late origins. Finally, we found that the local sequence context regulates helicase progression in the absence of DNA replication, suggesting that the helicase is intrinsically less processive when uncoupled from replication.
Collapse
Affiliation(s)
- Rachel A Hoffman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
24
|
Spinks RR, Spenkelink LM, Stratmann SA, Xu ZQ, Stamford NPJ, Brown SE, Dixon NE, Jergic S, van Oijen AM. DnaB helicase dynamics in bacterial DNA replication resolved by single-molecule studies. Nucleic Acids Res 2021; 49:6804-6816. [PMID: 34139009 PMCID: PMC8266626 DOI: 10.1093/nar/gkab493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
In Escherichia coli, the DnaB helicase forms the basis for the assembly of the DNA replication complex. The stability of DnaB at the replication fork is likely important for successful replication initiation and progression. Single-molecule experiments have significantly changed the classical model of highly stable replication machines by showing that components exchange with free molecules from the environment. However, due to technical limitations, accurate assessments of DnaB stability in the context of replication are lacking. Using in vitro fluorescence single-molecule imaging, we visualise DnaB loaded on forked DNA templates. That these helicases are highly stable at replication forks, indicated by their observed dwell time of ∼30 min. Addition of the remaining replication factors results in a single DnaB helicase integrated as part of an active replisome. In contrast to the dynamic behaviour of other replisome components, DnaB is maintained within the replisome for the entirety of the replication process. Interestingly, we observe a transient interaction of additional helicases with the replication fork. This interaction is dependent on the τ subunit of the clamp-loader complex. Collectively, our single-molecule observations solidify the role of the DnaB helicase as the stable anchor of the replisome, but also reveal its capacity for dynamic interactions.
Collapse
Affiliation(s)
- Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Sarah A Stratmann
- Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - N Patrick J Stamford
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Susan E Brown
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia.,Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
25
|
Abstract
In all cell types, a multi-protein machinery is required to accurately duplicate the large duplex DNA genome. This central life process requires five core replisome factors in all cellular life forms studied thus far. Unexpectedly, three of the five core replisome factors have no common ancestor between bacteria and eukaryotes. Accordingly, the replisome machines of bacteria and eukaryotes have important distinctions in the way that they are organized and function. This chapter outlines the major replication proteins that perform DNA duplication at replication forks, with particular attention to differences and similarities in the strategies used by eukaryotes and bacteria.
Collapse
Affiliation(s)
- Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, USA, 10065
| | - Michael E O'Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, USA, 10065. .,Howard Hughes Medical Institute, The Rockefeller University, New York, USA, 10065.
| |
Collapse
|
26
|
Kapadia N, El-Hajj ZW, Zheng H, Beattie TR, Yu A, Reyes-Lamothe R. Processive Activity of Replicative DNA Polymerases in the Replisome of Live Eukaryotic Cells. Mol Cell 2020; 80:114-126.e8. [DOI: 10.1016/j.molcel.2020.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 07/02/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
|
27
|
Myka KK, Marians KJ. Two components of DNA replication-dependent LexA cleavage. J Biol Chem 2020; 295:10368-10379. [PMID: 32513870 PMCID: PMC7383369 DOI: 10.1074/jbc.ra120.014224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Induction of the SOS response, a cellular system triggered by DNA damage in bacteria, depends on DNA replication for the generation of the SOS signal, ssDNA. RecA binds to ssDNA, forming filaments that stimulate proteolytic cleavage of the LexA transcriptional repressor, allowing expression of > 40 gene products involved in DNA repair and cell cycle regulation. Here, using a DNA replication system reconstituted in vitro in tandem with a LexA cleavage assay, we studied LexA cleavage during DNA replication of both undamaged and base-damaged templates. Only a ssDNA-RecA filament supported LexA cleavage. Surprisingly, replication of an undamaged template supported levels of LexA cleavage like that induced by a template carrying two site-specific cyclobutane pyrimidine dimers. We found that two processes generate ssDNA that could support LexA cleavage. 1) During unperturbed replication, single-stranded regions formed because of stochastic uncoupling of the leading-strand DNA polymerase from the replication fork DNA helicase, and 2) on the damaged template, nascent leading-strand gaps were generated by replisome lesion skipping. The two pathways differed in that RecF stimulated LexA cleavage during replication of the damaged template, but not normal replication. RecF appears to facilitate RecA filament formation on the leading-strand ssDNA gaps generated by replisome lesion skipping.
Collapse
Affiliation(s)
- Kamila K Myka
- Molecular Biology Program, Sloan Kettering Institute Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Kenneth J Marians
- Molecular Biology Program, Sloan Kettering Institute Memorial Sloan Kettering Cancer Center, New York, New York USA
| |
Collapse
|
28
|
Kose HB, Xie S, Cameron G, Strycharska MS, Yardimci H. Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase. Nat Commun 2020; 11:3713. [PMID: 32709841 PMCID: PMC7382467 DOI: 10.1038/s41467-020-17443-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/01/2020] [Indexed: 01/09/2023] Open
Abstract
A ring-shaped helicase unwinds DNA during chromosome replication in all organisms. Replicative helicases generally unwind duplex DNA an order of magnitude slower compared to their in vivo replication fork rates. However, the origin of slow DNA unwinding rates by replicative helicases and the mechanism by which other replication components increase helicase speed are unclear. Here, we demonstrate that engagement of the eukaryotic CMG helicase with template DNA at the replication fork impairs its helicase activity, which is alleviated by binding of the single-stranded DNA binding protein, RPA, to the excluded DNA strand. Intriguingly, we found that, when stalled due to interaction with the parental duplex, DNA rezipping-induced helicase backtracking reestablishes productive helicase-fork engagement, underscoring the significance of plasticity in helicase action. Our work provides a mechanistic basis for relatively slow duplex unwinding by replicative helicases and explains how replisome components that interact with the excluded DNA strand stimulate fork rates.
Collapse
Affiliation(s)
- Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Sherry Xie
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - George Cameron
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Melania S Strycharska
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
29
|
Monachino E, Jergic S, Lewis JS, Xu ZQ, Lo ATY, O'Shea VL, Berger JM, Dixon NE, van Oijen AM. A Primase-Induced Conformational Switch Controls the Stability of the Bacterial Replisome. Mol Cell 2020; 79:140-154.e7. [PMID: 32464091 DOI: 10.1016/j.molcel.2020.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.
Collapse
Affiliation(s)
- Enrico Monachino
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747, the Netherlands
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Valerie L O'Shea
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
30
|
Ma JB, Chen Z, Xu CH, Huang XY, Jia Q, Zou ZY, Mi CY, Ma DF, Lu Y, Zhang HD, Li M. Dynamic structural insights into the molecular mechanism of DNA unwinding by the bacteriophage T7 helicase. Nucleic Acids Res 2020; 48:3156-3164. [PMID: 32009150 PMCID: PMC7102974 DOI: 10.1093/nar/gkaa057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/31/2023] Open
Abstract
The hexametric T7 helicase (gp4) adopts a spiral lock-washer form and encircles a coil-like DNA (tracking) strand with two nucleotides bound to each subunit. However, the chemo-mechanical coupling mechanism in unwinding has yet to be elucidated. Here, we utilized nanotensioner-enhanced Förster resonance energy transfer with one nucleotide precision to investigate gp4-induced unwinding of DNA that contains an abasic lesion. We observed that the DNA unwinding activity of gp4 is hindered but not completely blocked by abasic lesions. Gp4 moves back and forth repeatedly when it encounters an abasic lesion, whereas it steps back only occasionally when it unwinds normal DNA. We further observed that gp4 translocates on the tracking strand in step sizes of one to four nucleotides. We propose that a hypothetical intermediate conformation of the gp4-DNA complex during DNA unwinding can help explain how gp4 molecules pass lesions, providing insights into the unwinding dynamics of gp4.
Collapse
Affiliation(s)
- Jian-Bing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ze Chen
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Chun-Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Yuan Huang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jia
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Yu Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Chen-Yang Mi
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dong-Fei Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Dong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China.,Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks. Nat Struct Mol Biol 2020; 27:461-471. [PMID: 32341532 PMCID: PMC7225081 DOI: 10.1038/s41594-020-0407-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
The coordination of DNA unwinding and synthesis at replication forks promotes efficient and faithful replication of chromosomal DNA. Disruption of the balance between helicase and polymerase activities during replication stress leads to fork progression defects and activation of the Rad53 checkpoint kinase, which is essential for the functional maintenance of stalled replication forks. The mechanism of Rad53-dependent fork stabilization is not known. Using reconstituted budding yeast replisomes, we show that mutational inactivation of the leading strand DNA polymerase, Pol ε, dNTP depletion, and chemical inhibition of DNA polymerases cause excessive DNA unwinding by the replicative DNA helicase, CMG, demonstrating that budding yeast replisomes lack intrinsic mechanisms that control helicase-polymerase coupling at the fork. Importantly, we find that the Rad53 kinase restricts excessive DNA unwinding at replication forks by limiting CMG helicase activity, suggesting a mechanism for fork stabilization by the replication checkpoint.
Collapse
|
32
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
33
|
Helicobacter pylori helicase loader protein Hp0897 shows unique functions of N- and C-terminal regions. Biochem J 2019; 476:3261-3279. [PMID: 31548270 DOI: 10.1042/bcj20190430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022]
Abstract
Helicase loaders are required for the loading of helicases at the vicinity of replication origins. In Helicobacter pylori, Hp0897 has been shown to be a potential helicase loader for replicative helicase (HpDnaB) although it does not show any sequence homology with conventional DnaC like helicase loader proteins. Therefore, it is important to investigate the in vivo role of Hp0897 and structure-function analysis with respect to domain mapping of Hp0897 and HpDnaB. Although HporiC is divided into oriC1 and oriC2, the latter has been assigned as functional origin based on loading of initiator protein HpDnaA. Using chromatin immunoprecipitation (ChIP) experiment, we show preferential binding of Hp0897 at oriC2 over oriC1 like HpDnaA highlighting its helicase loader function in vivo. Furthermore, we generated series of deletion mutants for HpDnaB and Hp0897 that enabled us to map the domains of interaction between these two proteins. Interestingly, the C-terminal domain of Hp0897 (Hp0897CTD) shows stronger interaction with HpDnaB over the N-terminal region of Hp0897 (Hp0897NTD). Similar to the full-length protein, Hp0897CTD also stimulates the DNA binding activity of HpDnaB. Furthermore, overexpression of Hp0897 full-length protein in H. pylori leads to an elongated cell phenotype. While the overexpression of Hp0897CTD does not show a phenotype of cell elongation, overexpression of Hp0897NTD shows extensive cell elongation. These results highlight the possible role of Hp0897CTD in helicase loading and Hp0897NTD's unique function linked to cell division that make Hp0897 as a potential drug target against H. pylori.
Collapse
|
34
|
Perera HM, Behrmann MS, Hoang JM, Griffin WC, Trakselis MA. Contacts and context that regulate DNA helicase unwinding and replisome progression. Enzymes 2019; 45:183-223. [PMID: 31627877 DOI: 10.1016/bs.enz.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hexameric DNA helicases involved in the separation of duplex DNA at the replication fork have a universal architecture but have evolved from two separate protein families. The consequences are that the regulation, translocation polarity, strand specificity, and architectural orientation varies between phage/bacteria to that of archaea/eukaryotes. Once assembled and activated for single strand DNA translocation and unwinding, the DNA polymerase couples tightly to the helicase forming a robust replisome complex. However, this helicase-polymerase interaction can be challenged by various forms of endogenous or exogenous agents that can stall the entire replisome or decouple DNA unwinding from synthesis. The consequences of decoupling can be severe, leading to a build-up of ssDNA requiring various pathways for replication fork restart. All told, the hexameric helicase sits prominently at the front of the replisome constantly responding to a variety of obstacles that require transient unwinding/reannealing, traversal of more stable blocks, and alternations in DNA unwinding speed that regulate replisome progression.
Collapse
Affiliation(s)
- Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Joy M Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.
| |
Collapse
|
35
|
Blocking the Trigger: Inhibition of the Initiation of Bacterial Chromosome Replication as an Antimicrobial Strategy. Antibiotics (Basel) 2019; 8:antibiotics8030111. [PMID: 31390740 PMCID: PMC6784150 DOI: 10.3390/antibiotics8030111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022] Open
Abstract
All bacterial cells must duplicate their genomes prior to dividing into two identical daughter cells. Chromosome replication is triggered when a nucleoprotein complex, termed the orisome, assembles, unwinds the duplex DNA, and recruits the proteins required to establish new replication forks. Obviously, the initiation of chromosome replication is essential to bacterial reproduction, but this process is not inhibited by any of the currently-used antimicrobial agents. Given the urgent need for new antibiotics to combat drug-resistant bacteria, it is logical to evaluate whether or not unexploited bacterial processes, such as orisome assembly, should be more closely examined for sources of novel drug targets. This review will summarize current knowledge about the proteins required for bacterial chromosome initiation, as well as how orisomes assemble and are regulated. Based upon this information, we discuss current efforts and potential strategies and challenges for inhibiting this initiation pharmacologically.
Collapse
|
36
|
Replisome activity slowdown after exposure to ultraviolet light in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:11747-11753. [PMID: 31127046 DOI: 10.1073/pnas.1819297116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The replisome is a multiprotein machine that is responsible for replicating DNA. During active DNA synthesis, the replisome tightly associates with DNA. In contrast, after DNA damage, the replisome may disassemble, exposing DNA to breaks and threatening cell survival. Using live cell imaging, we studied the effect of UV light on the replisome of Escherichia coli Surprisingly, our results showed an increase in Pol III holoenzyme (Pol III HE) foci post-UV that do not colocalize with the DnaB helicase. Formation of these foci is independent of active replication forks and dependent on the presence of the χ subunit of the clamp loader, suggesting recruitment of Pol III HE at sites of DNA repair. Our results also showed a decrease of DnaB helicase foci per cell after UV, consistent with the disassembly of a fraction of the replisomes. By labeling newly synthesized DNA, we demonstrated that a drop in the rate of synthesis is not explained by replisome disassembly alone. Instead, we show that most replisomes continue synthesizing DNA at a slower rate after UV. We propose that the slowdown in replisome activity is a strategy to prevent clashes with engaged DNA repair proteins and preserve the integrity of the replication fork.
Collapse
|
37
|
Burnham DR, Kose HB, Hoyle RB, Yardimci H. The mechanism of DNA unwinding by the eukaryotic replicative helicase. Nat Commun 2019; 10:2159. [PMID: 31089141 PMCID: PMC6517413 DOI: 10.1038/s41467-019-09896-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication.
Collapse
Affiliation(s)
- Daniel R Burnham
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hazal B Kose
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rebecca B Hoyle
- School of Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Hasan Yardimci
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
38
|
Taylor MRG, Yeeles JTP. Dynamics of Replication Fork Progression Following Helicase-Polymerase Uncoupling in Eukaryotes. J Mol Biol 2019; 431:2040-2049. [PMID: 30894292 PMCID: PMC6525111 DOI: 10.1016/j.jmb.2019.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/11/2022]
Abstract
Leading-strand polymerase stalling at DNA damage impairs replication fork progression. Using biochemical approaches, we show this arises due to both slower template unwinding following helicase-polymerase uncoupling and establishment of prolonged stalled fork structures. Fork slowing and stalling occur at structurally distinct lesions, are always associated with continued lagging-strand synthesis, are observed when either Pol ε or Pol δ stalls at leading-strand damage, and do not require specific helicase-polymerase coupling factors. Hence, the key trigger for these replisome-intrinsic responses is cessation of leading-strand polymerization, revealing this as a crucial driver of normal replication fork rates. We propose that this helps balance the need for sufficient uncoupling to activate the DNA replication checkpoint with excessive destabilizing single-stranded DNA exposure in eukaryotes.
Collapse
Affiliation(s)
- Martin R G Taylor
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Joseph T P Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
39
|
Topoisomerase III Acts at the Replication Fork To Remove Precatenanes. J Bacteriol 2019; 201:JB.00563-18. [PMID: 30617245 DOI: 10.1128/jb.00563-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/21/2018] [Indexed: 11/20/2022] Open
Abstract
The role of DNA topoisomerase III (Topo III) in bacterial cells has proven elusive. Whereas eukaryotic Top IIIα homologs are clearly involved with homologs of the bacterial DNA helicase RecQ in unraveling double Holliday junctions, preventing crossover exchange of genetic information at unscheduled recombination intermediates, and Top IIIβ homologs have been shown to be involved in regulation of various mRNAs involved in neuronal function, there is little evidence for similar reactions in bacteria. Instead, most data point to Topo III playing a role supplemental to that of topoisomerase IV in unlinking daughter chromosomes during DNA replication. In support of this model, we show that Escherichia coli Topo III associates with the replication fork in vivo (likely via interactions with the single-stranded DNA-binding protein and the β clamp-loading DnaX complex of the DNA polymerase III holoenzyme), that the DnaX complex stimulates the ability of Topo III to unlink both catenated and precatenated DNA rings, and that ΔtopB cells show delayed and disorganized nucleoid segregation compared to that of wild-type cells. These data argue that Topo III normally assists topoisomerase IV in chromosome decatenation by removing excess positive topological linkages at or near the replication fork as they are converted into precatenanes.IMPORTANCE Topological entanglement between daughter chromosomes has to be reduced to exactly zero every time an E. coli cell divides. The enzymatic agents that accomplish this task are the topoisomerases. E. coli possesses four topoisomerases. It has been thought that topoisomerase IV is primarily responsible for unlinking the daughter chromosomes during DNA replication. We show here that topoisomerase III also plays a role in this process and is specifically localized to the replisome, the multiprotein machine that duplicates the cell's genome, in order to do so.
Collapse
|
40
|
Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, Zhou ZH, Yang W. Structures and operating principles of the replisome. Science 2019; 363:science.aav7003. [PMID: 30679383 DOI: 10.1126/science.aav7003] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Visualization in atomic detail of the replisome that performs concerted leading- and lagging-DNA strand synthesis at a replication fork has not been reported. Using bacteriophage T7 as a model system, we determined cryo-electron microscopy structures up to 3.2-angstroms resolution of helicase translocating along DNA and of helicase-polymerase-primase complexes engaging in synthesis of both DNA strands. Each domain of the spiral-shaped hexameric helicase translocates sequentially hand-over-hand along a single-stranded DNA coil, akin to the way AAA+ ATPases (adenosine triphosphatases) unfold peptides. Two lagging-strand polymerases are attached to the primase, ready for Okazaki fragment synthesis in tandem. A β hairpin from the leading-strand polymerase separates two parental DNA strands into a T-shaped fork, thus enabling the closely coupled helicase to advance perpendicular to the downstream DNA duplex. These structures reveal the molecular organization and operating principles of a replisome.
Collapse
Affiliation(s)
- Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanxiang Cui
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Tara Fox
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Shiqiang Lin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Z Hong Zhou
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Larsen NB, Gao AO, Sparks JL, Gallina I, Wu RA, Mann M, Räschle M, Walter JC, Duxin JP. Replication-Coupled DNA-Protein Crosslink Repair by SPRTN and the Proteasome in Xenopus Egg Extracts. Mol Cell 2018; 73:574-588.e7. [PMID: 30595436 PMCID: PMC6375733 DOI: 10.1016/j.molcel.2018.11.024] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/20/2018] [Accepted: 11/15/2018] [Indexed: 01/19/2023]
Abstract
DNA-protein crosslinks (DPCs) are bulky lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S phase removal of DPCs, but how SPRTN is targeted to DPCs during DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases. Proteasome recruitment requires DPC polyubiquitylation, which is partially dependent on the ubiquitin ligase activity of TRAIP. In contrast, SPRTN-mediated DPC degradation does not require DPC polyubiquitylation but instead depends on nascent strand extension to within a few nucleotides of the lesion, implying that polymerase stalling at the DPC activates SPRTN on both leading and lagging strand templates. Our results demonstrate that SPRTN and proteasome activities are coupled to DNA replication by distinct mechanisms that promote replication across immovable protein barriers.
Collapse
Affiliation(s)
- Nicolai B Larsen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alan O Gao
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Irene Gallina
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthias Mann
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Räschle
- Department of Molecular Biotechnology and Systems Biology, Technical University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Julien P Duxin
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
42
|
Sasi NK, Coquel F, Lin YL, MacKeigan JP, Pasero P, Weinreich M. DDK Has a Primary Role in Processing Stalled Replication Forks to Initiate Downstream Checkpoint Signaling. Neoplasia 2018; 20:985-995. [PMID: 30157471 PMCID: PMC6111017 DOI: 10.1016/j.neo.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
CDC7-DBF4 kinase (DDK) initiates DNA replication in eukaryotes by activating the replicative MCM helicase. DDK has diverse and apparently conflicting roles in the replication checkpoint response in various organisms, but the underlying mechanisms are far from settled. We show that human DDK promotes limited resection of newly synthesized DNA at stalled replication forks or sites of DNA damage to initiate replication checkpoint signaling. DDK is also required for efficient fork restart and G2/M cell cycle arrest. DDK exhibits genetic interactions with the ssDNA exonuclease EXO1 and phosphorylates EXO1 in vitro. EXO1 is also required for nascent strand degradation following exposure to HU, so DDK might regulate EXO1 directly. Lastly, sublethal DDK inhibition causes various mitotic abnormalities, which is consistent with a checkpoint deficiency. In summary, DDK has a primary and previously undescribed role in the replication checkpoint to promote ssDNA accumulation at stalled forks, which is required to initiate a robust checkpoint response and cell cycle arrest to maintain genome integrity.
Collapse
Affiliation(s)
- Nanda Kumar Sasi
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503; Laboratory of Systems Biology, VARI; Graduate Program in Genetics, Michigan State University, East Lansing, MI 48824
| | - Flavie Coquel
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Yea-Lih Lin
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | | | - Philippe Pasero
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503.
| |
Collapse
|
43
|
Evrin C, Maman JD, Diamante A, Pellegrini L, Labib K. Histone H2A-H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin. EMBO J 2018; 37:embj.201899021. [PMID: 30104407 PMCID: PMC6166128 DOI: 10.15252/embj.201899021] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/18/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re‐deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone‐binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating‐type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone‐binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin‐derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone‐binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.
Collapse
Affiliation(s)
- Cecile Evrin
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joseph D Maman
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aurora Diamante
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
44
|
Abstract
In all organisms, replication impairments are an important source of genome rearrangements, mainly because of the formation of double-stranded DNA (dsDNA) ends at inactivated replication forks. Three reactions for the formation of dsDNA ends at replication forks were originally described for Escherichia coli and became seminal models for all organisms: the encounter of replication forks with preexisting single-stranded DNA (ssDNA) interruptions, replication fork reversal, and head-to-tail collisions of successive replication rounds. Here, we first review the experimental evidence that now allows us to know when, where, and how these three different reactions occur in E. coli. Next, we recall our recent studies showing that in wild-type E. coli, spontaneous replication fork breakage occurs in 18% of cells at each generation. We propose that it results from the replication of preexisting nicks or gaps, since it does not involve replication fork reversal or head-to-tail fork collisions. In the recB mutant, deficient for double-strand break (DSB) repair, fork breakage triggers DSBs in the chromosome terminus during cell division, a reaction that is heritable for several generations. Finally, we recapitulate several observations suggesting that restart from intact inactivated replication forks and restart from recombination intermediates require different sets of enzymatic activities. The finding that 18% of cells suffer replication fork breakage suggests that DNA remains intact at most inactivated forks. Similarly, only 18% of cells need the helicase loader for replication restart, which leads us to speculate that the replicative helicase remains on DNA at intact inactivated replication forks and is reactivated by the replication restart proteins.
Collapse
|
45
|
Kaguni JM. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery. Antibiotics (Basel) 2018. [PMID: 29538288 PMCID: PMC5872134 DOI: 10.3390/antibiotics7010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
46
|
The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol 2018; 25:122-130. [PMID: 29379175 DOI: 10.1038/s41594-018-0024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
DNA replication requires separation of genomic duplex DNA strands, an operation that is performed by a hexameric ring-shaped helicase in all domains of life. The structures and chemomechanical actions of these fascinating machines are coming into sharper focus. Although there is no evolutionary relationship between the hexameric helicases of bacteria and those of archaea and eukaryotes, they share many fundamental features. Here we review recent studies of these two groups of hexameric helicases and the unexpected distinctions they have also unveiled.
Collapse
|
47
|
Windgassen TA, Wessel SR, Bhattacharyya B, Keck JL. Mechanisms of bacterial DNA replication restart. Nucleic Acids Res 2018; 46:504-519. [PMID: 29202195 PMCID: PMC5778457 DOI: 10.1093/nar/gkx1203] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved 'DNA replication restart' pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT).
Collapse
Affiliation(s)
- Tricia A Windgassen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sarah R Wessel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Biochemistry, Vanderbilt School of Medicine, Nashville, TN 37205, USA
| | - Basudeb Bhattacharyya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
48
|
Felczak MM, Chodavarapu S, Kaguni JM. DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase. J Biol Chem 2017; 292:20871-20882. [PMID: 29070678 DOI: 10.1074/jbc.m117.807644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Former studies relying on hydrogen/deuterium exchange analysis suggest that DnaC bound to DnaB alters the conformation of the N-terminal domain (NTD) of DnaB to impair the ability of this DNA helicase to interact with primase. Supporting this idea, the work described herein based on biosensor experiments and enzyme-linked immunosorbent assays shows that the DnaB-DnaC complex binds poorly to primase in comparison with DnaB alone. Using a structural model of DnaB complexed with the C-terminal domain of primase, we found that Ile-85 is located at the interface in the NTD of DnaB that contacts primase. An alanine substitution for Ile-85 specifically interfered with this interaction and impeded DnaB function in DNA replication, but not its activity as a DNA helicase or its ability to bind to ssDNA. By comparison, substitutions of Asn for Ile-136 (I136N) and Thr for Ile-142 (I142T) in a subdomain previously named the helical hairpin in the NTD of DnaB altered the conformation of the helical hairpin and/or compromised its pairwise arrangement with the companion subdomain in each brace of protomers of the DnaB hexamer. In contrast with the I85A mutant, the latter were defective in DNA replication due to impaired binding to both ssDNA and primase. In view of these findings, we propose that DnaC controls the ability of DnaB to interact with primase by modifying the conformation of the NTD of DnaB.
Collapse
Affiliation(s)
- Magdalena M Felczak
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Sundari Chodavarapu
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Jon M Kaguni
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
49
|
Trakselis MA, Cranford MT, Chu AM. Coordination and Substitution of DNA Polymerases in Response to Genomic Obstacles. Chem Res Toxicol 2017; 30:1956-1971. [PMID: 28881136 DOI: 10.1021/acs.chemrestox.7b00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized. Substitutions can occur externally by recruiting new Pols to replisome complexes through an "exchange" of enzyme binding or internally through a "switch" in the engagement of DNA from preformed associated enzymes contained within supraholoenzyme complexes. Models for how high fidelity (HiFi) replication Pols can be substituted by translesion synthesis (TLS) Pols at sites of damage during active replication will be discussed. These substitution mechanisms may be as diverse as the number of Pol families and types of damage; however, common themes can be recognized across species. Overall, Pol substitutions will be controlled by explicit protein contacts, complex multiequilibrium processes, and specific kinetic activities. Insight into how these dynamic processes take place and are regulated will be of utmost importance for our greater understanding of the specifics of TLS as well as providing for future novel chemotherapeutic and antimicrobial strategies.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Matthew T Cranford
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Aurea M Chu
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|
50
|
Carney SM, Gomathinayagam S, Leuba SH, Trakselis MA. Bacterial DnaB helicase interacts with the excluded strand to regulate unwinding. J Biol Chem 2017; 292:19001-19012. [PMID: 28939774 DOI: 10.1074/jbc.m117.814178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Replicative hexameric helicases are thought to unwind duplex DNA by steric exclusion (SE) where one DNA strand is encircled by the hexamer and the other is excluded from the central channel. However, interactions with the excluded strand on the exterior surface of hexameric helicases have also been shown to be important for DNA unwinding, giving rise to the steric exclusion and wrapping (SEW) model. For example, the archaeal Sulfolobus solfataricus minichromosome maintenance (SsoMCM) helicase has been shown to unwind DNA via a SEW mode to enhance unwinding efficiency. Using single-molecule FRET, we now show that the analogous Escherichia coli (Ec) DnaB helicase also interacts specifically with the excluded DNA strand during unwinding. Mutation of several conserved and positively charged residues on the exterior surface of EcDnaB resulted in increased interaction dynamics and states compared with wild type. Surprisingly, these mutations also increased the DNA unwinding rate, suggesting that electrostatic contacts with the excluded strand act as a regulator for unwinding activity. In support of this, experiments neutralizing the charge of the excluded strand with a morpholino substrate instead of DNA also dramatically increased the unwinding rate. Of note, although the stability of the excluded strand was nearly identical for EcDnaB and SsoMCM, these enzymes are from different superfamilies and unwind DNA with opposite polarities. These results support the SEW model of unwinding for EcDnaB that expands on the existing SE model of hexameric helicase unwinding to include contributions from the excluded strand to regulate the DNA unwinding rate.
Collapse
Affiliation(s)
- Sean M Carney
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Sanford H Leuba
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Michael A Trakselis
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, .,Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, and
| |
Collapse
|