1
|
Du Y, Xie J, Liu D, Zhao J, Chen P, He X, Hong P, Fu Y, Hong Y, Liu WH, Xiao C. Critical and differential roles of eIF4A1 and eIF4A2 in B-cell development and function. Cell Mol Immunol 2025; 22:40-53. [PMID: 39516355 DOI: 10.1038/s41423-024-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Eukaryotic initiation factor 4 A (eIF4A) plays critical roles during translation initiation of cellular mRNAs by forming the cap-binding eIF4F complex, recruiting the 40S small ribosome subunit, and scanning the 5' untranslated region (5' UTR) for the start codon. eIF4A1 and eIF4A2, two isoforms of eIF4A, are highly conserved and exchange freely within eIF4F complexes. The understanding of their biological and molecular functions remains incomplete if not fragmentary. In this study, we showed that eIF4A1 and eIF4A2 exhibit different expression patterns during B-cell development and activation. Mouse genetic analyses showed that they play critical but differential roles during B-cell development and humoral immune responses. While eIF4A1 controls global protein synthesis, eIF4A2 regulates the biogenesis of 18S ribosomal RNA and the 40S ribosome subunit. This study demonstrates the distinct cellular and molecular functions of eIF4A1 and eIF4A2 and reveals a new role of eIF4A2 in controlling 40S ribosome biogenesis.
Collapse
Affiliation(s)
- Ying Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Dewang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyu He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Peicheng Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yubing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Sanofi Institute for Biomedical Research, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
2
|
An W, Yan Y, Ye K. High resolution landscape of ribosomal RNA processing and surveillance. Nucleic Acids Res 2024; 52:10630-10644. [PMID: 38994562 PMCID: PMC11417381 DOI: 10.1093/nar/gkae606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Ribosomal RNAs are processed in a complex pathway. We profiled rRNA processing intermediates in yeast at single-molecule and single-nucleotide levels with circularization, targeted amplification and deep sequencing (CircTA-seq), gaining significant mechanistic insights into rRNA processing and surveillance. The long form of the 5' end of 5.8S rRNA is converted to the short form and represents an intermediate of a unified processing pathway. The initial 3' end processing of 5.8S rRNA involves trimming by Rex1 and Rex2 and Trf4-mediated polyadenylation. The 3' end of 25S rRNA is formed by sequential digestion by four Rex proteins. Intermediates with an extended A1 site are generated during 5' degradation of aberrant 18S rRNA precursors. We determined precise polyadenylation profiles for pre-rRNAs and show that the degradation efficiency of polyadenylated 20S pre-rRNA critically depends on poly(A) lengths and degradation intermediates released from the exosome are often extensively re-polyadenylated.
Collapse
MESH Headings
- RNA Processing, Post-Transcriptional
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- RNA Precursors/metabolism
- RNA Precursors/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- Polyadenylation
- RNA, Fungal/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- Exosome Multienzyme Ribonuclease Complex/metabolism
- Exosome Multienzyme Ribonuclease Complex/genetics
- High-Throughput Nucleotide Sequencing
- RNA Stability
Collapse
Affiliation(s)
- Weidong An
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxiao Yan
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Schwank K, Schmid C, Fremter T, Engel C, Milkereit P, Griesenbeck J, Tschochner H. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Biol Chem 2023; 404:979-1002. [PMID: 37823775 DOI: 10.1515/hsz-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.
Collapse
Affiliation(s)
- Katrin Schwank
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Catharina Schmid
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Tobias Fremter
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Leonetti P, Consiglio A, Arendt D, Golbik RP, Rubino L, Gursinsky T, Behrens SE, Pantaleo V. Exogenous and endogenous dsRNAs perceived by plant Dicer-like 4 protein in the RNAi-depleted cellular context. Cell Mol Biol Lett 2023; 28:64. [PMID: 37550627 PMCID: PMC10405411 DOI: 10.1186/s11658-023-00469-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND In plants, RNase III Dicer-like proteins (DCLs) act as sensors of dsRNAs and process them into short 21- to 24-nucleotide (nt) (s)RNAs. Plant DCL4 is involved in the biogenesis of either functional endogenous or exogenous (i.e. viral) short interfering (si)RNAs, thus playing crucial antiviral roles. METHODS In this study we expressed plant DCL4 in Saccharomyces cerevisiae, an RNAi-depleted organism, in which we could highlight the role of dicing as neither Argonautes nor RNA-dependent RNA polymerase is present. We have therefore tested the DCL4 functionality in processing exogenous dsRNA-like substrates, such as a replicase-assisted viral replicon defective-interfering RNA and RNA hairpin substrates, or endogenous antisense transcripts. RESULTS DCL4 was shown to be functional in processing dsRNA-like molecules in vitro and in vivo into 21- and 22-nt sRNAs. Conversely, DCL4 did not efficiently process a replicase-assisted viral replicon in vivo, providing evidence that viral RNAs are not accessible to DCL4 in membranes associated in active replication. Worthy of note, in yeast cells expressing DCL4, 21- and 22-nt sRNAs are associated with endogenous loci. CONCLUSIONS We provide new keys to interpret what was studied so far on antiviral DCL4 in the host system. The results all together confirm the role of sense/antisense RNA-based regulation of gene expression, expanding the sense/antisense atlas of S. cerevisiae. The results described herein show that S. cerevisiae can provide insights into the functionality of plant dicers and extend the S. cerevisiae tool to new biotechnological applications.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, National Research Council, Institute for Sustainable Plant Protection, Bari Unit, Bari, Italy
| | - Arianna Consiglio
- Department of Biomedical Sciences, National Research Council, Institute for Biomedical Technologies, Bari Unit, Bari, Italy
| | - Dennis Arendt
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Luisa Rubino
- Department of Biology, Agricultural and Food Sciences, National Research Council, Institute for Sustainable Plant Protection, Bari Unit, Bari, Italy
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, National Research Council, Institute for Sustainable Plant Protection, Bari Unit, Bari, Italy.
| |
Collapse
|
5
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Li D, Guo F, Yue H, Huang Y, Lu C, Guo Y, Liu Q, Li Y. An Artificial Small RNA Editor by Chimeric dsRNase with RNA Binding Protein. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RNA plays a vital role in cell functions, but tools to manipulate it is limited. RNA interference (RNAi) is an important approach for biological and clinical applications, but the prone of non-target knockdown effects limited the usage. CRISPR-Cas13 systems recently have been identified
for RNA-guided RNA-interfering activity, and can be used in therapeutics, but the large size of Cas13 proteins and the off-targets effect also limit their further usage. Here we report that the chimeric protein containing a double strand nuclease/domain and a structure RNA binding domain (dsRNase-stRBD)
with structure guided RNA (sgRNA) can be engineered for mammalian RNA silencing effectively. The RNA knockdown mediated by this method was durable, efficient and stringent without off-target interfering by the sense strand of shRNA base method. Moreover, at size of only 307 aa, allowing dsRNase-stRBD
fitting for the versatile scAAV, while the most recent report displays that the smallest Cas13 protein is 775 aa. These results establish sgRNA-dsRBD-RNase as an excellent method for studying RNA function of cells and further clinical application.
Collapse
Affiliation(s)
- Danhua Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Fangfang Guo
- Department of Plastic and Reconstruction Surgery, Zhongda Hospital, Southeast University, Nanjing, 221001, Jiangsu, China
| | - Hongfang Yue
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yaqi Huang
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chenchen Lu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yubai Guo
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qinghua Liu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yanqiang Li
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs,
Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| |
Collapse
|
7
|
Han Y, Guo X, Zhang T, Wang J, Ye K. Development of an RNA-protein crosslinker to capture protein interactions with diverse RNA structures in cells. RNA (NEW YORK, N.Y.) 2022; 28:390-399. [PMID: 34916333 PMCID: PMC8848928 DOI: 10.1261/rna.078896.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Characterization of RNA-protein interaction is fundamental for understanding the metabolism and function of RNA. UV crosslinking has been widely used to map the targets of RNA-binding proteins, but is limited by low efficiency, requirement for zero-distance contact, and biases for single-stranded RNA structure and certain residues of RNA and protein. Here, we report the development of an RNA-protein crosslinker (AMT-NHS) composed of a psoralen derivative and an N-hydroxysuccinimide ester group, which react with RNA bases and primary amines of protein, respectively. We show that AMT-NHS can penetrate into living yeast cells and crosslink Cbf5 to H/ACA snoRNAs with high specificity. The crosslinker induced different crosslinking patterns than UV and targeted both single- and double-stranded regions of RNA. The crosslinker provides a new tool to capture diverse RNA-protein interactions in cells.
Collapse
Affiliation(s)
- Yan Han
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuzhen Guo
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiancai Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands
| | - Jiangyun Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
RNase III, Ribosome Biogenesis and Beyond. Microorganisms 2021; 9:microorganisms9122608. [PMID: 34946208 PMCID: PMC8708148 DOI: 10.3390/microorganisms9122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
Collapse
|
9
|
Wang C, Barr K, Neutel D, Roy K, Liu Y, Chanfreau GF. Stress-induced inhibition of mRNA export triggers RNase III-mediated decay of the BDF2 mRNA. RNA (NEW YORK, N.Y.) 2021; 27:1545-1556. [PMID: 34497070 PMCID: PMC8594472 DOI: 10.1261/rna.078880.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The expression of bromodomain-containing proteins that regulate chromatin structure and accessibility must be tightly controlled to ensure the appropriate regulation of gene expression. In the yeast S. cerevisiae, Bromodomain Factor 2 (BDF2) expression is extensively regulated post-transcriptionally during stress by RNase III-mediated decay (RMD), which is triggered by cleavage of the BDF2 mRNA in the nucleus by the RNase III homolog Rnt1p. Previous studies have shown that RMD-mediated down-regulation of BDF2 is hyperactivated in osmotic stress conditions, yet the mechanisms driving the enhanced nuclear cleavage of BDF2 RNA under these conditions remain unknown. Here, we show that RMD hyperactivation can be detected in multiple stress conditions that inhibit mRNA export, and that Rnt1p remains primarily localized in the nucleus during salt stress. We show that globally inhibiting mRNA nuclear export by anchoring away mRNA biogenesis or export factors out of the nucleus can recapitulate RMD hyperactivation in the absence of stress. RMD hyperactivation requires Rnt1p nuclear localization but does not depend on the BDF2 gene endogenous promoter, and its efficiency is affected by the structure of the stem-loop cleaved by Rnt1p. Because multiple stress conditions have been shown to mediate global inhibition of mRNA export, our results suggest that the hyperactivation of RMD is primarily the result of the increased nuclear retention of the BDF2 mRNA during stress.
Collapse
Affiliation(s)
- Charles Wang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - Keaton Barr
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - Dean Neutel
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - Kevin Roy
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | - Yanru Liu
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
The extrachromosomal elements of the Naegleria genus: How little we know. Plasmid 2021; 115:102567. [PMID: 33617907 DOI: 10.1016/j.plasmid.2021.102567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
There are currently 47 characterized species in the Naegleria genus of free-living amoebae. Each amoeba has thousands of extrachromosomal elements that are closed circular structures comprised of a single ribosomal DNA (rDNA) copy and a large non-rDNA sequence. Despite the presence of putative open reading frames and introns, ribosomal RNA is the only established transcript. A single origin of DNA replication (ori) has been mapped within the non-rDNA sequence for one species (N. gruberi), a finding that strongly indicates that these episomes replicate independently of the cell's chromosomal DNA component. This article reviews that which has been published about these interesting DNA elements and by analyzing available sequence data, discusses the possibility that different phylogenetically related clusters of Naegleria species individually conserve ori structures and suggests where the rRNA promoter and termination sites may be located.
Collapse
|
11
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
12
|
Jin L, Song H, Tropea JE, Needle D, Waugh DS, Gu S, Ji X. The molecular mechanism of dsRNA processing by a bacterial Dicer. Nucleic Acids Res 2019; 47:4707-4720. [PMID: 30916338 DOI: 10.1093/nar/gkz208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/01/2019] [Accepted: 03/17/2019] [Indexed: 01/21/2023] Open
Abstract
Members of the ribonuclease (RNase) III family regulate gene expression by processing dsRNAs. It was previously shown that Escherichia coli (Ec) RNase III recognizes dsRNA with little sequence specificity and the cleavage products are mainly 11 nucleotides (nt) long. It was also shown that the mutation of a glutamate (EcE38) to an alanine promotes generation of siRNA-like products typically 22 nt long. To fully characterize substrate specificity and product size of RNase IIIs, we performed in vitro cleavage of dsRNAs by Ec and Aquifex aeolicus (Aa) enzymes and delineated their products by next-generation sequencing. Surprisingly, we found that both enzymes cleave dsRNA at preferred sites, among which a guanine nucleotide was enriched at a specific position (+3G). Based on sequence and structure analyses, we conclude that RNase IIIs recognize +3G via a conserved glutamine (EcQ165/AaQ161) side chain. Abolishing this interaction by mutating the glutamine to an alanine eliminates the observed +3G preference. Furthermore, we identified a second glutamate (EcE65/AaE64), which, when mutated to alanine, also enhances the production of siRNA-like products. Based on these findings, we created a bacterial Dicer that is ideally suited for producing heterogeneous siRNA cocktails to be used in gene silencing studies.
Collapse
Affiliation(s)
- Lan Jin
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - He Song
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph E Tropea
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle Needle
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Shuo Gu
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Alam CM, Jain G, Kausar A, Singh AK, Mandal B, Varma A, Sharfuddin C, Chakraborty S. Dicer 1 of Candida albicans cleaves plant viral dsRNA in vitro and provides tolerance in plants against virus infection. Virusdisease 2019; 30:237-244. [PMID: 31179362 DOI: 10.1007/s13337-019-00520-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/13/2019] [Indexed: 11/25/2022] Open
Abstract
Most of the viral diseases of plants are caused by RNA viruses which drastically reduce crop yield. In order to generate resistance against RNA viruses infecting plants, we isolated the dicer 1 protein (CaDcr1), a member of RNAse III family (enzyme that cleaves double stranded RNA) from an opportunistic fungus Candida albicans. In vitro analysis revealed that the CaDcr1 cleaved dsRNA of the coat protein gene of cucumber mosaic virus (genus Cucumovirus, family Bromoviridae). Furthermore, we developed transgenic tobacco plants (Nicotiana tabacum cv. Xanthi) over-expressing expressing CaDcr1 by Agrobacterium mediated transformation. Transgenic tobacco lines were able to suppress infection of an Indian isolate of potato virus X (genus Potexvirus, family Alphaflexiviridae). The present study demonstrates that CaDcr1 can cleave double stranded replicative intermediate and provide tolerance to plant against RNA viruses.
Collapse
Affiliation(s)
- Chaudhary Mashhood Alam
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- 2Department of Botany, Patna University, Patna, Bihar 600005 India
| | - Garima Jain
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Aarzoo Kausar
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashish Kumar Singh
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Bikash Mandal
- 3Advanced Centre of Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anupam Varma
- 3Advanced Centre of Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Supriya Chakraborty
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
14
|
Abou Elela S, Ji X. Structure and function of Rnt1p: An alternative to RNAi for targeted RNA degradation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1521. [PMID: 30548404 DOI: 10.1002/wrna.1521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
The double-stranded RNA-binding protein (dsRBP) family controls RNA editing, stability, and function in all eukaryotes. The central feature of this family is the recognition of a generic RNA duplex using highly conserved double-stranded RNA-binding domain (dsRBD) that recognizes the characteristic distance between the minor grooves created by the RNA helix. Variations on this theme that confer species and functional specificities have been reported but most dsRBPs retain their capacity to bind generic dsRNA. The ribonuclease III (RNase III) family members fall into four classes, represented by bacterial RNase III, yeast Rnt1p, human Drosha, and human Dicer, respectively. Like all dsRBPs and most members of the RNase III family, Rnt1p has a dsRBD, but unlike most of its kin, it poorly binds to generic RNA helices. Instead, Rnt1p, the only known RNase III expressed in Saccharomyces cerevisiae that lacks the RNAi (RNA interference) machinery, recognizes a specific class of stem-loop structures. To recognize the specific substrates, the dsRBD of Rnt1p is specialized, featuring a αβββααα topology and a sequence-specific RNA-binding motif at the C-terminus. Since the discovery of Rnt1p in 1996, significant progress has been made in studies of its genetics, function, structure, and mechanism of action, explaining the reasons and mechanisms for the increased specificity of this enzyme and its impact on the mechanism of RNA degradation. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sherif Abou Elela
- Microbiology and Infectiology Department, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
15
|
The Conserved RNA Exonuclease Rexo5 Is Required for 3' End Maturation of 28S rRNA, 5S rRNA, and snoRNAs. Cell Rep 2018; 21:758-772. [PMID: 29045842 DOI: 10.1016/j.celrep.2017.09.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/16/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNA biogenesis in higher eukaryotes has not been fully characterized. Here, we studied the Drosophila melanogaster Rexo5 (CG8368) protein, a metazoan-specific member of the DEDDh 3'-5' single-stranded RNA exonucleases, by genetic, biochemical, and RNA-sequencing approaches. Rexo5 is required for small nucleolar RNA (snoRNA) and rRNA biogenesis and is essential in D. melanogaster. Loss-of-function mutants accumulate improperly 3' end-trimmed 28S rRNA, 5S rRNA, and snoRNA precursors in vivo. Rexo5 is ubiquitously expressed at low levels in somatic metazoan cells but extremely elevated in male and female germ cells. Loss of Rexo5 leads to increased nucleolar size, genomic instability, defective ribosome subunit export, and larval death. Loss of germline expression compromises gonadal growth and meiotic entry during germline development.
Collapse
|
16
|
Gordon GC, Cameron JC, Pfleger BF. Distinct and redundant functions of three homologs of RNase III in the cyanobacterium Synechococcus sp. strain PCC 7002. Nucleic Acids Res 2018; 46:1984-1997. [PMID: 29373746 PMCID: PMC5829567 DOI: 10.1093/nar/gky041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
RNase III is a ribonuclease that recognizes and cleaves double-stranded RNA. Across bacteria, RNase III is involved in rRNA maturation, CRISPR RNA maturation, controlling gene expression, and turnover of messenger RNAs. Many organisms have only one RNase III while others have both a full-length RNase III and another version that lacks a double-stranded RNA binding domain (mini-III). The genome of the cyanobacterium Synechococcus sp. strain PCC 7002 (PCC 7002) encodes three homologs of RNase III, two full-length and one mini-III, that are not essential even when deleted in combination. To discern if each enzyme had distinct responsibilities, we collected and sequenced global RNA samples from the wild type strain, the single, double, and triple RNase III mutants. Approximately 20% of genes were differentially expressed in various mutants with some operons and regulons showing complex changes in expression levels between mutants. Two RNase III's had a role in 23S rRNA maturation and the third was involved in copy number regulation one of six native plasmids. In vitro, purified RNase III enzymes were capable of cleaving some of the known Escherichia coli RNase III target sequences, highlighting the remarkably conserved substrate specificity between organisms yet complex regulation of gene expression.
Collapse
Affiliation(s)
- Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeffrey C Cameron
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Abstract
DROSHA is the catalytic subunit of the Microprocessor complex, which initiates microRNA (miRNA) maturation in the nucleus by recognizing and cleaving hairpin precursors embedded in primary transcripts. However, accumulating evidence suggests that not all hairpin substrates of DROSHA are associated with the generation of functional small RNAs. By targeting those hairpins, DROSHA regulates diverse aspects of RNA metabolism across the transcriptome, serves as a line of defense against the expression of potentially deleterious elements, and permits cell fate determination and differentiation. DROSHA is also versatile in the way that it executes these noncanonical functions, occasionally depending on its RNA-binding activity rather than its catalytic activity. Herein, we discuss the functional and mechanistic diversity of DROSHA beyond the miRNA biogenesis pathway in light of recent findings.
Collapse
Affiliation(s)
- Dooyoung Lee
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Chanseok Shin
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
18
|
Chen W, Xie Z, Yang F, Ye K. Stepwise assembly of the earliest precursors of large ribosomal subunits in yeast. Nucleic Acids Res 2017; 45:6837-6847. [PMID: 28402444 PMCID: PMC5499802 DOI: 10.1093/nar/gkx254] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022] Open
Abstract
Small ribosomal subunits are co-transcriptionally assembled on the nascent precursor rRNA in Saccharomyces cerevisiae. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is initially formed. Here, we affinity purified and analyzed a series of pre-60S particles assembled in vivo on plasmid-encoded pre-rRNA fragments of increasing lengths, revealing a spatiotemporal assembly map for 34 trans-acting assembly factors (AFs), 30 ribosomal proteins and 5S rRNA. The gradual association of AFs and ribosomal proteins with the pre-rRNA fragments strongly supports that the pre-60S is co-transcriptionally, rather than post-transcriptionally, assembled. The internal and external transcribed spacers ITS1, ITS2 and 3΄ ETS in pre-rRNA must be processed in pre-60S. We show that the processing machineries for ITS1 and ITS2 are primarily recruited by the 5΄ and 3΄ halves of pre-27S RNA, respectively. Nevertheless, processing of both ITS1 and ITS2 requires a complete 25S region. The 3΄ ETS plays a minor role in ribosome assembly, but is important for efficient rRNA processing and ribosome maturation. We also identified a distinct pre-60S state occurring before ITS2 processing. Our data reveal the elusive co-transcriptional assembly pathway of large ribosomal subunit.
Collapse
Affiliation(s)
- Wu Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.,National Institute of Biological Sciences, Beijing 102206, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Xie
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
20
|
Sariki SK, Sahu PK, Golla U, Singh V, Azad GK, Tomar RS. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway inSaccharomyces cerevisiae. FEBS J 2016; 283:4056-4083. [DOI: 10.1111/febs.13917] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/30/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Santhosh Kumar Sariki
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Pushpendra Kumar Sahu
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Upendarrao Golla
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Vikash Singh
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Gajendra Kumar Azad
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| |
Collapse
|
21
|
Tomecki R, Labno A, Drazkowska K, Cysewski D, Dziembowski A. hUTP24 is essential for processing of the human rRNA precursor at site A1, but not at site A0. RNA Biol 2016; 12:1010-29. [PMID: 26237581 DOI: 10.1080/15476286.2015.1073437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Production of ribosomes relies on more than 200 accessory factors to ensure the proper sequence of steps and faultless assembly of ribonucleoprotein machinery. Among trans-acting factors are numerous enzymes, including ribonucleases responsible for processing the large rRNA precursor synthesized by RNA polymerase I that encompasses sequences corresponding to mature 18S, 5.8S, and 25/28S rRNA. In humans, the identity of most enzymes responsible for individual processing steps, including endoribonucleases that cleave pre-rRNA at specific sites within regions flanking and separating mature rRNA, remains largely unknown. Here, we investigated the role of hUTP24 in rRNA maturation in human cells. hUTP24 is a human homolog of the Saccharomyces cerevisiae putative PIN domain-containing endoribonuclease Utp24 (yUtp24), which was suggested to participate in the U3 snoRNA-dependent processing of yeast pre-rRNA at sites A0, A1, and A2. We demonstrate that hUTP24 interacts to some extent with proteins homologous to the components of the yeast small subunit (SSU) processome. Moreover, mutation in the putative catalytic site of hUTP24 results in slowed growth of cells and reduced metabolic activity. These effects are associated with a defect in biogenesis of the 40S ribosomal subunit, which results from decreased amounts of 18S rRNA as a consequence of inaccurate pre-rRNA processing at the 5'-end of the 18S rRNA segment (site A1). Interestingly, and in contrast to yeast, site A0 located upstream of A1 is efficiently processed upon UTP24 dysfunction. Finally, hUTP24 inactivation leads to aberrant processing of 18S rRNA 2 nucleotides downstream of the normal A1 cleavage site.
Collapse
Affiliation(s)
- Rafal Tomecki
- a Institute of Biochemistry and Biophysics; Polish Academy of Sciences ; Warsaw , Poland.,b Institute of Genetics and Biotechnology; Faculty of Biology; University of Warsaw ; Warsaw , Poland
| | - Anna Labno
- a Institute of Biochemistry and Biophysics; Polish Academy of Sciences ; Warsaw , Poland.,b Institute of Genetics and Biotechnology; Faculty of Biology; University of Warsaw ; Warsaw , Poland
| | - Karolina Drazkowska
- a Institute of Biochemistry and Biophysics; Polish Academy of Sciences ; Warsaw , Poland.,b Institute of Genetics and Biotechnology; Faculty of Biology; University of Warsaw ; Warsaw , Poland
| | - Dominik Cysewski
- a Institute of Biochemistry and Biophysics; Polish Academy of Sciences ; Warsaw , Poland.,b Institute of Genetics and Biotechnology; Faculty of Biology; University of Warsaw ; Warsaw , Poland
| | - Andrzej Dziembowski
- a Institute of Biochemistry and Biophysics; Polish Academy of Sciences ; Warsaw , Poland.,b Institute of Genetics and Biotechnology; Faculty of Biology; University of Warsaw ; Warsaw , Poland
| |
Collapse
|
22
|
Comeau MA, Lafontaine DA, Abou Elela S. The catalytic efficiency of yeast ribonuclease III depends on substrate specific product release rate. Nucleic Acids Res 2016; 44:7911-21. [PMID: 27257067 PMCID: PMC5027489 DOI: 10.1093/nar/gkw507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/25/2016] [Indexed: 01/31/2023] Open
Abstract
Members of the ribonuclease III (RNase III) family regulate gene expression by triggering the degradation of double stranded RNA (dsRNA). Hundreds of RNase III cleavage targets have been identified and their impact on RNA maturation and stability is now established. However, the mechanism defining substrates’ reactivity remains unclear. In this study, we developed a real-time FRET assay for the detection of dsRNA degradation by yeast RNase III (Rnt1p) and characterized the kinetic bottlenecks controlling the reactivity of different substrates. Surprisingly, the results indicate that Rnt1p cleavage reaction is not only limited by the rate of catalysis but can also depend on base-pairing of product termini. Cleavage products terminating with paired nucleotides, like the degradation signals found in coding mRNA sequence, were less reactive and more prone to inhibition than products having unpaired nucleotides found in non-coding RNA substrates. Mutational analysis of U5 snRNA and Mig2 mRNA confirms the pairing of the cleavage site as a major determinant for the difference between cleavage rates of coding and non-coding RNA. Together the data indicate that the base-pairing of Rnt1p substrates encodes reactivity determinants that permit both constitutive processing of non-coding RNA while limiting the rate of mRNA degradation.
Collapse
Affiliation(s)
- Marc-Andre Comeau
- Département de biologie, Faculté de science, Université de Sherbrooke, Sherbrooke, Québec J1E 2R1, Canada
| | - Daniel A Lafontaine
- Département de biologie, Faculté de science, Université de Sherbrooke, Sherbrooke, Québec J1E 2R1, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Pavillon de recherche appliquée sur le cancer, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
23
|
Yuan Y, Xu H, Leung RKK. An optimized protocol for generation and analysis of Ion Proton sequencing reads for RNA-Seq. BMC Genomics 2016; 17:403. [PMID: 27229683 PMCID: PMC4880854 DOI: 10.1186/s12864-016-2745-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/14/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Previous studies compared running cost, time and other performance measures of popular sequencing platforms. However, comprehensive assessment of library construction and analysis protocols for Proton sequencing platform remains unexplored. Unlike Illumina sequencing platforms, Proton reads are heterogeneous in length and quality. When sequencing data from different platforms are combined, this can result in reads with various read length. Whether the performance of the commonly used software for handling such kind of data is satisfactory is unknown. RESULTS By using universal human reference RNA as the initial material, RNaseIII and chemical fragmentation methods in library construction showed similar result in gene and junction discovery number and expression level estimated accuracy. In contrast, sequencing quality, read length and the choice of software affected mapping rate to a much larger extent. Unspliced aligner TMAP attained the highest mapping rate (97.27 % to genome, 86.46 % to transcriptome), though 47.83 % of mapped reads were clipped. Long reads could paradoxically reduce mapping in junctions. With reference annotation guide, the mapping rate of TopHat2 significantly increased from 75.79 to 92.09 %, especially for long (>150 bp) reads. Sailfish, a k-mer based gene expression quantifier attained highly consistent results with that of TaqMan array and highest sensitivity. CONCLUSION We provided for the first time, the reference statistics of library preparation methods, gene detection and quantification and junction discovery for RNA-Seq by the Ion Proton platform. Chemical fragmentation performed equally well with the enzyme-based one. The optimal Ion Proton sequencing options and analysis software have been evaluated.
Collapse
Affiliation(s)
- Yongxian Yuan
- BGI-tech, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Huaiqian Xu
- BGI-tech, BGI-Wuhan, Wuhan, 430075, Hubei, China
| | - Ross Ka-Kit Leung
- BGI-tech, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Petibon C, Parenteau J, Catala M, Elela SA. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes. Nucleic Acids Res 2016; 44:3878-91. [PMID: 26945043 PMCID: PMC4856989 DOI: 10.1093/nar/gkw140] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/25/2016] [Indexed: 01/30/2023] Open
Abstract
Most budding yeast introns exist in the many duplicated ribosomal protein genes (RPGs) and it has been posited that they remain there to modulate the expression of RPGs and cell growth in response to stress. However, the mechanism by which introns regulate the expression of RPGs and their impact on the synthesis of ribosomal proteins remain unclear. In this study, we show that introns determine the ratio of ribosomal protein isoforms through asymmetric paralog-specific regulation of splicing. Exchanging the introns and 3′ untranslated regions of the duplicated RPS9 genes altered the splicing efficiency and changed the ratio of the ribosomal protein isoforms. Mutational analysis of the RPS9 genes indicated that splicing is regulated by variations in the intron structure and the 3′ untranslated region. Together these data suggest that preferential splicing of duplicated RPGs provides a means for adjusting the ratio of different ribosomal protein isoforms, while maintaining the overall expression level of each ribosomal protein.
Collapse
Affiliation(s)
- Cyrielle Petibon
- Université de Sherbrooke Centre of Excellence in RNA Biology, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Julie Parenteau
- Université de Sherbrooke Centre of Excellence in RNA Biology, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mathieu Catala
- Université de Sherbrooke Centre of Excellence in RNA Biology, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sherif Abou Elela
- Université de Sherbrooke Centre of Excellence in RNA Biology, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
25
|
Parenteau J, Lavoie M, Catala M, Malik-Ghulam M, Gagnon J, Abou Elela S. Preservation of Gene Duplication Increases the Regulatory Spectrum of Ribosomal Protein Genes and Enhances Growth under Stress. Cell Rep 2015; 13:2516-2526. [DOI: 10.1016/j.celrep.2015.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
|
26
|
ClRTL1 Encodes a Chinese Fir RNase III-Like Protein Involved in Regulating Shoot Branching. Int J Mol Sci 2015; 16:25691-710. [PMID: 26516842 PMCID: PMC4632822 DOI: 10.3390/ijms161025691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
Identification of genes controlling shoot branching is crucial for improving plant architecture and increasing crop yield or biomass. A branching mutant of Chinese fir named “Dugansha” (Cunninghamia lanceolata var. dugan.) has been isolated in our laboratory. We chose the cDNA-AFLP technique and an effective strategy to screen genes that potentially regulate shoot branching in Chinese fir using this mutant. An RNase III-like1 cDNA fragment named ClRTL1 was identified as a potential positive regulator. To investigate the function of ClRTL1 in regulating shoot branching, we cloned the full-length cDNA sequence from C. lanceolata (Lamb.) Hook, deduced its secondary structure and function, and overexpressed the coding sequence in Arabidopsis. The ClRTL1 cDNA is 1045 bp and comprises an open reading frame of 705 bp. It encodes a protein of 235 amino acids. The deduced secondary structure of the ClRTL1 indicates that it is a mini-RNase III-like protein. The expression analysis and phenotypes of 35S: ClRTL1 in A. thaliana implies that ClRTL1 plays a role in promoting shoot branching in Chinese fir.
Collapse
|
27
|
Clavel M, Pélissier T, Descombin J, Jean V, Picart C, Charbonel C, Saez-Vásquez J, Bousquet-Antonelli C, Deragon JM. Parallel action of AtDRB2 and RdDM in the control of transposable element expression. BMC PLANT BIOLOGY 2015; 15:70. [PMID: 25849103 PMCID: PMC4351826 DOI: 10.1186/s12870-015-0455-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND In plants and animals, a large number of double-stranded RNA binding proteins (DRBs) have been shown to act as non-catalytic cofactors of DICERs and to participate in the biogenesis of small RNAs involved in RNA silencing. We have previously shown that the loss of Arabidopsis thaliana's DRB2 protein results in a significant increase in the population of RNA polymerase IV (p4) dependent siRNAs, which are involved in the RNA-directed DNA methylation (RdDM) process. RESULTS Surprisingly, despite this observation, we show in this work that DRB2 is part of a high molecular weight complex that does not involve RdDM actors but several chromatin regulator proteins, such as MSI4, PRMT4B and HDA19. We show that DRB2 can bind transposable element (TE) transcripts in vivo but that drb2 mutants do not have a significant variation in TE DNA methylation. CONCLUSION We propose that DRB2 is part of a repressive epigenetic regulator complex involved in a negative feedback loop, adjusting epigenetic state to transcription level at TE loci, in parallel of the RdDM pathway. Loss of DRB2 would mainly result in an increased production of TE transcripts, readily converted in p4-siRNAs by the RdDM machinery.
Collapse
Affiliation(s)
- Marion Clavel
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
- />Present address: IBMP, UPR 2357, 12, rue du général Zimmer, 67084 Strasbourg cedex, France
| | - Thierry Pélissier
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
- />Present address: UMR6293 CNRS - INSERM U1103 – GreD, Clermont Université, 24 avenue des Landais, B.P. 80026, 63171 Aubière Cedex, France
| | - Julie Descombin
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Viviane Jean
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Claire Picart
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Cyril Charbonel
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Julio Saez-Vásquez
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Cécile Bousquet-Antonelli
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Jean-Marc Deragon
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| |
Collapse
|
28
|
Fernández-Pevida A, Kressler D, de la Cruz J. Processing of preribosomal RNA in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:191-209. [PMID: 25327757 DOI: 10.1002/wrna.1267] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
Abstract
Most, if not all RNAs, are transcribed as precursors that require processing to gain functionality. Ribosomal RNAs (rRNA) from all organisms undergo both exo- and endonucleolytic processing. Also, in all organisms, rRNA processing occurs inside large preribosomal particles and is coupled to nucleotide modification, folding of the precursor rRNA (pre-rRNA), and assembly of the ribosomal proteins (r-proteins). In this review, we focus on the processing pathway of pre-rRNAs of cytoplasmic ribosomes in the yeast Saccharomyces cerevisiae, without doubt, the organism where this pathway is best characterized. We summarize the current understanding of the rRNA maturation process, particularly focusing on the pre-rRNA processing sites, the enzymes responsible for the cleavage or trimming reactions and the different mechanisms that monitor and regulate the pathway. Strikingly, the overall order of the various processing steps is reasonably well conserved in eukaryotes, perhaps reflecting common principles for orchestrating the concomitant events of pre-rRNA processing and ribosome assembly.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
29
|
Turowski TW, Tollervey D. Cotranscriptional events in eukaryotic ribosome synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:129-39. [PMID: 25176256 DOI: 10.1002/wrna.1263] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
Eukaryotic ribosomes are synthesized in a complex, multistep pathway. This begins with transcription of the rDNA genes by a specialized RNA polymerase, accompanied by the cotranscriptional binding of large numbers of ribosome synthesis factors, small nucleolar RNAs and ribosomal proteins. Cleavage of the nascent transcript releases the early pre-40S and pre-60S particles, which acquire export competence in the nucleoplasm prior to translocation through the nuclear pore complexes and final maturation to functional ribosomal subunits in the cytoplasm. This review will focus on the many and complex interactions occurring during pre-rRNA synthesis, particularly in budding yeast in which the pathway is best understood.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
30
|
Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo. Mol Cell Biol 2014; 34:3817-27. [PMID: 25092870 DOI: 10.1128/mcb.00395-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different models have been proposed explaining how eukaryotic gene transcription is terminated. Recently, Nsi1, a factor involved in silencing of ribosomal DNA (rDNA), was shown to be required for efficient termination of rDNA transcription by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Nsi1 contains Myb-like DNA binding domains and associates in vivo near the 3' end of rRNA genes to rDNA, but information about which and how DNA sequences might influence Nsi1-dependent termination is lacking. Here, we show that binding of Nsi1 to a stretch of 11 nucleotides in the correct orientation was sufficient to pause elongating Pol I shortly upstream of the Nsi1 binding site and to release the transcripts in vitro. The same minimal DNA element triggered Nsi1-dependent termination of pre-rRNA synthesis using an in vivo reporter assay. Termination efficiency in the in vivo system could be enhanced by inclusion of specific DNA sequences downstream of the Nsi1 binding site. These data and the finding that Nsi1 blocks efficiently only Pol I-dependent RNA synthesis in an in vitro transcription system improve our understanding of a unique mechanism of transcription termination.
Collapse
|
31
|
Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X. RNase III: Genetics and function; structure and mechanism. Annu Rev Genet 2014; 47:405-31. [PMID: 24274754 DOI: 10.1146/annurev-genet-110711-155618] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNase III is a global regulator of gene expression in Escherichia coli that is instrumental in the maturation of ribosomal and other structural RNAs. We examine here how RNase III itself is regulated in response to growth and other environmental changes encountered by the cell and how, by binding or processing double-stranded RNA (dsRNA) intermediates, RNase III controls the expression of genes. Recent insight into the mechanism of dsRNA binding and processing, gained from structural studies of RNase III, is reviewed. Structural studies also reveal new cleavage sites in the enzyme that can generate longer 3' overhangs.
Collapse
Affiliation(s)
- Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702; , , , , , , ,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Liang YH, Lavoie M, Comeau MA, Abou Elela S, Ji X. Structure of a eukaryotic RNase III postcleavage complex reveals a double-ruler mechanism for substrate selection. Mol Cell 2014; 54:431-44. [PMID: 24703949 DOI: 10.1016/j.molcel.2014.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/23/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022]
Abstract
Ribonuclease III (RNase III) enzymes are a family of double-stranded RNA (dsRNA)-specific endoribonucleases required for RNA maturation and gene regulation. Prokaryotic RNase III enzymes have been well characterized, but how eukaryotic RNase IIIs work is less clear. Here, we describe the structure of the Saccharomyces cerevisiae RNase III (Rnt1p) postcleavage complex and explain why Rnt1p binds to RNA stems capped with an NGNN tetraloop. The structure shows specific interactions between a structural motif located at the end of the Rnt1p dsRNA-binding domain (dsRBD) and the guanine nucleotide in the second position of the loop. Strikingly, structural and biochemical analyses indicate that the dsRBD and N-terminal domains (NTDs) of Rnt1p function as two rulers that measure the distance between the tetraloop and the cleavage site. These findings provide a framework for understanding eukaryotic RNase IIIs.
Collapse
Affiliation(s)
- Yu-He Liang
- Biomolecular Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mathieu Lavoie
- RNA Group/Groupe ARN, Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Marc-Andre Comeau
- RNA Group/Groupe ARN, Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sherif Abou Elela
- RNA Group/Groupe ARN, Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.
| | - Xinhua Ji
- Biomolecular Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
33
|
Jobert L, Nilsen H. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes. Cell Mol Life Sci 2014; 71:2451-65. [PMID: 24496644 PMCID: PMC4055861 DOI: 10.1007/s00018-014-1562-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/05/2014] [Accepted: 01/10/2014] [Indexed: 12/13/2022]
Abstract
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.
Collapse
Affiliation(s)
- Laure Jobert
- Division of Medicine, Department of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen, 1478 Lørenskog, Norway
| | - Hilde Nilsen
- Division of Medicine, Department of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen, 1478 Lørenskog, Norway
- Department of Clinical Molecular Biology, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Blindern, P.O.Box 1171, 0318 Oslo, Norway
| |
Collapse
|
34
|
Abstract
The ribonuclease III enzymes Drosha and Dicer are renowned for their central roles in the biogenesis of microRNAs (miRNAs). For many years, this has overshadowed the true versatility and importance of these enzymes in the processing of other RNA substrates. For example, Drosha also recognizes and cleaves messenger RNAs (mRNAs), and potentially ribosomal RNA. The cleavage of mRNAs occurs via recognition of secondary stem-loop structures similar to miRNA precursors, and is an important mechanism of repressing gene expression, particularly in progenitor/stem cell populations. On the other hand, Dicer also has critical roles in genome regulation and surveillance. These include the production of endogenous small interfering RNAs from many sources, and the degradation of potentially harmful short interspersed element and viral RNAs. These findings have sparked a renewed interest in these enzymes, and their diverse functions in biology.
Collapse
Affiliation(s)
- Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | |
Collapse
|
35
|
Thapar R, Denmon AP, Nikonowicz EP. Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:49-67. [PMID: 24124096 DOI: 10.1002/wrna.1196] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
RNA hairpins are the most commonly occurring secondary structural elements in RNAs and serve as nucleation sites for RNA folding, RNA-RNA, and RNA-protein interactions. RNA hairpins are frequently capped by tetraloops, and based on sequence similarity, three broad classes of RNA tetraloops have been defined: GNRA, UNCG, and CUYG. Other classes such as the UYUN tetraloop in histone mRNAs, the UGAA in 16S rRNA, the AUUA tetraloop from the MS2 bacteriophage, and the AGNN tetraloop that binds RNase III have also been characterized. The tetraloop structure is compact and is usually characterized by a paired interaction between the first and fourth nucleotides. The two unpaired nucleotides in the loop are usually involved in base-stacking or base-phosphate hydrogen bonding interactions. Several structures of RNA tetraloops, free and complexed to other RNAs or proteins, are now available and these studies have increased our understanding of the diverse mechanisms by which this motif is recognized. RNA tetraloops can mediate RNA-RNA contacts via the tetraloop-receptor motif, kissing hairpin loops, A-minor interactions, and pseudoknots. While these RNA-RNA interactions are fairly well understood, how RNA-binding proteins recognize RNA tetraloops and tetraloop-like motifs remains unclear. In this review, we summarize the structures of RNA tetraloop-protein complexes and the general themes that have emerged on sequence- and structure-specific recognition of RNA tetraloops. We highlight how proteins achieve molecular recognition of this nucleic acid motif, the structural adaptations observed in the tetraloop to accommodate the protein-binding partner, and the role of dynamics in recognition.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Structural Biology, Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA; Department of Structural Biology, SUNY at Buffalo, Buffalo, NY, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | |
Collapse
|
36
|
Shah BN, Liu X, Correll CC. Imp3 unfolds stem structures in pre-rRNA and U3 snoRNA to form a duplex essential for small subunit processing. RNA (NEW YORK, N.Y.) 2013; 19:1372-1383. [PMID: 23980203 PMCID: PMC3854528 DOI: 10.1261/rna.039511.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/28/2013] [Indexed: 06/02/2023]
Abstract
Eukaryotic ribosome biogenesis requires rapid hybridization between the U3 snoRNA and the pre-rRNA to direct cleavages at the A0, A1, and A2 sites in pre-rRNA that liberate the small subunit precursor. The bases involved in hybridization of one of the three duplexes that U3 makes with pre-rRNA, designated the U3-18S duplex, are buried in conserved structures: box A/A' stem-loop in U3 snoRNA and helix 1 (H1) in the 18S region of the pre-rRNA. These conserved structures must be unfolded to permit the necessary hybridization. Previously, we reported that Imp3 and Imp4 promote U3-18S hybridization in vitro, but the mechanism by which these proteins facilitate U3-18S duplex formation remained unclear. Here, we directly addressed this question by probing base accessibility with chemical modification and backbone accessibility with ribonuclease activity of U3 and pre-rRNA fragments that mimic the secondary structure observed in vivo. Our results demonstrate that U3-18S hybridization requires only Imp3. Binding to each RNA by Imp3 provides sufficient energy to unfold both the 18S H1 and the U3 box A/A' stem structures. The Imp3 unfolding activity also increases accessibility at the U3-dependent A0 and A1 sites, perhaps signaling cleavage at these sites to generate the 5' mature end of 18S. Imp4 destabilizes the U3-18S duplex to aid U3 release, thus differentiating the roles of these proteins. Protein-dependent unfolding of these structures may serve as a switch to block U3-pre-rRNA interactions until recruitment of Imp3, thereby preventing premature and inaccurate U3-dependent pre-rRNA cleavage and folding events in eukaryotic ribosome biogenesis.
Collapse
MESH Headings
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Binal N. Shah
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois 60064, USA
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois 60064, USA
| | - Carl C. Correll
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois 60064, USA
| |
Collapse
|
37
|
RNaseIII and T4 polynucleotide Kinase sequence biases and solutions during RNA-seq library construction. Biol Direct 2013; 8:16. [PMID: 23826734 PMCID: PMC3710281 DOI: 10.1186/1745-6150-8-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022] Open
Abstract
Background RNA-seq is a next generation sequencing method with a wide range of applications including single nucleotide polymorphism (SNP) detection, splice junction identification, and gene expression level measurement. However, the RNA-seq sequence data can be biased during library constructions resulting in incorrect data for SNP, splice junction, and gene expression studies. Here, we developed new library preparation methods to limit such biases. Results A whole transcriptome library prepared for the SOLiD system displayed numerous read duplications (pile-ups) and gaps in known exons. The pile-ups and gaps of the whole transcriptome library caused a loss of SNP and splice junction information and reduced the quality of gene expression results. Further, we found clear sequence biases for both 5' and 3' end reads in the whole transcriptome library. To remove this bias, RNaseIII fragmentation was replaced with heat fragmentation. For adaptor ligation, T4 Polynucleotide Kinase (T4PNK) was used following heat fragmentation. However, its kinase and phosphatase activities introduced additional sequence biases. To minimize them, we used OptiKinase before T4PNK. Our study further revealed the specific target sequences of RNaseIII and T4PNK. Conclusions Our results suggest that the heat fragmentation removed the RNaseIII sequence bias and significantly reduced the pile-ups and gaps. OptiKinase minimized the T4PNK sequence biases and removed most of the remaining pile-ups and gaps, thus maximizing the quality of RNA-seq data. Reviewers This article was reviewed by Dr. A. Kolodziejczyk (nominated by Dr. Sarah Teichmann), Dr. Eugene Koonin, and Dr. Christoph Adami. For the full reviews, see the Reviewers' Comments section.
Collapse
|
38
|
Peart N, Sataluri A, Baillat D, Wagner EJ. Non-mRNA 3' end formation: how the other half lives. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:491-506. [PMID: 23754627 DOI: 10.1002/wrna.1174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/27/2022]
Abstract
The release of nascent RNA from transcribing RNA polymerase complexes is required for all further functions carried out by RNA molecules. The elements and processing machinery involved in 3' end formation therefore represent key determinants in the biogenesis and accumulation of cellular RNA. While these factors have been well-characterized for messenger RNA, recent work has elucidated analogous pathways for the 3' end formation of other important cellular RNA. Here, we discuss four specific cases of non-mRNA 3' end formation-metazoan small nuclear RNA, Saccharomyces cerevisiae small nuclear RNA, Schizosaccharomyces pombe telomerase RNA, and the mammalian MALAT1 large noncoding RNA-as models of alternative mechanisms to generate RNA 3' ends. Comparison of these disparate processing pathways reveals an emerging theme of evolutionary ingenuity. In some instances, evidence for the creation of a dedicated processing complex exists; while in others, components are utilized from the existing RNA processing machinery and modified to custom fit the unique needs of the RNA substrate. Regardless of the details of how non-mRNA 3' ends are formed, the lengths to which biological systems will go to release nascent transcripts from their DNA templates are fundamental for cell survival.
Collapse
Affiliation(s)
- Natoya Peart
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, TX, USA
| | | | | | | |
Collapse
|
39
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
40
|
Karbstein K. Quality control mechanisms during ribosome maturation. Trends Cell Biol 2013; 23:242-50. [PMID: 23375955 DOI: 10.1016/j.tcb.2013.01.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 12/01/2022]
Abstract
Protein synthesis on ribosomes is carefully quality-controlled to ensure the faithful transmission of genetic information from mRNA to protein. Many of these mechanisms rely on communication between distant sites on the ribosomes, and thus on the integrity of the ribosome structure. Furthermore, haploinsufficiency of ribosomal proteins, which increases the chances of forming incompletely assembled ribosomes, can predispose to cancer. Finally, release of inactive ribosomes into the translating pool will lead to their degradation together with the degradation of the bound mRNA. Together, these findings suggest that quality control mechanisms must be in place to survey nascent ribosomes and ensure their functionality. This review gives an account of these mechanisms as currently known.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way #2C2, Jupiter, FL 33458, USA.
| |
Collapse
|
41
|
Hartman E, Wang Z, Zhang Q, Roy K, Chanfreau G, Feigon J. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites. J Mol Biol 2012. [PMID: 23201338 DOI: 10.1016/j.jmb.2012.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Saccharomyces cerevisiae RNase III enzyme Rnt1p preferentially binds to double-stranded RNA hairpin substrates with a conserved (A/u)GNN tetraloop fold, via shape-specific interactions by its double-stranded RNA-binding domain (dsRBD) helix α1 to the tetraloop minor groove. To investigate whether conformational flexibility in the dsRBD regulates the binding specificity, we determined the backbone dynamics of the Rnt1p dsRBD in the free and AGAA hairpin-bound states using NMR spin-relaxation experiments. The intrinsic microsecond-to-millisecond timescale dynamics of the dsRBD suggests that helix α1 undergoes conformational sampling in the free state, with large dynamics at some residues in the α1-β1 loop (α1-β1 hinge). To correlate free dsRBD dynamics with structural changes upon binding, we determined the solution structure of the free dsRBD used in the previously determined RNA-bound structures. The Rnt1p dsRBD has an extended hydrophobic core comprising helix α1, the α1-β1 loop, and helix α3. Analysis of the backbone dynamics and structures of the free and bound dsRBD reveals that slow-timescale dynamics in the α1-β1 hinge are associated with concerted structural changes in the extended hydrophobic core that govern binding of helix α1 to AGAA tetraloops. The dynamic behavior of the dsRBD bound to a longer AGAA hairpin reveals that dynamics within the hydrophobic core differentiate between specific and nonspecific sites. Mutations of residues in the α1-β1 hinge result in changes to the dsRBD stability and RNA-binding affinity and cause defects in small nucleolar RNA processing invivo. These results reveal that dynamics in the extended hydrophobic core are important for binding site selection by the Rnt1p dsRBD.
Collapse
Affiliation(s)
- Elon Hartman
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
42
|
Németh A, Perez-Fernandez J, Merkl P, Hamperl S, Gerber J, Griesenbeck J, Tschochner H. RNA polymerase I termination: Where is the end? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:306-17. [PMID: 23092677 DOI: 10.1016/j.bbagrm.2012.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/10/2012] [Accepted: 10/17/2012] [Indexed: 01/01/2023]
Abstract
The synthesis of ribosomal RNA (rRNA) precursor molecules by RNA polymerase I (Pol I) terminates with the dissociation of the protein-DNA-RNA ternary complex. Based on in vitro results the mechanism of Pol I termination appeared initially to be rather conserved and simple until this process was more thoroughly re-investigated in vivo. A picture emerged that Pol I termination seems to be connected to co-transcriptional processing, re-initiation of transcription and, possibly, other processes downstream of Pol I transcription units. In this article, our current understanding of the mechanism of Pol I termination and how this process might be implicated in other biological processes in yeast and mammals is summarized and discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Attila Németh
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Enzymes from the ribonuclease III family bind and cleave double-stranded RNA to initiate RNA processing and degradation of a large number of transcripts in bacteria and eukaryotes. This chapter focuses on the description of the diverse functions of fungal RNase III members in the processing and degradation of cellular RNAs, with a particular emphasis on the well-characterized representative in Saccharomyces cerevisiae, Rnt1p. RNase III enzymes fulfill important functions in the processing of the precursors of various stable noncoding RNAs such as ribosomal RNAs and small nuclear and nucleolar RNAs. In addition, they cleave and promote the degradation of specific mRNAs or improperly processed forms of certain mRNAs. The cleavage of these mRNAs serves both surveillance and regulatory functions. Finally, recent advances have shown that RNase III enzymes are involved in mediating fail-safe transcription termination by RNA polymerase II (Pol II), by cleaving intergenic stem-loop structures present downstream from Pol II transcription units. Many of these processing functions appear to be conserved in fungal species close to the Saccharomyces genus, and even in more distant eukaryotic species.
Collapse
Affiliation(s)
- Kevin Roy
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
44
|
Bernstein DA, Vyas VK, Fink GR. Genes come and go: the evolutionarily plastic path of budding yeast RNase III enzymes. RNA Biol 2012; 9:1123-8. [PMID: 23018782 PMCID: PMC3579876 DOI: 10.4161/rna.21360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Our recent finding that the Candida albicans RNase III enzyme CaDcr1 is an unusual, multifunctional RNase III coupled with data on the RNase III enzymes from other fungal species prompted us to seek a model that explained the evolution of RNase III’s in modern budding yeast species. CaDcr1 has both dicer function (generates small RNA molecules from dsRNA precursors) and Rnt1 function, (catalyzes the maturation of 35S rRNA and U4 snRNA). Some budding yeast species have two distinct genes that encode these functions, a Dicer and RNT1, whereas others have only an RNT1 and no Dicer. As none of the budding yeast species has the canonical Dicer found in many other fungal lineages and most eukaryotes, the extant species must have evolved from an ancestor that lost the canonical Dicer, and evolved a novel Dicer from the essential RNT1 gene. No single, simple model could explain the evolution of RNase III enzymes from this ancestor because existing sequence data are consistent with two equally plausible models. The models share an architecture for RNase III evolution that involves gene duplication, loss, subfunctionalization, and neofunctionalization. This commentary explains our reasoning, and offers the prospect that further genomic data could further resolve the dilemma surrounding the budding yeast RNase III’s evolution.
Collapse
Affiliation(s)
- Douglas A Bernstein
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA
| | | | | |
Collapse
|
45
|
Lebaron S, Schneider C, van Nues RW, Swiatkowska A, Walsh D, Böttcher B, Granneman S, Watkins NJ, Tollervey D. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 2012; 19:744-53. [PMID: 22751017 PMCID: PMC3654374 DOI: 10.1038/nsmb.2308] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/06/2012] [Indexed: 01/02/2023]
Abstract
In the final steps of yeast ribosome synthesis, immature translation-incompetent pre-40S particles that contain 20S pre-rRNA are converted to the mature translation-competent subunits containing the 18S rRNA. An assay for 20S pre-rRNA cleavage in purified pre-40S particles showed that cleavage by the PIN domain endonuclease Nob1 was strongly stimulated by the GTPase activity of Fun12, the yeast homolog of cytoplasmic translation initiation factor eIF5b. Cleavage of the 20S pre-rRNA was also inhibited in vivo and in vitro by blocking binding of Fun12 to the 25S rRNA through specific methylation of its binding site. Cleavage competent pre-40S particles stably associated with Fun12 and formed 80S complexes with 60S ribosomal subunits. We propose that recruitment of 60S subunits promotes GTP hydrolysis by Fun12, leading to structural rearrangements within the pre-40S particle that bring Nob1 and the pre-rRNA cleavage site together.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Base Sequence
- Binding Sites
- Eukaryotic Initiation Factor-2/chemistry
- Eukaryotic Initiation Factor-2/metabolism
- Guanosine Triphosphate/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Protein Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Simon Lebaron
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W. van Nues
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Agata Swiatkowska
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Dietrich Walsh
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Bettina Böttcher
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
- Institute of Structural and Molecular Biology, The University of Edinburgh, Scotland
| | | | - Nicholas J. Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| |
Collapse
|
46
|
The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J 2012; 31:3480-93. [PMID: 22805593 DOI: 10.1038/emboj.2012.185] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/19/2012] [Indexed: 12/27/2022] Open
Abstract
Several DNA cis-elements and trans-acting factors were described to be involved in transcription termination and to release the elongating RNA polymerases from their templates. Different models for the molecular mechanism of transcription termination have been suggested for eukaryotic RNA polymerase I (Pol I) from results of in vitro and in vivo experiments. To analyse the molecular requirements for yeast RNA Pol I termination, an in vivo approach was used in which efficient termination resulted in growth inhibition. This led to the identification of a Myb-like protein, Ydr026c, as bona fide termination factor, now designated Nsi1 (NTS1 silencing protein 1), since it was very recently described as silencing factor of ribosomal DNA. Possible Nsi1 functions in regard to the mechanism of transcription termination are discussed.
Collapse
|
47
|
Mapping the cleavage sites on mammalian pre-rRNAs: Where do we stand? Biochimie 2012; 94:1521-32. [DOI: 10.1016/j.biochi.2012.02.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/01/2012] [Indexed: 11/23/2022]
|
48
|
Catala M, Aksouh L, Abou Elela S. RNA-dependent regulation of the cell wall stress response. Nucleic Acids Res 2012; 40:7507-17. [PMID: 22576366 PMCID: PMC3424562 DOI: 10.1093/nar/gks411] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stress response requires the precise modulation of gene expression in response to changes in growth conditions. This report demonstrates that selective nuclear mRNA degradation is required for both the cell wall stress response and the regulation of the cell wall integrity checkpoint. More specifically, the deletion of the yeast nuclear dsRNA-specific ribonuclease III (Rnt1p) increased the expression of the mRNAs associated with both the morphogenesis checkpoint and the cell wall integrity pathway, leading to an attenuation of the stress response. The over-expression of selected Rnt1p substrates, including the stress associated morphogenesis protein kinase Hsl1p, in wild-type cells mimicked the effect of RNT1 deletion on cell wall integrity, and their mRNAs were directly cleaved by the recombinant enzyme in vitro. The data supports a model for gene regulation in which nuclear mRNA degradation optimizes the cell response to stress and links it to the cell cycle.
Collapse
Affiliation(s)
- Mathieu Catala
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de santé, Université de Sherbrooke, Pavillon de recherche appliquée sur cancer, Sherbrooke, Québec, J1E 4K8, Canada
| | | | | |
Collapse
|
49
|
Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc Natl Acad Sci U S A 2011; 109:523-8. [PMID: 22173636 DOI: 10.1073/pnas.1118859109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The generation of mature functional RNAs from nascent transcripts requires the precise and coordinated action of numerous RNAs and proteins. One such protein family, the ribonuclease III (RNase III) endonucleases, includes Rnt1, which functions in fungal ribosome and spliceosome biogenesis, and Dicer, which generates the siRNAs of the RNAi pathway. The recent discovery of small RNAs in Candida albicans led us to investigate the function of C. albicans Dicer (CaDcr1). CaDcr1 is capable of generating siRNAs in vitro and is required for siRNA generation in vivo. In addition, CaDCR1 complements a Dicer knockout in Saccharomyces castellii, restoring RNAi-mediated gene repression. Unexpectedly, deletion of the C. albicans CaDCR1 results in a severe slow-growth phenotype, whereas deletion of another core component of the RNAi pathway (CaAGO1) has little effect on growth, suggesting that CaDCR1 may have an essential function in addition to producing siRNAs. Indeed CaDcr1, the sole functional RNase III enzyme in C. albicans, has additional functions: it is required for cleavage of the 3' external transcribed spacer from unprocessed pre-rRNA and for processing the 3' tail of snRNA U4. Our results suggest two models whereby the RNase III enzymes of a fungal ancestor, containing both a canonical Dicer and Rnt1, evolved through a series of gene-duplication and gene-loss events to generate the variety of RNase III enzymes found in modern-day budding yeasts.
Collapse
|
50
|
Wang Z, Hartman E, Roy K, Chanfreau G, Feigon J. Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs. Structure 2011; 19:999-1010. [PMID: 21742266 DOI: 10.1016/j.str.2011.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/01/2011] [Accepted: 03/31/2011] [Indexed: 11/15/2022]
Abstract
dsRBDs often bind dsRNAs with some specificity, yet the basis for this is poorly understood. Rnt1p, the major RNase III in Saccharomyces cerevisiae, cleaves RNA substrates containing hairpins capped by A/uGNN tetraloops, using its dsRBD to recognize a conserved tetraloop fold. However, the identification of a Rnt1p substrate with an AAGU tetraloop raised the question of whether Rnt1p binds to this noncanonical substrate differently than to A/uGNN tetraloops. The solution structure of Rnt1p dsRBD bound to an AAGU-capped hairpin reveals that the tetraloop undergoes a structural rearrangement upon binding to Rnt1p dsRBD to adopt a backbone conformation that is essentially the same as the AGAA tetraloop, and indicates that a conserved recognition mode is used for all Rnt1p substrates. Comparison of free and RNA-bound Rnt1p dsRBD reveals that tetraloop-specific binding requires a conformational change in helix α1. Our findings provide a unified model of binding site selection by this dsRBD.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|