1
|
Nabariya DK, Knüpfer LM, Hartwich P, Killian MS, Centler F, Krauß S. Transcriptomic analysis of intracellular RNA granules and small extracellular vesicles: Unmasking their overlap in a cell model of Huntington's disease. Mol Cell Probes 2025; 81:102026. [PMID: 40090627 DOI: 10.1016/j.mcp.2025.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Huntington's disease (HD) arises from the abnormal expansion of a CAG repeat in the HTT gene. The mutant CAG repeat triggers aberrant RNA-protein interactions and translates into toxic aggregate-prone polyglutamine protein. These aberrant RNA-protein ineractions also seed the formation of cytoplasmic liquid-like granules, such as stress granules. Emerging evidence demonstrates that granules formed via liquid-liquid phase separation can mature into gel-like inclusions that persist within the cell and may act as precursor to aggregates that occur in patients' tissue. Thus, deregulation of RNA granules is an important component of neurodegeneration. Interestingly, both the formation of intracellular membrane-less organelles like stress granules and the secretion of small extracellular vesicles (sEVs) increase upon stress and under disease conditions. sEVs are lipid membrane-bound particles that are secreted from all cell types and may participate in the spreading of misfolded proteins and aberrant RNA-protein complexes across the central nervous system in neurodegenerative diseases like HD. In this study, we performed a comparative transcriptomic analysis of sEVs and RNA granules in an HD model. RNA granules and sEVs were isolated from an inducible HD cell model. Both sEVs and RNA granules were isolated from induced (HD) and non-induced (control) cells and analyzed by RNA sequencing. Our comparative analysis between the transcriptomics data of HD RNA granules and sEVs showed that: (I) intracellular RNA granules and extracellular RNA vesicles share content, (II) several non-coding RNAs translocate to RNA granules, and (III) the composition of RNA granules and sEVs is affected in HD cells. Our data showing common transcripts in intracellular RNA granules and extracellular sEVs suggest that formation of RNA granules and sEV loading may be related. Moreover, we found a high abundance of lncRNAs in both control and HD samples, with several transcripts under REST regulation, highlighting their potential role in HD pathogenesis and selective incorporation into sEVs. The transcriptome cargo of RNA granules or sEVs may serve as a source for diagnostic strategies. For example, disease-specific RNA-signatures of sEVs can serve as biomarker of central nervous system diseases. Therefore, we compared our dataset to transcriptomic data from HD patient sEVs in blood. However, our data suggest that the cell-type specific signature of sEV-secreted RNAs as well as their high variability may make it difficult to detect these biomarkers in blood.
Collapse
Affiliation(s)
- Deepti Kailash Nabariya
- Human and Neurobiology, Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Lisa Maria Knüpfer
- Human and Neurobiology, Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Patrick Hartwich
- Chemistry and Structure of Novel Materials, Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Manuela S Killian
- Chemistry and Structure of Novel Materials, Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Florian Centler
- Bioinformatics, School of Life Sciences, University of Siegen, Siegen, Germany
| | - Sybille Krauß
- Human and Neurobiology, Department of Chemistry and Biology, University of Siegen, Siegen, Germany.
| |
Collapse
|
2
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025; 46:1511-1538. [PMID: 39890942 PMCID: PMC12098710 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
3
|
Röttgering B, Testerink J, Weij R, Beekman C, Datson N. Accurate Quantification of Mutant and Wild-Type polyQ Proteins Using Simple Western Capillary Immunoassays. Mol Neurobiol 2025:10.1007/s12035-025-05089-9. [PMID: 40450087 DOI: 10.1007/s12035-025-05089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/18/2025] [Indexed: 06/03/2025]
Abstract
Polyglutamine (polyQ) diseases are monogenic fatal neurodegenerative disorders caused by a CAG repeat expansion that is translated into a toxic polyQ tract. There are nine polyQ diseases: Huntington's disease (HD), spinocerebellar ataxias 1, 2, 3, 6, 7 and 17 (SCA1, 2, 3, 6, 7, 17), dentatorubral-pallidoluysian atrophy (DRPLA) and spinal and bulbar muscular atrophy (SBMA). Although no disease-modifying therapies are available, lowering levels of the causative mutant polyQ protein is a promising potential treatment. Preclinically, the efficacy of polyQ protein-lowering compounds is often assessed using time-consuming Western blots (WB), which can produce variable results. Therefore, to improve throughput and accuracy of polyQ protein level quantification, Simple Western (SW) capillary immunoassays were developed. A panel of antibodies was screened for reactivity to the polyQ proteins on SW. The most promising antibodies were selected for further assay development. This resulted in optimised SW immunoassays for huntingtin (HTT), ataxin 1, 2 and 3 (ATXN1, 2, 3), atrophin 1 (ATN1) and androgen receptor (AR). Additionally, size-separation of the wild-type and polyQ-expanded mutant protein isoforms on SW was shown for ATXN1, ATXN3 and ATN1, allowing for their separate quantification. To facilitate size-separation of the larger HTT protein (≥ 348 kDa), a novel caspase 3-based assay was developed to generate N-terminal wild-type and mutant HTT fragments that could be separately quantified on SW in contrast to full-length HTT. In conclusion, SW capillary immunoassays were developed for polyQ proteins to improve preclinical research and aid the development of polyQ-lowering therapies for polyQ diseases.
Collapse
Affiliation(s)
- Bas Röttgering
- VICO Therapeutics B.V., J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Rudie Weij
- VICO Therapeutics B.V., J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Chantal Beekman
- VICO Therapeutics B.V., J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Nicole Datson
- VICO Therapeutics B.V., J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands.
| |
Collapse
|
4
|
Zinter N, Ye T, Semaan H, Fraulob V, Plassard D, Krezel W. Compromised retinoic acid receptor beta expression accelerates the onset of motor, cellular and molecular abnormalities in a mouse model of Huntington's disease. Neurobiol Dis 2025; 212:106943. [PMID: 40348200 DOI: 10.1016/j.nbd.2025.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 05/01/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
The mechanisms underlying detrimental effects of mutant Huntingtin on striatal dysfunction in Huntington's disease (HD) are not well understood. Although retinoic acid receptor beta (RARβ) emerged recently as one of the top regulators of transcriptionally downregulated genes in the striatum of HD patients and mouse models, its involvement in disease progression remains elusive. Here we challenged functional relevance of RARβ dysregulation in HD onset and progression. Using a series of genetic mouse models, we investigated whether genetically reduced Rarβ expression synergizes with disease- causing mutant huntingtin (mHTT) fragment in R6/1 mice to accelerate HD-like behavioral, cellular and molecular striatal deregulations. We report that genetically compromised Rarβ signaling accelerates onset of motor abnormalities in the R6/1 HD mouse model. Transcriptional profiling revealed that downregulation of Rarβ expression in Rarβ+/-; R6/1 mice also accelerates transcriptional signature of disease progression and aging by emergence of a cluster of upregulated genes related to cell-cycle, stem cell maintenance and telencephalon development, contributing thereby to degradation of striatal cell-identity. Reactivation of proliferative activity in the neurogenic niche and development-related transcriptional programs in the striatum prompt an attempt of lineage infidelity in HD striatum which may lead as a consequence to disease-driving energy crisis, as suggested by downregulation of oxidative phosphorylation genes, a well-accepted correlate of HD physiopathology, and a metabolic condition required for maintenance of proliferative activity and differentiation but not compatible with high energetic demand of differentiated and active neurons. Overall, our data indicate that RARβ delays disease progression, perhaps by delaying aging process.
Collapse
Affiliation(s)
- Nicolas Zinter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Hanna Semaan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Valérie Fraulob
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France..
| |
Collapse
|
5
|
Kang YK, Min B, Eom J, Park JS, Jang J, Jeong S. Emergence of CpG-cluster blanket methylation in aged tissues: a novel signature of epigenomic aging. Nucleic Acids Res 2025; 53:gkaf354. [PMID: 40347138 PMCID: PMC12065108 DOI: 10.1093/nar/gkaf354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/20/2025] [Accepted: 05/07/2025] [Indexed: 05/12/2025] Open
Abstract
Aging is accompanied by widespread DNA methylation changes across the genome. While age-related methylation studies typically focus on individual CpGs, cluster analysis provides more robust data and improved interpretation. We characterized age-associated CpG-cluster methylation changes in mouse spleens, peripheral blood mononuclear cells, and livers. We identified a novel signature termed blanket methylations (BMs), fully methylated CpG clusters absent in young tissues but appearing in aged tissues. BM formation was locus- and cell-dependent, with minimal overlap among tissues. Statistical analysis, heterogeneity assessment, and random modeling demonstrated that BMs arise through nonrandom mechanisms and correlate with accelerated aging. Notably, BMs appeared in chronologically young mice with progeroid or disease-driven aging, including in 4-month-old Zmpste24-/- (lifespan ∼5 months) and 3-month-old Huntington's disease model mice (lifespan ∼4 months). The detection of BMs in purified CD4+ T cells demonstrated that their occurrence is intrinsic to aging cells rather than a result of infiltration from other tissues. Further investigation revealed age-related downregulation of zinc-finger-CxxC-domain genes, including Tet1 and Tet3, which protect CpG islands from methylation. Importantly, TET1 or TET3 depletion induced BM formation, linking their loss to age-associated methylation drift. These findings establish BMs as a robust marker of epigenomic aging, providing insight into age-related methylation changes.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Byungkuk Min
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jaemin Eom
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Jung Sun Park
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jaewoong Jang
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sangkyun Jeong
- Genomics Department, Keyomics Co. Ltd, 17 Techno4-ro, Yuseong-gu, Daejeon 34013, South Korea
| |
Collapse
|
6
|
Lebouc M, Bonamy L, Dhellemmes T, Scharnholz J, Richard Q, Courtand G, Brochard A, Martins F, Landry M, Baufreton J, Garret M. Developmental alterations of indirect-pathway medium spiny neurons in mouse models of Huntington's disease. Neurobiol Dis 2025; 208:106874. [PMID: 40090469 DOI: 10.1016/j.nbd.2025.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025] Open
Abstract
Huntington's disease (HD) is a complex neurodegenerative disorder with cognitive and motor symptoms that typically manifest in adulthood. However, embryonic brain development impairments leading to cortical defects in HD mutation carriers has been shown recently supporting a neurodevelopmental component in HD. Despite HD is primarily recognized as a striatal pathology, developmental alterations in this structure, particularly during the early postnatal period, remain poorly understood. To fill this gap, we examined striatal development in newborn R6/1 mice. We found that D2 receptor-expressing indirect-pathway medium spiny neurons (D2-MSNs) present in the matrix striatal compartment undergo early morphological and electrophysiological maturation. Altered electrophysiological properties were also observed in newborn CAG140 mice. Additionally, we also observed a D2-MSN-selective reduction in glutamatergic cortico-striatal transmission at the beginning of the second postnatal week as well as a reduced projection of D2-MSNs onto the GPe at birth in R6/1 mice. All these alterations were transient with the circuit normalizing after the second postnatal week. These results identify a compartment- and cell-type specific defect in D2-MSNs maturation, which can contribute in their latter vulnerability, as this cell-type is the first to degenerate in HD during adulthood.
Collapse
Affiliation(s)
- Margaux Lebouc
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Léa Bonamy
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | | - Quentin Richard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Gilles Courtand
- Univ. Bordeaux, CNRS, INCIA, UMR 5297, F-33000 Bordeaux, France
| | - Alexandre Brochard
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Frédéric Martins
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Marc Landry
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Maurice Garret
- Univ. Bordeaux, CNRS, INCIA, UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
7
|
Luis-Ravelo D, Fumagallo-Reading F, Febles-Casquero A, Lopez-Fernandez J, Marcellino DJ, Gonzalez-Hernandez T. Dopamine Receptor D3 Induces Transient, mTORC1-Dependent Autophagy That Becomes Persistent, AMPK-Mediated, and Neuroprotective in Experimental Models of Huntington's Disease. Cells 2025; 14:652. [PMID: 40358175 PMCID: PMC12071662 DOI: 10.3390/cells14090652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Huntington disease's (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently available promote the clearance of toxic proteins. However, due to their low selectivity and the possibility that prolonged autophagy hampers essential processes in unaffected cells, researchers have questioned their benefits in neurodegenerative diseases. Since MSNs express dopamine receptors D2 (DRD2) and D3 (DRD3) and DRD2/DRD3 agonists may activate autophagy, here, we explored how healthy and mHTT-challenged cells respond to prolonged DRD2/DRD3 agonist treatment. Autophagy activation and its effects on mHTT/polyQ clearance were studied in R6/1 mice (a genetic model of HD), their wild-type littermates, and DRD2- and DRD3-HEK cells expressing a pathogenic (Q74) and a non-pathogenic (Q23) polyQ fragment of mHTT treated with the DRD2/DRD3 agonist pramipexole. Two forms of DRD3-mediated autophagy were found: a transient mTORC1-dependent in WT mice and Q23-DRD3-HEK cells and a persistent AMPK-ULK1-activated in R6/1 mice and Q74-DRD3-HEK cells. This also promoted a robust clearance of soluble mHTT/polyQ and neuroprotection in striatal neurons and DRD3-HEK cells. The findings indicate that DRD3-induced autophagy may be a safe, disease-modifying intervention in HD patients.
Collapse
Affiliation(s)
- Diego Luis-Ravelo
- Institute of Biomedical Technologies, University of La Laguna, 38200 Tenerife, Spain; (D.L.-R.); (F.F.-R.)
| | - Felipe Fumagallo-Reading
- Institute of Biomedical Technologies, University of La Laguna, 38200 Tenerife, Spain; (D.L.-R.); (F.F.-R.)
| | - Alejandro Febles-Casquero
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain
| | - Jonathan Lopez-Fernandez
- Institute of Biomedical Technologies, University of La Laguna, 38200 Tenerife, Spain; (D.L.-R.); (F.F.-R.)
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain
| | - Daniel J. Marcellino
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden;
| | - Tomas Gonzalez-Hernandez
- Institute of Biomedical Technologies, University of La Laguna, 38200 Tenerife, Spain; (D.L.-R.); (F.F.-R.)
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain
| |
Collapse
|
8
|
Mohan M, Mannan A, Singh TG. Unravelling the role of protein kinase R (PKR) in neurodegenerative disease: a review. Mol Biol Rep 2025; 52:377. [PMID: 40205152 DOI: 10.1007/s11033-025-10484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Protein Kinase R is an essential regulator of many cell activities and belongs to one of the largest and most functionally complex gene families. These are found all over the body, and by adding phosphate groups to the substrate proteins, they regulate their activity and coordinate the action of almost all cellular processes. Recent research has illuminated the involvement of PKR in the pathogenesis of neurodegenerative disorders (NDs), thereby expanding our understanding of intricate molecular mechanisms underlying disease progression. Through their inhibition or activation, they hold potential therapeutic targets for the pathogenesis or protection of NDs. In the case of AD (AD), PKR contributes to the protection or elevation of Aβ accumulation, neuroinflammation, synaptic plasticity alterations, and neuronal excitability. Similarly, in Parkinson's disease (PD), PKR again has a dual role in dopaminergic neuronal loss, gene mutations, and mitochondrial dysfunction via various pathways. Notably, neuronal excitotoxicity, as well as genetic mutations, have been linked to ALS. In Huntington's disease (HD), PKR is associated with decreased or increased mutated genes, striatal neuron degeneration, neuroinflammation, and excitotoxicity. This review emphasizes strategies that target PKR for the treatment of neurodegenerative disorders. Doing so offers valuable insights that can guide future research endeavors and the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India.
| |
Collapse
|
9
|
Kachemov M, Vaibhav V, Smith C, Sundararaman N, Heath M, Pendlebury DF, Matlock A, Lau A, Morozko E, Lim RG, Reidling J, Steffan JS, Van Eyk JE, Thompson LM. Dysregulation of protein SUMOylation networks in Huntington's disease R6/2 mouse striatum. Brain 2025; 148:1212-1227. [PMID: 39391934 PMCID: PMC11969464 DOI: 10.1093/brain/awae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expanded CAG repeat mutation in the Huntingtin (HTT) gene. The mutation impacts neuronal protein homeostasis and cortical/striatal circuitry. SUMOylation is a post-translational modification with broad cellular effects including via modification of synaptic proteins. Here, we used an optimized SUMO protein-enrichment and mass spectrometry method to identify the protein SUMOylation/SUMO interaction proteome in the context of Huntington's disease using R6/2 transgenic and non-transgenic mice. Significant changes in the enrichment of SUMOylated and SUMO-interacting proteins were observed, including those involved in presynaptic function, cytomatrix at the active zone, cytoskeleton organization and glutamatergic signalling. Mitochondrial and RNA-binding proteins also showed altered enrichment. Modified SUMO-associated pathways in Huntington's disease tissue include clathrin-mediated endocytosis signalling, synaptogenesis signalling, synaptic long-term potentiation and SNARE signalling. To evaluate how modulation of SUMOylation might influence functional measures of neuronal activity in Huntington's disease cells in vitro, we used primary neuronal cultures from R6/2 and non-transgenic mice. A receptor internalization assay for the metabotropic glutamate receptor 7 (mGLUR7), a SUMO-enriched protein in the mass spectrometry, showed decreased internalization in R6/2 neurons compared to non-transgenic neurons. SiRNA-mediated knockdown of the E3 SUMO ligase protein inhibitor of activated STAT1 (Pias1), which can SUMO modify mGLUR7, reduced this Huntington's disease phenotype. In addition, microelectrode array analysis of primary neuronal cultures indicated early hyperactivity in Huntington's disease cells, while later time points demonstrated deficits in several measurements of neuronal activity within cortical neurons. Huntington's disease phenotypes were rescued at selected time points following knockdown of Pias1. Collectively, our results provide a mouse brain SUMOome resource and show that significant alterations occur within the post-translational landscape of SUMO-protein interactions of synaptic proteins in Huntington's disease mice, suggesting that targeting of synaptic SUMO networks may provide a proteostatic systems-based therapeutic approach for Huntington's disease and other neurological disorders.
Collapse
Affiliation(s)
- Marketta Kachemov
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Vineet Vaibhav
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marie Heath
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Devon F Pendlebury
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea Matlock
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alice Lau
- Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Eva Morozko
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jack Reidling
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leslie M Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
- Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
10
|
König J, Blusch A, Fatoba O, Gold R, Saft C, Ellrichmann-Wilms G. Examination of Anti-Inflammatory Effects After Propionate Supplementation in the R6/2 Mouse Model of Huntington's Disease. Int J Mol Sci 2025; 26:3318. [PMID: 40244185 PMCID: PMC11989372 DOI: 10.3390/ijms26073318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Huntington's disease is a progressive, untreatable neurodegenerative disorder caused by a mutation in the Huntingtin gene. Next to neurodegeneration, altered immune activation is involved in disease progression. Since central nervous system inflammation and dysfunction of immune cells are recognized as driving characteristics, immunomodulation might represent an additional therapeutic strategy. Short-chain fatty acids were known to have immunomodulatory effects in neuroinflammatory diseases, such as multiple sclerosis. In this study, R6/2 mice were treated daily with 150 mM propionate. Survival range, body weight, and motor abilities were monitored. In striatal and cortical samples, neuronal survival was analyzed by immunofluorescence staining of NeuN-positive cells and expression levels of BDNF mRNA by real-time polymerase chain reaction. As inflammatory marker TNFα mRNA and IL-6 mRNA were quantified by rtPCR, iNOS-expressing cells were counted in immunologically stained brain slides. Microglial activation was evaluated by immunofluorescent staining of IBA1-positive cells and total IBA1 protein by Western Blot, in addition, SPI1 mRNA expression was quantified by rtPCR. Except for clasping behavior, propionate treatment did neither improve the clinical course nor mediated neuronal protection in R6/2 mice. Yet there was a mild anti-inflammatory effect in the CNS, with (i) reduction in SPI1-mRNA levels, (ii) reduced iNOS positive cells in the motor cortex, and (iii) normalized TNFα-mRNA in the motor cortex of propionate-treated R6/2 mice. Thus, Short-chain fatty acids, as an environmental factor in the diet, may slightly alleviate symptoms by down-regulating inflammatory factors in the central nervous system. However, they cannot prevent clinical disease progression or neuronal loss.
Collapse
Affiliation(s)
- Jennifer König
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health, School of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Alina Blusch
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Oluwaseun Fatoba
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carsten Saft
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Gisa Ellrichmann-Wilms
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Faculty of Health, School of Medicine, Chair of Neurology II, Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
11
|
Al Massadi O, Labarchède M, de Pins B, Longueville S, Giralt A, Irinopoulou T, Savariradjane M, Subashi E, Ginés S, Caboche J, Mariani LL, Betuing S, Girault JA. PYK2 in the dorsal striatum of Huntington's disease R6/2 mouse model. Neurobiol Dis 2025; 207:106840. [PMID: 39971200 DOI: 10.1016/j.nbd.2025.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
Huntington's disease (HD) is a devastating disease due to autosomal dominant mutation in the HTT gene. Its pathophysiology involves multiple molecular alterations including transcriptional defects. We previously showed that in HD patients and mouse model, the protein levels of the non-receptor tyrosine kinase PYK2 were decreased in the hippocampus and that viral expression of PYK2 improved the hippocampal phenotype. Here, we investigated the possible contribution of PYK2 in the striatum, a brain region particularly altered in HD. PYK2 mRNA levels were decreased in the striatum and hippocampus of R6/2 mice, a severe HD model. Striatal PYK2 protein levels were also decreased in R6/2 mice and human patients. PYK2 knockout by itself did not result in motor symptoms observed in HD mouse models. We examined whether PYK2 deficiency participated in the R6/2 mice phenotype by expressing PYK2 in their dorsal striatum using AAV vectors. With an AAV1/Camk2a promoter, we did not observe significant improvement of body weight, clasping, motor activity and coordination (rotarod) alterations observed in R6/2 mice. With an AAV9/SYN1 promoter we found a slightly higher body weight and a trend to better rotarod performance. Both viruses similarly transduced striatal projection neurons and somatostatin-positive interneurons but only AAV9/SYN1 led to PYK2 expression in cholinergic and parvalbumin-positive interneurons. Expression of PYK2 in cholinergic interneurons may contribute to the slight effects observed. We conclude that PYK2 mRNA and protein levels are decreased in the striatum as in hippocampus of HD patients and mouse models. However, in contrast to hippocampus, striatal viral expression of PYK2 has only a minor effect on the R6/2 model striatal phenotype.
Collapse
Affiliation(s)
- Omar Al Massadi
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France.
| | - Mélody Labarchède
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France; Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Benoit de Pins
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France
| | - Sophie Longueville
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France
| | - Albert Giralt
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France; Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain
| | - Theano Irinopoulou
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France
| | - Mythili Savariradjane
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France
| | - Enejda Subashi
- Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Paris, France; CNRS UMR8246, Paris, France; INSERM U1130, Paris, France
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain
| | - Jocelyne Caboche
- Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Paris, France; CNRS UMR8246, Paris, France; INSERM U1130, Paris, France
| | - Louise-Laure Mariani
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Sandrine Betuing
- Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Paris, France; CNRS UMR8246, Paris, France; INSERM U1130, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France; Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Sorbonne Université, Paris, France.
| |
Collapse
|
12
|
Ikefuama EC, Slaviero AN, Silvagnoli AD, Crespo EL, Schalau R, Gott M, Tree MO, Dunbar GL, Rossignol J, Hochgeschwender U. Presymptomatic targeted circuit manipulation for ameliorating Huntington's disease pathogenesis. iScience 2025; 28:112022. [PMID: 40092615 PMCID: PMC11910118 DOI: 10.1016/j.isci.2025.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Early stages of Huntington's disease (HD) before the onset of motor and cognitive symptoms are characterized by imbalanced excitatory and inhibitory output from the cortex to striatal and subcortical structures. The window before the onset of symptoms presents an opportunity to adjust the firing rate within microcircuits with the goal of restoring the impaired E/I balance, thereby preventing or slowing down disease progression. Here, we investigated the effect of presymptomatic cell-type specific manipulation of activity of pyramidal neurons and parvalbumin interneurons in the M1 motor cortex on disease progression in the R6/2 HD mouse model. Our results show that dampening excitation of Emx1 pyramidal neurons or increasing activity of parvalbumin interneurons once daily for 3 weeks during the pre-symptomatic phase alleviated HD-related motor coordination dysfunction. Cell-type-specific modulation to normalize the net output of the cortex is a potential therapeutic avenue for HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ebenezer C. Ikefuama
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ashley N. Slaviero
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | | | - Emmanuel L. Crespo
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Raegan Schalau
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Madison Gott
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Gary L. Dunbar
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Julien Rossignol
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
13
|
Simmons DA, Selvaraj S, Chen T, Cao G, Camelo TS, McHugh TL, Gonzalez S, Martin RM, Simanauskaite J, Uchida N, Porteus MH, Longo FM. Human striatal progenitor cells that contain inducible safeguards and overexpress BDNF rescue Huntington's disease phenotypes. Mol Ther Methods Clin Dev 2025; 33:101415. [PMID: 39995448 PMCID: PMC11848452 DOI: 10.1016/j.omtm.2025.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder characterized by striatal atrophy. Reduced trophic support due to decreased striatal levels of neurotrophins (NTs), mainly brain-derived neurotrophic factor (BDNF), contributes importantly to HD pathogenesis; restoring NTs has significant therapeutic potential. Human pluripotent stem cells (hPSCs) offer a scalable platform for NT delivery but have potential safety risks including teratoma formation. We engineered hPSCs to constitutively produce BDNF and contain inducible safeguards to eliminate these cells if safety concerns arise. This study examined the efficacy of intrastriatally transplanted striatal progenitor cells (STRpcs) derived from these hPSCs against HD phenotypes in R6/2 mice. Engrafted STRpcs overexpressing BDNF alleviated motor and cognitive deficits and reduced mutant huntingtin aggregates. Activating the inducible safety switch with rapamycin safely eliminated the engrafted cells. These results demonstrate that BDNF delivery via a novel hPSC-based platform incorporating safety switches could be a safe and effective HD therapeutic.
Collapse
Affiliation(s)
- Danielle A. Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tingshuo Chen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gloria Cao
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Talita Souto Camelo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tyne L.M. McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Selena Gonzalez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Renata M. Martin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juste Simanauskaite
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nobuko Uchida
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Tennakoon R, Bily TM, Hasan F, Syal S, Voigt A, Balci TB, Hoffman KS, O’Donoghue P. Glutamine missense suppressor transfer RNAs inhibit polyglutamine aggregation. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102442. [PMID: 39897579 PMCID: PMC11787650 DOI: 10.1016/j.omtn.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Huntington's disease (HD) is caused by polyglutamine (polyQ) repeat expansions in the huntingtin gene. HD-causative polyQ alleles lead to protein aggregation, which is a prerequisite for disease. Translation fidelity modifies protein aggregation, and several studies suggest that mutating one or two glutamine (Gln) residues in polyQ reduces aggregation. Thus, we hypothesized that missense suppression of Gln codons with other amino acids will reduce polyQ aggregate formation in cells. In neuroblastoma cells, we assessed tRNA variants that misread Gln codons with serine (tRNASer C/UUG) or alanine (tRNAAla C/UUG). The tRNAs with the CUG anticodon were more effective at suppressing the CAG repeats in polyQ, and serine and alanine mis-incorporation had differential impacts on polyQ. The expression of tRNASer CUG reduced polyQ protein production as well as both soluble and insoluble aggregate formation. In contrast, cells expressing tRNAAla CUG selectively decreased insoluble polyQ aggregate formation by 2-fold. Mass spectrometry confirmed Ala mis-incorporation at an average level of ∼20% per Gln codon. Cells expressing the missense suppressor tRNAs showed no cytotoxic effects and no defects in growth or global protein synthesis levels. Our findings demonstrate that tRNA-dependent missense suppression of Gln codons is well tolerated in mammalian cells and significantly reduces polyQ levels and aggregates that cause HD.
Collapse
Affiliation(s)
- Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Teija M.I. Bily
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sunidhi Syal
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen, 52062 Aachen, Germany
| | - Tugce B. Balci
- Department of Paediatrics, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
15
|
Ning J, Glausier JR, Warshamanage R, Gunther-Cummins L, Burnley T, Palmer CM, Gonzalez-Burgos G, Miyamae T, Wang J, Carlisle D, Hsieh C, Schmelzer T, Buck SA, Franks J, Hampton CM, Stauffer WR, Lewis DA, Friedlander RM, Macaluso FP, Winn M, Marko M, Freyberg Z. Uncovering synaptic and cellular nanoarchitecture of brain tissue via seamless in situ trimming and milling for cryo-electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642162. [PMID: 40161621 PMCID: PMC11952431 DOI: 10.1101/2025.03.09.642162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cell-cell communication underlies all emergent properties of the brain, including cognition, learning and memory. The physical basis for these communications is the synapse, a multi-component structure requiring coordinated interactions between diverse cell types. However, many aspects of three-dimensional (3D) synaptic organization remain poorly understood. Here, we developed an approach, seamless in situ trimming and milling (SISTM), to reliably fabricate sufficiently thin lamellae for mapping of the 3D nanoarchitecture of synapses in mouse, monkey and human brain tissue under near-native conditions via cryo-electron tomography (cryo-ET). We validated SISTM in a mouse model of Huntington's disease, demonstrating distinct 3D alterations to synaptic vesicles and mitochondria. By successfully applying SISTM to macaque brain, we described the 3D architecture of a tripartite synapse within the cortex. Subtomogram averaging (STA) enabled spatial mapping of astrocyte-neuron contacts within the tripartite synapse, revealing neurexin-neuroligin complexes as potential constituents that tether the two cell types. Finally, we showed that the defining features of synaptic nanoarchitecture were conserved across species and evident in human brain tissue obtained postmortem. Combining SISTM with cryo-ET and STA is a starting point for a new understanding of brain organization, disease-induced structural alterations and the development of rational, structure-guided therapeutics.
Collapse
Affiliation(s)
- Jiying Ning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rangana Warshamanage
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, UK
| | | | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Colin M. Palmer
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, UK
| | | | - Takeaki Miyamae
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jing Wang
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR, 97124, USA
| | - Diane Carlisle
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Chyongere Hsieh
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | - Silas A. Buck
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cheri M. Hampton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- BlueHalo, Dayton, OH 45432, USA
| | - William R. Stauffer
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert M. Friedlander
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Frank P. Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Michael Marko
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Simmons DA, Alexander N, Cao G, Rippin I, Lugassy Y, Eldar-Finkelman H, Longo FM. Small molecule modulation of p75 NTR engages the autophagy-lysosomal pathway and reduces huntingtin aggregates in cellular and mouse models of Huntington's disease. Neurotherapeutics 2025; 22:e00495. [PMID: 39592326 PMCID: PMC12014305 DOI: 10.1016/j.neurot.2024.e00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene encoding a mutant huntingtin (mHtt) protein. mHtt aggregates within neurons causing degeneration primarily in the striatum. There is currently a need for disease-modifying treatments for HD. Many therapeutic studies have focused on lowering mHtt levels by reducing its production or enhancing its clearance. One way to clear mHtt aggregates is to promote autophagy, which is disrupted in HD. Our previous studies showed that the small molecule p75 neurotrophin receptor (p75NTR) ligand, LM11A-31, prevented HD-related neuropathologies and behavioral deficits in multiple HD mouse models. This study investigated whether modulating p75NTR with LM11A-31, would reduce mHtt aggregates via autophagic/lysosomal mechanisms in HD models. LM11A-31 decreased mHtt aggregates in human neuroblastoma SH-SY5Y cells expressing mHtt (exon 1 with 74 CAG repeats) and in the striatum of R6/2 and zQ175dn mouse models of HD. The LM11A-31 associated decrease in mHtt aggregates in vitro was accompanied by increased autophagic/lysosomal activity as indicated by altered levels of relevant markers including p62/SQSTM1 and the lysosomal protease, mature cathepsin D, and increased autophagy flux. In R6/2 and/or zQ175dn striatum, LM11A-31 increased AMPK activation, normalized p62/SQSTM1 and LC3II levels, and enhanced LAMP1 and decreased LC3B association with mHtt. Thus, LM11A-31 reduces mHtt aggregates and may do so via engaging autophagy/lysosomal systems. LM11A-31 has successfully completed a Phase 2a clinical trial for mild-to-moderate Alzheimer's disease and our results here strengthen its potential as a candidate for HD clinical testing.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Namitha Alexander
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gloria Cao
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ido Rippin
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Health Sciences, Tel Aviv University, Israel
| | - Yarine Lugassy
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Health Sciences, Tel Aviv University, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Health Sciences, Tel Aviv University, Israel
| | - Frank M Longo
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2025; 292:1282-1315. [PMID: 38426291 PMCID: PMC11927060 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
18
|
Marmion DJ, Deng P, Hiller BM, Lewis RL, Harms LJ, Cameron DL, Nolta JA, Kordower JH, Fink KD, Wakeman DR. Long-Term Engraftment of Cryopreserved Human Neurons for In Vivo Disease Modeling in Neurodegenerative Disease. BIOLOGY 2025; 14:217. [PMID: 40001985 PMCID: PMC11852092 DOI: 10.3390/biology14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The transplantation of human neurons into the central nervous system (CNS) offers transformative opportunities for modeling neurodegenerative diseases in vivo. This study evaluated the survival, integration, and functional properties of cryopreserved forebrain GABAergic neurons (iGABAs) derived from human induced pluripotent stem cells (iPSCs) across three species used in translational research. iGABAs were stereotactically injected into the striatum of Sprague-Dawley rats, immunodeficient RNU rats, R6/2 Huntington's disease (HD) mice, wild-type controls, and Cynomolgus monkeys. Post-transplantation, long-term assessments revealed robust neuronal survival, extensive neurite outgrowth, and integration with host CNS environments. In immunodeficient rats, iGABAs innervated the neuraxis, extending from the prefrontal cortex to the midbrain, while maintaining mature neuronal phenotypes without uncontrolled proliferation. Similarly, grafts in nonhuman primates showed localized survival and stable phenotype at one month. In the neurodegenerative milieu of HD mice, iGABAs survived up to six months, projecting into the host striatum and white matter, with evidence of mutant huntingtin aggregates localized within the graft, indicating pathological protein transfer. These findings underscore the utility of cryopreserved iGABAs as a reproducible, scalable model for disease-specific CNS investigations and mechanistic studies of proteinopathic propagation. This work establishes a critical platform for studying neurodegenerative diseases and developing therapeutic interventions.
Collapse
Affiliation(s)
- David J. Marmion
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Peter Deng
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (P.D.)
| | - Benjamin M. Hiller
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Lisa J. Harms
- FujiFilm Cellular Dynamics Inc., Madison, WI 53711, USA
| | - David L. Cameron
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (P.D.)
| | - Jan A. Nolta
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (P.D.)
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Kyle D. Fink
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (P.D.)
| | - Dustin R. Wakeman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
19
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 PMCID: PMC11817889 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
20
|
Brulé B, Alcalá-Vida R, Penaud N, Scuto J, Mounier C, Seguin J, Khodaverdian SV, Cosquer B, Birmelé E, Le Gras S, Decraene C, Boutillier AL, Merienne K. Accelerated epigenetic aging in Huntington's disease involves polycomb repressive complex 1. Nat Commun 2025; 16:1550. [PMID: 39934111 DOI: 10.1038/s41467-025-56722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Loss of epigenetic information during physiological aging compromises cellular identity, leading to de-repression of developmental genes. Here, we assessed the epigenomic landscape of vulnerable neurons in two reference mouse models of Huntington neurodegenerative disease (HD), using cell-type-specific multi-omics, including temporal analysis at three disease stages via FANS-CUT&Tag. We show accelerated de-repression of developmental genes in HD striatal neurons, involving histone re-acetylation and depletion of H2AK119 ubiquitination and H3K27 trimethylation marks, which are catalyzed by polycomb repressive complexes 1 and 2 (PRC1 and PRC2), respectively. We further identify a PRC1-dependent subcluster of bivalent developmental transcription factors that is re-activated in HD striatal neurons. This mechanism likely involves progressive paralog switching between PRC1-CBX genes, which promotes the upregulation of normally low-expressed PRC1-CBX2/4/8 isoforms in striatal neurons, alongside the down-regulation of predominant PRC1-CBX isoforms in these cells (e.g., CBX6/7). Collectively, our data provide evidence for PRC1-dependent accelerated epigenetic aging in HD vulnerable neurons.
Collapse
Affiliation(s)
- Baptiste Brulé
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Rafael Alcalá-Vida
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, Alicante, Spain
| | - Noémie Penaud
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jil Scuto
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Coline Mounier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jonathan Seguin
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | | | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Etienne Birmelé
- University of Strasbourg, Strasbourg, France
- IRMA, Strasbourg, France
| | - Stéphanie Le Gras
- University of Strasbourg, Strasbourg, France
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- CNRS UMR7104, Strasbourg, France
- INSERM U1258, Strasbourg, France
| | - Charles Decraene
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France.
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France.
- University of Strasbourg, Strasbourg, France.
| |
Collapse
|
21
|
Blumenstock S, Arakelyan D, Del Grosso N, Schneider S, Shao Y, Gjoni E, Klein R, Dudanova I, Komiyama T. Optogenetic restoration of neuron subtype-specific cortical activity ameliorates motor deficits in Huntington's Disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637155. [PMID: 39974900 PMCID: PMC11839025 DOI: 10.1101/2025.02.07.637155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Huntington's disease (HD) is a devastating movement disorder without a current cure. Although the monogenic basis of HD is well-defined, the complex downstream effects that underlie behavioral symptoms are poorly understood. These effects include cortical dysfunctions, yet the role of specific cortical neuronal subtypes in HD symptoms remain largely unexplored. Here, we used longitudinal in vivo two-photon calcium imaging to examine the activity of two cortical inhibitory neuron (IN) subtypes and excitatory corticostriatal projection neurons (CSPNs) in the motor cortex of R6/2 HD mouse model throughout disease progression. We found that motor deficits in R6/2 mice were accompanied by neuron type-specific abnormalities in movement-related activity, including hypoactivity of vasoactive intestinal peptide (VIP)-INs and CSPNs. Optogenetic activation of VIP-INs in R6/2 mice restored healthy levels of activity in VIP-INs and their downstream CSPNs and ameliorated motor deficits in R6/2 mice. Our findings highlight cortical INs as a potential therapeutic target for HD and possibly other neurological diseases.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - David Arakelyan
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Del Grosso
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Sonja Schneider
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Yufeng Shao
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Enida Gjoni
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Rüdiger Klein
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Irina Dudanova
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Takaki Komiyama
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Xu H, Ajayan A, Langen R, Chen J. Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease. Neurobiol Dis 2025; 205:106780. [PMID: 39736404 PMCID: PMC11837809 DOI: 10.1016/j.nbd.2024.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed. Defects in retinal structure and function are also present in the R6/2 and R6/1 HD transgenic mouse models that contain a gene fragment to express mHTTex1. We investigated whether these defects extend to the zQ175KI mouse model which is thought to be more representative of the human condition because it was engineered to contain the extended CAG repeat within the endogenous HTT locus. We found qualitatively similar phenotypes between R6/1 and zQ175KI retinae that include the presence of mHTT aggregates in retinal neurons, cone loss, downregulation of rod signaling proteins and abnormally elongated photoreceptor connecting cilia. In addition, we present novel findings that mHTT disrupts cell polarity in the photoreceptor cell layer and the retinal pigment epithelium (RPE). Furthermore, we show that the RPE cells from R6/1 mice contain mHTT nuclear inclusions, adding to the list of non-neuronal cells with mHTT aggregates and pathology. Thus, the eye may serve as a useful system to track disease progression and to test therapeutic intervention strategies for HD.
Collapse
Affiliation(s)
- Hui Xu
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anakha Ajayan
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ralf Langen
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeannie Chen
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Nguyen TB, Miramontes R, Chillon-Marinas C, Maimon R, Vazquez-Sanchez S, Lau AL, McClure NR, Wu Z, Wang KQ, England WE, Singha M, Stocksdale JT, Heath M, Jang KH, Jung S, Ling K, Jafar-Nejad P, McKnight JI, Ho LN, Dalahmah OA, Faull RLM, Steffan JS, Reidling JC, Jang C, Lee G, Cleveland DW, Lagier-Tourenne C, Spitale RC, Thompson LM. Aberrant splicing in Huntington's disease accompanies disrupted TDP-43 activity and altered m6A RNA modification. Nat Neurosci 2025; 28:280-292. [PMID: 39762660 PMCID: PMC11802453 DOI: 10.1038/s41593-024-01850-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/14/2024] [Indexed: 01/15/2025]
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems. Disrupted nuclear localization of TDP-43 and cytoplasmic accumulation of phosphorylated TDP-43 occurs in HD mouse and human brains, with TDP-43 also co-localizing with HTT nuclear aggregate-like bodies distinct from mutant HTT inclusions. The binding of TDP-43 onto RNAs encoding HD-associated differentially expressed and aberrantly spliced genes is decreased. Finally, m6A RNA modification is reduced on RNAs abnormally expressed in the striatum of HD R6/2 mouse brain, including at clustered sites adjacent to TDP-43 binding sites. Our evidence supports TDP-43 loss of function coupled with altered m6A modification as a mechanism underlying alternative splicing in HD.
Collapse
Affiliation(s)
- Thai B Nguyen
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | | | - Carlos Chillon-Marinas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roy Maimon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sonia Vazquez-Sanchez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Nicolette R McClure
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Zhuoxing Wu
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Keona Q Wang
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jennifer T Stocksdale
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Marie Heath
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Ki-Hong Jang
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Karen Ling
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | | | - Jharrayne I McKnight
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Leanne N Ho
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Osama Al Dalahmah
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Joan S Steffan
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA
| | | | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Leslie M Thompson
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA.
- UCI MIND, University of California, Irvine, Irvine, CA, USA.
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Beltrán FA, Torres-Díaz L L, Troncoso-Escudero P, Villalobos-González J, Mayorga-Weber G, Lara M, Covarrubias-Pinto A, Valdivia S, Vicencio I, Papic E, Paredes-Martínez C, Silva-Januàrio ME, Rojas A, daSilva LLP, Court F, Rosas-Arellano A, Bátiz LF, Rojas P, Rivera FJ, Castro MA. Distinct roles of ascorbic acid in extracellular vesicles and free form: Implications for metabolism and oxidative stress in presymptomatic Huntington's disease. Free Radic Biol Med 2025; 227:521-535. [PMID: 39662690 DOI: 10.1016/j.freeradbiomed.2024.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin gene. The huntingtin protein (Htt) is ubiquitously expressed and localized in several organelles, including endosomes, where it plays an essential role in intracellular trafficking. Presymptomatic HD is associated with a failure in energy metabolism and oxidative stress. Ascorbic acid is a potent antioxidant that plays a key role in modulating neuronal metabolism and is highly concentrated in the brain. During synaptic activity, neurons take up ascorbic acid released by glial cells; however, this process is disrupted in HD. In this study, we aim to elucidate the molecular and cellular mechanisms underlying this dysfunction. Using an electrophysiological approach in presymptomatic YAC128 HD slices, we observed decreased ascorbic acid flux from astrocytes to neurons, which altered neuronal metabolic substrate preferences. Ascorbic acid efflux and recycling were also decreased in cultured astrocytes from YAC128 HD mice. We confirmed our findings using GFAP-HD160Q, an HD mice model expressing mutant N-terminal Htt mainly in astrocytes. For the first time, we demonstrated that ascorbic acid is released from astrocytes via extracellular vesicles (EVs). Decreased number of particles and exosomal markers were observed in EV fractions from cultured YAC128 HD astrocytes and Htt-KD cells. We observed reduced number of multivesicular bodies (MVBs) in YAC128 HD striatum via electron microscopy, suggesting mutant Htt alters MVB biogenesis. EVs containing ascorbic acid effectively reduced reactive oxygen species, whereas "free" ascorbic acid played a role in modulating neuronal metabolic substrate preferences. These findings suggest that the early redox imbalance observed in HD arises from a reduced release of ascorbic acid-containing EVs by astrocytes. Meanwhile, a decrease in "free" ascorbic acid likely contributes to presymptomatic metabolic impairment.
Collapse
Affiliation(s)
- Felipe A Beltrán
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Leandro Torres-Díaz L
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Paulina Troncoso-Escudero
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Juan Villalobos-González
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Marcelo Lara
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus las Tres Pascualas, Concepción, Chile
| | - Adriana Covarrubias-Pinto
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sharin Valdivia
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Department of Biological and Chemical Sciences, Faculty of Medicine and Sciences, San Sebastián University, Tres Pascualas Campus, Concepción, Chile
| | - Isidora Vicencio
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Eduardo Papic
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Carolina Paredes-Martínez
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Mara E Silva-Januàrio
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alejandro Rojas
- Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Instituto de Medicina, UACh, Valdivia, Chile
| | - Luis L P daSilva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Felipe Court
- Center for Aging Research and Healthy Longevity, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Luis Federico Bátiz
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de Los Andes, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricio Rojas
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco J Rivera
- Translational Regenerative Neurobiology Group (TReN), Molecular and Integrative Biosciences Research Program (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Janelia Research Campus HHMI, Ashburn, VA, USA.
| |
Collapse
|
25
|
Nyamugenda E, Rosensweig C, Allada R. Circadian Clocks, Daily Stress, and Neurodegenerative Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:355-374. [PMID: 39423424 DOI: 10.1146/annurev-pathmechdis-031521-033828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Disrupted circadian or 24-h rhythms are among the most common early findings in a wide range of neurodegenerative disorders. Once thought to be a mere consequence of the disease process, increasing evidence points toward a causal or contributory role of the circadian clock in neurodegenerative disease. Circadian clocks control many aspects of cellular biochemistry, including stress pathways implicated in neuronal survival and death. Given the dearth of disease-modifying therapies for these increasingly prevalent disorders, this understanding may lead to breakthroughs in the development of new treatments. In this review, we provide a background on circadian clocks and focus on some potential mechanisms that may be pivotal in neurodegeneration.
Collapse
Affiliation(s)
- Eugene Nyamugenda
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| | - Ravi Allada
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| |
Collapse
|
26
|
Sapp E, Boudi A, Iwanowicz A, Belgrad J, Miller R, O’Reilly D, Yamada K, Deng Y, Joni M, Li X, Kegel-Gleason K, Khvorova A, Reiner A, Aronin N, DiFiglia M. Detection of HTTex1p by western blot and immunostaining of HD human and mouse brain using neo-epitope antibody P90 highlights impact of CAG repeat expansion on its size, solubility, and response to MSH3 silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630891. [PMID: 39803497 PMCID: PMC11722249 DOI: 10.1101/2024.12.31.630891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
HTT1a has been identified in human and mouse HD brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 that contributes to aggregate formation and neuronal dysfunction (Sathasivam et al., 2013). Detection of the HTT exon 1 protein (HTTex1p) has been accomplished with surrogate antibodies in fluorescence-based reporter assays (MSD, HTRF), and immunoprecipitation assays, in HD postmortem cerebellum and knock-in mice but direct detection by SDS-PAGE and western blot assay has been lacking. Here proteins in subcellular fractions prepared from human and mouse HD brain were separated by SDS-PAGE and probed by western blot with neo-epitope monoclonal antibodies (P90-1B12 and 11G2) directed to the C-terminal 8 residues of HTTex1p. In human HD putamen and cortex, HTTex1p migrated at 56-60 kD and at higher molecular masses (HMM) consistent with the presence of CAG repeat expansion in HTT1a. HTTex1p in control brain was low or undetectable. Immunofluorescence labeling of human HD cortex using P90-11G2 revealed small aggregates that sparsely populated the neuropil in layers 3 and 5. In caudate putamen of 6 month old HD knock-in mice (Q50, Q80, Q111, Q140 and Q175) HTTex1p migration was inversely correlated with CAG repeat length and appeared as a SDS soluble high molecular mass (HMM) smear in HD Q111, Q140 and Q175 mice but not in Q50 and Q80 mice indicating a CAG repeat size threshold for detecting HTTex1p aggregation. Migration of HTTex1p and HMM smear changed with age in caudate putamen of Q111, Q175 and YAC128 mice. Treating HD Q111 mice with siRNA to MSH3, a modifier of CAG repeat expansion, significantly reduced levels of the HMM smear indicating that the effects of curbing CAG repeat expansion was quantifiable. These results show that P90 antibodies can be used in western blot assays and immunostaining to track and quantify HTTex1p levels, subcellular localization, and solubility.
Collapse
Affiliation(s)
- Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Andrew Iwanowicz
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Rachael Miller
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Daniel O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Marion Joni
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | | | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| |
Collapse
|
27
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
28
|
Wozna‐Wysocka M, Jazurek‐Ciesiolka M, Przybyl L, Wronka D, Misiorek JO, Suszynska‐Zajczyk J, Figura G, Ciesiolka A, Sobieszczanska P, Zeller A, Niemira M, Switonski PM, Fiszer A. Insights into RNA-mediated pathology in new mouse models of Huntington's disease. FASEB J 2024; 38:e70182. [PMID: 39604147 PMCID: PMC11602643 DOI: 10.1096/fj.202401465r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative polyglutamine (polyQ) disease resulting from the expansion of CAG repeats located in the ORF of the huntingtin gene (HTT). The extent to which mutant mRNA-driven disruptions contribute to HD pathogenesis, particularly in comparison to the dominant mechanisms related to the gain-of-function effects of the mutant polyQ protein, is still debatable. To evaluate this contribution in vivo, we generated two mouse models through a knock-in strategy at the Rosa26 locus. These models expressed distinct variants of human mutant HTT cDNA fragment: a translated variant (HD/100Q model, serving as a reference) and a nontranslated variant (HD/100CAG model). The cohorts of animals were subjected to a broad spectrum of molecular, behavioral, and cognitive analysis for 21 months. Behavioral testing revealed alterations in both models, with the HD/100Q model exhibiting late disease phenotype. The rotarod, static rod, and open-field tests showed some motor deficits in HD/100CAG and HD/100Q model mice during the light phase, while ActiMot indicated hyperkinesis during the dark phase. Both models also exhibited certain gene deregulations in the striatum that are related to disrupted pathways and phenotype alterations observed in HD. In conclusion, we provide in vivo evidence for a minor contributory role of mutant RNA in HD pathogenesis. The separated effects resulting from the presence of mutant RNA in the HD/100CAG model led to less severe but, to some extent, similar types of impairments as in the HD/100Q model. Increased anxiety was one of the most substantial effects caused by mutant HTT RNA.
Collapse
Affiliation(s)
| | | | - Lukasz Przybyl
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Dorota Wronka
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | | | | | - Grzegorz Figura
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Present address:
Department of Bioenergetics, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Adam Ciesiolka
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Present address:
Department of Gene Expression, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | | | - Anna Zeller
- Genomics and Epigenomics Laboratory, Clinical Research CentreMedical University of BialystokBialystokPoland
| | - Magdalena Niemira
- Genomics and Epigenomics Laboratory, Clinical Research CentreMedical University of BialystokBialystokPoland
| | | | - Agnieszka Fiszer
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| |
Collapse
|
29
|
Sogorb-Gonzalez M, Landles C, Caron NS, Stam A, Osborne G, Hayden MR, Howland D, van Deventer S, Bates GP, Vallès A, Evers M. Exon 1-targeting miRNA reduces the pathogenic exon 1 HTT protein in Huntington's disease models. Brain 2024; 147:4043-4055. [PMID: 39155061 PMCID: PMC11629698 DOI: 10.1093/brain/awae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease caused by a trinucleotide repeat expansion in exon 1 of the huntingtin gene (HTT) that results in toxic gain of function and cell death. Despite its monogenic cause, the pathogenesis of HD is highly complex, and increasing evidence indicates that, in addition to the full-length (FL) mutant HTT protein, the expanded exon 1 HTT (HTTexon1) protein that is translated from the HTT1a transcript generated by aberrant splicing is prone to aggregate and might contribute to HD pathology. This finding suggests that reducing the expression of HTT1a might achieve a greater therapeutic benefit than targeting only FL mutant HTT. Conversely, strategies that exclusively target FL HTT might not completely prevent the pathogenesis of HD. We have developed an engineered microRNA targeting the HTT exon 1 sequence (miHTT), delivered via adeno-associated virus serotype 5 (AAV5). The target sequence of miHTT is present in both FL HTT and HTT1a transcripts. Preclinical studies with AAV5-miHTT have demonstrated efficacy in several rodent and large animal models by reducing FL HTT mRNA and protein and rescuing HD-like phenotypes and have been the rationale for phase I/II clinical studies now ongoing in the USA and Europe. In the present study, we evaluated the ability of AAV5-miHTT to reduce the levels of aberrantly spliced HTT1a mRNA and the HTTexon1 protein in the brain of two mouse models of HD (heterozygous zQ175 knock-in mice and humanized Hu128/21 mice). Polyadenylated HTT1a mRNA and HTTexon1 protein were detected in the striatum and cortex of heterozygous zQ175 knock-in mice, but not in wild-type littermate control mice. Intrastriatal administration of AAV5-miHTT resulted in dose-dependent expression of mature miHTT microRNA in cortical brain regions, accompanied by significant lowering of both FL HTT and HTT1a mRNA expression at 2 months postinjection. Mutant HTT and HTTexon1 protein levels were also significantly reduced in the striatum and cortex of heterozygous zQ175 knock-in mice at 2 months after AAV5-miHTT treatment and in humanized Hu128/21 mice 7 months post-treatment. The effects were confirmed in primary Hu128/21 neuronal cultures. These results demonstrate that AAV5-miHTT gene therapy is an effective approach to lower both FL HTT and the pathogenic HTTexon1 levels, which could potentially have an additive therapeutic benefit in comparison to other HTT-targeting modalities.
Collapse
Affiliation(s)
- Marina Sogorb-Gonzalez
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Anouk Stam
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Georgina Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David Howland
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Sander van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Astrid Vallès
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Melvin Evers
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| |
Collapse
|
30
|
Bai D, Deng F, Jia Q, Ou K, Wang X, Hou J, Zhu L, Guo M, Yang S, Jiang G, Li S, Li X, Yin P. Pathogenic TDP-43 accelerates the generation of toxic exon1 HTT in Huntington's disease knock-in mice. Aging Cell 2024; 23:e14325. [PMID: 39185703 PMCID: PMC11634733 DOI: 10.1111/acel.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in exon1 of the HTT gene that encodes a polyglutamine tract in huntingtin protein. The formation of HTT exon1 fragments with an expanded polyglutamine repeat has been implicated as a key step in the pathogenesis of HD. It was reported that the CAG repeat length-dependent aberrant splicing of exon1 HTT results in a short polyadenylated mRNA that is translated into an exon1 HTT protein. Under normal conditions, TDP-43 is predominantly found in the nucleus, where it regulates gene expression. However, in various pathological conditions, TDP-43 is mislocalized in the cytoplasm. By investigating HD knock-in mice, we explore whether the pathogenic TDP-43 in the cytoplasm contributes to HD pathogenesis, through expressing the cytoplasmic TDP-43 without nuclear localization signal. We found that the cytoplasmic TDP-43 is increased in the HD mouse brain and that its mislocalization could deteriorate the motor and gait behavior. Importantly, the cytoplasmic TDP-43, via its binding to the intron1 sequence (GU/UG)n of the mouse Htt pre-mRNA, promotes the transport of exon1-intron1 Htt onto ribosome, resulting in the aberrant generation of exon1 Htt. Our findings suggest that cytoplasmic TDP-43 contributes to HD pathogenesis via its binding to and transport of nuclear un-spliced mRNA to the ribosome for the generation of a toxic protein product.
Collapse
Affiliation(s)
- Dazhang Bai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongSichuanChina
| | - Fuyu Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical DevicesIn Vitro Diagnostic Reagents Testing DepartmentShenzhenGuangdongChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Kaili Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Mingwei Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongSichuanChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
31
|
Bartelt LC, Switonski PM, Adamek G, Longo F, Carvalho J, Duvick LA, Jarrah SI, McLoughlin HS, Scoles DR, Pulst SM, Orr HT, Hull C, Lowe CB, La Spada AR. Dysregulation of zebrin-II cell subtypes in the cerebellum is a shared feature across polyglutamine ataxia mouse models and patients. Sci Transl Med 2024; 16:eadn5449. [PMID: 39504355 PMCID: PMC11806946 DOI: 10.1126/scitranslmed.adn5449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a genetic neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. Purkinje cells (PCs) are central to the pathology of ataxias, but their low abundance in the cerebellum underrepresents their transcriptomes in sequencing assays. To address this issue, we developed a PC enrichment protocol and sequenced individual nuclei from mice and patients with SCA7. Single-nucleus RNA sequencing in SCA7-266Q mice revealed dysregulation of cell identity genes affecting glia and PCs. Specifically, genes marking zebrin-II PC subtypes accounted for the highest proportion of DEGs in symptomatic SCA7-266Q mice. These transcriptomic changes in SCA7-266Q mice were associated with increased numbers of inhibitory synapses as quantified by immunohistochemistry and reduced spiking of PCs in acute brain slices. Dysregulation of zebrin-II cell subtypes was the predominant signal in PCs of SCA7-266Q mice and was associated with the loss of zebrin-II striping in the cerebellum at motor symptom onset. We furthermore demonstrated zebrin-II stripe degradation in additional mouse models of polyglutamine ataxia and observed decreased zebrin-II expression in the cerebella of patients with SCA7. Our results suggest that a breakdown of zebrin subtype regulation is a shared pathological feature of polyglutamine ataxias.
Collapse
Affiliation(s)
- Luke C Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pawel M Switonski
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grażyna Adamek
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Fabiana Longo
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Juliana Carvalho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa A Duvick
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
- UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
32
|
Mathews EW, Coffey SR, Gärtner A, Belgrad J, Bragg RM, O’Reilly D, Cantle JP, McHugh C, Summers A, Fentz J, Schwagarus T, Cornelius A, Lingos I, Burch Z, Kovalenko M, Andrew MA, Frank Bennett C, Kordasiewicz HB, Marchionini DM, Wilkinson H, Vogt TF, Pinto RM, Khvorova A, Howland D, Wheeler VC, Carroll JB. Suppression of Huntington's Disease Somatic Instability by Transcriptional Repression and Direct CAG Repeat Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.619693. [PMID: 39574582 PMCID: PMC11580907 DOI: 10.1101/2024.11.04.619693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Huntington's disease (HD) arises from a CAG expansion in the huntingtin (HTT) gene beyond a critical threshold. A major thrust of current HD therapeutic development is lowering levels of mutant HTT mRNA (mHTT) and protein (mHTT) with the aim of reducing the toxicity of these product(s). Human genetic data also support a key role for somatic instability (SI) in HTT's CAG repeat - whereby it lengthens with age in specific somatic cell types - as a key driver of age of motor dysfunction onset. Thus, an attractive HD therapy would address both mHTT toxicity and SI, but to date the relationship between SI and HTT lowering remains unexplored. Here, we investigated multiple therapeutically-relevant HTT-lowering modalities to establish the relationship between HTT lowering and SI in HD knock-in mice. We find that repressing transcription of mutant Htt (mHtt) provides robust protection from SI, using diverse genetic and pharmacological approaches (antisense oligonucleotides, CRISPR-Cas9 genome editing, the Lac repressor, and virally delivered zinc finger transcriptional repressor proteins, ZFPs). However, we find that small interfering RNA (siRNA), a potent HTT-lowering treatment, lowers HTT levels without influencing SI and that SI is also normal in mice lacking 50% of total HTT levels, suggesting HTT levels, per se, do not modulate SI in trans. Remarkably, modified ZFPs that bind the mHtt locus, but lack a repressive domain, robustly protect from SI, despite not reducing HTT mRNA or protein levels. These results have important therapeutic implications in HD, as they suggest that DNA-targeted HTT-lowering treatments may have significant advantages compared to other HTT-lowering approaches, and that interaction of a DNA-binding protein and HTT's CAG repeats may provide protection from SI while sparing HTT expression.
Collapse
Affiliation(s)
- Ella W. Mathews
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Sydney R. Coffey
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | | | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert M. Bragg
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Daniel O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeffrey P. Cantle
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Cassandra McHugh
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | | | | | | | - Zoe Burch
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marina Kovalenko
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marissa A Andrew
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Deanna M. Marchionini
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Hilary Wilkinson
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Thomas F. Vogt
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Ricardo M. Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Howland
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Vanessa C. Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Jeffrey B. Carroll
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| |
Collapse
|
33
|
King AC, Payne E, Stephens E, Fowler JA, Wood TE, Rodriguez E, Gray M. Modulation of SNARE-dependent exocytosis in astrocytes improves neuropathology in Huntington's disease. Dis Model Mech 2024; 17:dmm052002. [PMID: 39526491 PMCID: PMC11583919 DOI: 10.1242/dmm.052002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a fatal, progressive neurodegenerative disorder. Prior studies revealed an increase in extracellular glutamate levels after evoking astrocytic SNARE-dependent exocytosis from cultured primary astrocytes from mutant huntingtin (mHTT)-expressing BACHD mice compared to control astrocytes, suggesting alterations in astrocytic SNARE-dependent exocytosis in HD. We used BACHD and dominant-negative (dn)SNARE mice to decrease SNARE-dependent exocytosis from astrocytes to determine whether reducing SNARE-dependent exocytosis from astrocytes could rescue neuropathological changes in vivo. We observed significant protection against striatal atrophy and no significant rescue of cortical atrophy in BACHD/dnSNARE mice compared to BACHD mice. Amino acid transporters are important for modulating the levels of extracellular neurotransmitters. BACHD mice had no change in GLT1 expression, decreased striatal GAT1 expression and increased levels of GAT3. There was no change in GAT1 after reducing astrocytic SNARE-dependent exocytosis, and increased GAT3 expression in BACHD mice was normalized in BACHD/dnSNARE mice. Thus, modulation of astrocytic SNARE-dependent exocytosis in BACHD mice is protective against striatal atrophy and modulates GABA transporter expression.
Collapse
Affiliation(s)
- Annesha C. King
- Graduate Biomedical Sciences Neuroscience Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily Payne
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily Stephens
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jahmel A. Fowler
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Sciences Biochemistry and Structural Biology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tara E. Wood
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Efrain Rodriguez
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
34
|
Chang K, Cheng M, Tang H, Lin C, Chen C. Dysregulation of choline metabolism and therapeutic potential of citicoline in Huntington's disease. Aging Cell 2024; 23:e14302. [PMID: 39143698 PMCID: PMC11561662 DOI: 10.1111/acel.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Huntington's disease (HD) is associated with dysregulated choline metabolism, but the underlying mechanisms remain unclear. This study investigated the expression of key enzymes in this pathway in R6/2 HD mice and human HD postmortem brain tissues. We further explored the therapeutic potential of modulating choline metabolism for HD. Both R6/2 mice and HD patients exhibited reduced expression of glycerophosphocholine phosphodiesterase 1 (GPCPD1), a key enzyme in choline metabolism, in the striatum and cortex. The striatum of R6/2 mice also showed decreased choline and phosphorylcholine, and increased glycerophosphocholine, suggesting disruption in choline metabolism due to GPCPD1 deficiency. Treatment with citicoline significantly improved motor performance, upregulated anti-apoptotic Bcl2 expression, and reduced oxidative stress marker malondialdehyde in both brain regions. Metabolomic analysis revealed partial restoration of disrupted metabolic patterns in the striatum and cortex following citicoline treatment. These findings strongly suggest the role of GPCPD1 deficiency in choline metabolism dysregulation in HD. The therapeutic potential of citicoline in R6/2 mice highlights the choline metabolic pathway as a promising target for future HD therapies.
Collapse
Affiliation(s)
- Kuo‐Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
| | - Mei‐Ling Cheng
- Department of Biomedical SciencesChang Gung UniversityTaoyuanTaiwan
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Clinical Metabolomics Core Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
| | - Hsiang‐Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
| | - Chung‐Yin Lin
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
- Institute for Radiological ResearchChang Gung UniversityTaoyuanTaiwan
| | - Chiung‐Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
| |
Collapse
|
35
|
Baduini IR, Castro Vildosola JE, Kavehmoghaddam S, Kiliç F, Nadeem SA, Nizama JJ, Rowand MA, Annapureddy D, Bryan CA, Do LH, Hsiao S, Jonnalagadda SA, Kasturi A, Mandava N, Muppavaram S, Ramirez B, Siner A, Suoto CN, Tamajal N, Scoma ER, Da Costa RT, Solesio ME. Type 2 diabetes mellitus and neurodegenerative disorders: The mitochondrial connection. Pharmacol Res 2024; 209:107439. [PMID: 39357690 DOI: 10.1016/j.phrs.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has increased in our society in recent decades as the population ages, and this trend is not expected to revert. This is the same for the incidence of the main neurodegenerative disorders, including the two most common ones, which are, Alzheimer's and Parkinson's disease. Currently, no pharmacological therapies have been developed to revert or cure any of these pathologies. Interestingly, in recent years, an increased number of studies have shown a high co-morbidity between T2DM and neurodegeneration, as well as some common molecular pathways that are affected in both types of diseases. For example, while the etiopathology of T2DM and neurodegenerative disorders is highly complex, mitochondrial dysfunction has been broadly described in the early steps of both diseases; accordingly, this dysfunction has emerged as a plausible molecular link between them. In fact, the prominent role played by mitochondria in the mammalian metabolism of glucose places the physiology of the organelle in a central position to regulate many cellular processes that are affected in both T2DM and neurodegenerative disorders. In this collaborative review, we critically describe the relationship between T2DM and neurodegeneration; making a special emphasis on the mitochondrial mechanisms that could link these diseases. A better understanding of the role of mitochondria on the etiopathology of T2DM and neurodegeneration could pave the way for the development of new pharmacological therapies focused on the regulation of the physiology of the organelle. These therapies could, ultimately, contribute to increase healthspan.
Collapse
Affiliation(s)
- Isabella R Baduini
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Jose E Castro Vildosola
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sheida Kavehmoghaddam
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Fatmanur Kiliç
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - S Aiman Nadeem
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Juan J Nizama
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Marietta A Rowand
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Dileep Annapureddy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Chris-Ann Bryan
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Lisa H Do
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Samuel Hsiao
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sai A Jonnalagadda
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Akhila Kasturi
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nikhila Mandava
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sachin Muppavaram
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Bryan Ramirez
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Aleece Siner
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Christina N Suoto
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nasira Tamajal
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ernest R Scoma
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Renata T Da Costa
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Maria E Solesio
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
36
|
Pupak A, Rodríguez-Navarro I, Sathasivam K, Singh A, Essmann A, Del Toro D, Ginés S, Mouro Pinto R, Bates GP, Vang Ørom UA, Martí E, Brito V. m 6A modification of mutant huntingtin RNA promotes the biogenesis of pathogenic huntingtin transcripts. EMBO Rep 2024; 25:5026-5052. [PMID: 39394467 PMCID: PMC11549361 DOI: 10.1038/s44319-024-00283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
In Huntington's disease (HD), aberrant processing of huntingtin (HTT) mRNA produces HTT1a transcripts that encode the pathogenic HTT exon 1 protein. The mechanisms behind HTT1a production are not fully understood. Considering the role of m6A in RNA processing and splicing, we investigated its involvement in HTT1a generation. Here, we show that m6A methylation is increased before the cryptic poly(A) sites (IpA1 and IpA2) within the huntingtin RNA in the striatum of Hdh+/Q111 mice and human HD samples. We further assessed m6A's role in mutant Htt mRNA processing by pharmacological inhibition and knockdown of METTL3, as well as targeted demethylation of Htt intron 1 using a dCas13-ALKBH5 system in HD mouse cells. Our data reveal that Htt1a transcript levels are regulated by both METTL3 and the methylation status of Htt intron 1. They also show that m6A methylation in intron 1 depends on expanded CAG repeats. Our findings highlight a potential role for m6A in aberrant splicing of Htt mRNA.
Collapse
Affiliation(s)
- Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene Rodríguez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Kirupa Sathasivam
- Department of Neurodegenerative Disease, Huntington's Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - Ankita Singh
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Amelie Essmann
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Del Toro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Mouro Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gillian P Bates
- Department of Neurodegenerative Disease, Huntington's Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | | | - Eulàlia Martí
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
37
|
Yang D, Huang C, Guo X, Li Y, Wu J, Zhang Z, Yan S, Xu Y. Abnormal outer and inner retina in a mouse model of Huntington's disease with age. Front Aging Neurosci 2024; 16:1434551. [PMID: 39529751 PMCID: PMC11550939 DOI: 10.3389/fnagi.2024.1434551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction and cognitive decline. While retinal abnormalities have been documented in some HD patients and animal models, the nature of these abnormalities-specifically whether they originate in the inner or outer retina-remains unclear, particularly regarding their progression with age. This study investigates the retinal structure and function in HD transgenic mice (R6/1) compared to C57BL/6 J control mice at 2, 4, and 6 months of age, encompassing both pre-symptomatic and symptomatic stages of HD. Pathological assessments of the striatum and evaluations of motor function confirmed significant HD-related alterations in R6/1 mice at 6 months. Visual function was subsequently analyzed, accompanied by immunofluorescent staining of retinal and optic nerve tissues over time. Our findings revealed that R6/1 mice exhibited pronounced HD symptoms at 6 months, characterized by neuronal loss in the striatum and impaired locomotor abilities. Functionally, visual acuity declined at 6 months, while retinal light responses began to deteriorate by 4 months. Structurally, R6/1 mice demonstrated a global reduction in cone opsin expression as early as 2 months, with a decrease in rhodopsin levels at 4 months, alongside a thinner retinal structure compared to controls. Notably, rod bipolar cell populations were decreased at 6 months, exhibiting shorter dendritic branches and reduced synaptic connections with photoreceptors in the outer retina. Additionally, ganglion cell numbers in the inner retina decreased at 6 months, accompanied by aberrant neural fibers in the optic nerve. Microglial activation was evident at 4 months, while astrocytic activation was observed at 6 months. Aggregates of mutant huntingtin (mHTT) were first detected in the ganglion cell layer and optic nerve at 2 months, subsequently disseminating throughout all retinal layers with advancing age. These results indicate that retinal pathology in R6/1 mice manifests earlier in the outer retina than in the inner retina, which does not align with the progression of mHTT aggregation. Consequently, the R6/1 mouse retina may serve as a more effective model for elucidating the mechanisms underlying HD and evaluating potential therapeutic strategies, rather than functioning as an early diagnostic tool for the disease.
Collapse
Affiliation(s)
- Dashuang Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Chunhui Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
- School of Medicine, Jinan University, Guangzhou, China
| | - Xuemeng Guo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Yintian Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Jiaxi Wu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
38
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
39
|
Gouravani M, Fekrazad S, Mafhoumi A, Ashouri M, DeBuc DC. Optical coherence tomography measurements in Huntington's disease: a systematic review and meta-analysis. J Neurol 2024; 271:6471-6484. [PMID: 39187741 PMCID: PMC11447008 DOI: 10.1007/s00415-024-12634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND A connection has been established between ocular structural changes and various neurodegenerative diseases. Several studies utilizing optical coherence tomography (OCT) have detected signs of ocular structural alterations among individuals with Huntington's disease (HD). The inconsistent results reported in the literature regarding alterations in the retina and choroid encouraged us to conduct this systematic review and meta-analysis to accumulate the findings. METHODS A systematic search was carried out in three electronic databases (PubMed, Embase, Scopus) to find studies reporting OCT measurements in HD cases compared with healthy controls (HC). A fixed-effects or random-effects meta-analysis was conducted according to the detected heterogeneity level. Furthermore, subgroup and sensitivity analyses, meta-regression, and quality assessment were performed. RESULTS Eleven studies were included in the systematic review and 9 studies with a total population of 452 participants (241 cases, and 211 HC) underwent meta-analysis. Results of the analysis denoted that subfoveal choroid had a significantly reduced thickness in HD eyes compared to HC (p < 0.0001). Moreover, our analysis indicated that HD cases had a significantly thinner average (p = 0.0130) and temporal peripapillary retinal nerve fiber layer (pRNFL) (p = 0.0012) than HC. However, subjects with pre-HD had insignificant differences in average (p = 0.44) and temporal pRNFL thickness (p = 0.33) with the HC group. CONCLUSION Results of the current systematic review and meta-analysis revealed the significant thinning of average and temporal pRNFL and subfoveal choroid in HD compared to HC. However, OCT currently might be considered insensitive to be applied in the pre-HD population at least until further longitudinal investigations considering variables such as the duration between OCT measurement and disease onset validating OCT as a routine diagnostic tool in HD clinics.
Collapse
Affiliation(s)
- Mahdi Gouravani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Fekrazad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Network for Photomedicine and Photodynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asma Mafhoumi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ashouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delia Cabrera DeBuc
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA.
| |
Collapse
|
40
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
41
|
George G, Ajayan A, Varkey J, Pandey NK, Chen J, Langen R. TDP43 and huntingtin Exon-1 undergo a conformationally specific interaction that strongly alters the fibril formation of both proteins. J Biol Chem 2024; 300:107660. [PMID: 39128727 PMCID: PMC11408864 DOI: 10.1016/j.jbc.2024.107660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Protein aggregation is a common feature of many neurodegenerative diseases. In Huntington's disease, mutant huntingtin is the primary aggregating protein, but the aggregation of other proteins, such as TDP43, is likely to further contribute to toxicity. Moreover, mutant huntingtin is also a risk factor for TDP pathology in ALS. Despite this co-pathology of huntingtin and TDP43, it remains unknown whether these amyloidogenic proteins directly interact with each other. Using a combination of biophysical methods, we show that the aggregation-prone regions of both proteins, huntingtin exon-1 (Httex1) and the TDP43 low complexity domain (TDP43-LCD), interact in a conformationally specific manner. This interaction significantly slows Httex1 aggregation, while it accelerates TDP43-LCD aggregation. A key intermediate responsible for both effects is a complex formed by liquid TDP43-LCD condensates and Httex1 fibrils. This complex shields seeding competent surfaces of Httex1 fibrils from Httex1 monomers, which are excluded from the condensates. In contrast, TDP43-LCD condensates undergo an accelerated liquid-to-solid transition upon exposure to Httex1 fibrils. Cellular studies show co-aggregation of untagged Httex1 with TDP43. This interaction causes mislocalization of TDP43, which has been linked to TDP43 toxicity. The protection from Httex1 aggregation in lieu of TDP43-LCD aggregation is interesting, as it mirrors what has been found in disease models, namely that TDP43 can protect from huntingtin toxicity, while mutant huntingtin can promote TDP43 pathology. These results suggest that direct protein interaction could, at least in part, be responsible for the linked pathologies of both proteins.
Collapse
Affiliation(s)
- Gincy George
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anakha Ajayan
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jobin Varkey
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nitin K Pandey
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeannie Chen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ralf Langen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
42
|
Boulos A, Maroun D, Ciechanover A, Ziv NE. Peripheral sequestration of huntingtin delays neuronal death and depends on N-terminal ubiquitination. Commun Biol 2024; 7:1014. [PMID: 39155290 PMCID: PMC11330980 DOI: 10.1038/s42003-024-06733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is caused by a glutamine repeat expansion in the protein huntingtin. Mutated huntingtin (mHtt) forms aggregates whose impacts on neuronal survival are still debated. Using weeks-long, continual imaging of cortical neurons, we find that mHtt is gradually sequestrated into peripheral, mainly axonal aggregates, concomitant with dramatic reductions in cytosolic mHtt levels and enhanced neuronal survival. in-situ pulse-chase imaging reveals that aggregates continually gain and lose mHtt, in line with these acting as mHtt sinks at equilibrium with cytosolic pools. Mutating two N-terminal lysines found to be ubiquitinated in HD animal models suppresses peripheral aggregate formation and reductions in cytosolic mHtt, promotes nuclear aggregate formation, stabilizes aggregates and leads to pervasive neuronal death. These findings demonstrate the capacity of aggregates formed at peripheral locations to sequester away cytosolic, presumably toxic mHtt forms and support a crucial role for N-terminal ubiquitination in promoting these processes and delaying neuronal death.
Collapse
Affiliation(s)
- Ayub Boulos
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| | - Dunia Maroun
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
| | - Aaron Ciechanover
- Rappaport Faculty of Medicine and Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel.
| |
Collapse
|
43
|
Paryani F, Kwon JS, Ng CW, Jakubiak K, Madden N, Ofori K, Tang A, Lu H, Xia S, Li J, Mahajan A, Davidson SM, Basile AO, McHugh C, Vonsattel JP, Hickman R, Zody MC, Housman DE, Goldman JE, Yoo AS, Menon V, Al-Dalahmah O. Multi-omic analysis of Huntington's disease reveals a compensatory astrocyte state. Nat Commun 2024; 15:6742. [PMID: 39112488 PMCID: PMC11306246 DOI: 10.1038/s41467-024-50626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The mechanisms underlying the selective regional vulnerability to neurodegeneration in Huntington's disease (HD) have not been fully defined. To explore the role of astrocytes in this phenomenon, we used single-nucleus and bulk RNAseq, lipidomics, HTT gene CAG repeat-length measurements, and multiplexed immunofluorescence on HD and control post-mortem brains. We identified genes that correlated with CAG repeat length, which were enriched in astrocyte genes, and lipidomic signatures that implicated poly-unsaturated fatty acids in sensitizing neurons to cell death. Because astrocytes play essential roles in lipid metabolism, we explored the heterogeneity of astrocytic states in both protoplasmic and fibrous-like (CD44+) astrocytes. Significantly, one protoplasmic astrocyte state showed high levels of metallothioneins and was correlated with the selective vulnerability of distinct striatal neuronal populations. When modeled in vitro, this state improved the viability of HD-patient-derived spiny projection neurons. Our findings uncover key roles of astrocytic states in protecting against neurodegeneration in HD.
Collapse
Affiliation(s)
- Fahad Paryani
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christopher W Ng
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Kelly Jakubiak
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nacoya Madden
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shengnan Xia
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shawn M Davidson
- Northwestern Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | | | | | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - David E Housman
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Andrew S Yoo
- Department of Developmental Biology Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA.
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA.
| |
Collapse
|
44
|
Scolz A, Vezzoli E, Villa M, Talpo F, Cazzola J, Raffin F, Cordiglieri C, Falqui A, Pepe G, Maglione V, Besusso D, Biella G, Zuccato C. Neuroprotection by ADAM10 inhibition requires TrkB signaling in the Huntington's disease hippocampus. Cell Mol Life Sci 2024; 81:333. [PMID: 39112663 PMCID: PMC11335257 DOI: 10.1007/s00018-024-05382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington's disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.
Collapse
Affiliation(s)
- Andrea Scolz
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Advanced Light and Electron Microscopy BioImaging Centre (ALEMBIC), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Villa
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Jessica Cazzola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Falqui
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Department of Physics, University of Milan, Milan, Italy
| | | | | | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
| |
Collapse
|
45
|
Tanimoto S, Okumura H. Why Is Arginine the Only Amino Acid That Inhibits Polyglutamine Monomers from Taking on Toxic Conformations? ACS Chem Neurosci 2024; 15:2925-2935. [PMID: 39009034 PMCID: PMC11311134 DOI: 10.1021/acschemneuro.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Polyglutamine (polyQ) diseases are devastating neurodegenerative disorders characterized by abnormal expansion of glutamine repeats within specific proteins. The aggregation of polyQ proteins is a critical pathological hallmark of these diseases. Arginine was identified as a promising inhibitory compound because it prevents polyQ-protein monomers from forming intra- and intermolecular β-sheet structures and hinders polyQ proteins from aggregating to form oligomers. Such an aggregation inhibitory effect was not observed in other amino acids. However, the underlying molecular mechanism of the aggregation inhibition and the factors that differentiate arginine from other amino acids, in terms of the inhibition of the polyQ-protein aggregation, remain poorly understood. Here, we performed replica-permutation molecular dynamics simulations to elucidate the molecular mechanism by which arginine inhibits the formation of the intramolecular β-sheet structure of a polyQ monomer. We found that the intramolecular β-sheet structure with more than four β-bridges of the polyQ monomer with arginine is more unstable than without any ligand and with lysine. We also found that arginine has 1.6-2.1 times more contact with polyQ than lysine. In addition, we revealed that arginine forms more hydrogen bonds with the main chain of the polyQ monomer than lysine. More hydrogen bonds formed between arginine and polyQ inhibit polyQ from forming the long intramolecular β-sheet structure. It is known that intramolecular β-sheet structure enhances intermolecular β-sheet structure between proteins. These effects are thought to be the reason for the inhibition of polyQ aggregation. This study provides insights into the molecular events underlying arginine's inhibition of polyQ-protein aggregation.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
| | - Hisashi Okumura
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- National
Institutes of Natural Sciences, Institute
for Molecular Science, Okazaki 444-8787, Aichi, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki 444-8787, Aichi, Japan
| |
Collapse
|
46
|
Zhao R, Huang S, Li J, Gu A, Fu M, Hua W, Mao Y, Lei QY, Lu B, Wen W. Excessive STAU1 condensate drives mTOR translation and autophagy dysfunction in neurodegeneration. J Cell Biol 2024; 223:e202311127. [PMID: 38913026 PMCID: PMC11194678 DOI: 10.1083/jcb.202311127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024] Open
Abstract
The double-stranded RNA-binding protein Staufen1 (STAU1) regulates a variety of physiological and pathological events via mediating RNA metabolism. STAU1 overabundance was observed in tissues from mouse models and fibroblasts from patients with neurodegenerative diseases, accompanied by enhanced mTOR signaling and impaired autophagic flux, while the underlying mechanism remains elusive. Here, we find that endogenous STAU1 forms dynamic cytoplasmic condensate in normal and tumor cell lines, as well as in mouse Huntington's disease knockin striatal cells. STAU1 condensate recruits target mRNA MTOR at its 5'UTR and promotes its translation both in vitro and in vivo, and thus enhanced formation of STAU1 condensate leads to mTOR hyperactivation and autophagy-lysosome dysfunction. Interference of STAU1 condensate normalizes mTOR levels, ameliorates autophagy-lysosome function, and reduces aggregation of pathological proteins in cellular models of neurodegenerative diseases. These findings highlight the importance of balanced phase separation in physiological processes, suggesting that modulating STAU1 condensate may be a strategy to mitigate the progression of neurodegenerative diseases with STAU1 overabundance.
Collapse
Affiliation(s)
- Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingyu Li
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Shirguppe S, Gapinske M, Swami D, Gosstola N, Acharya P, Miskalis A, Joulani D, Szkwarek MG, Bhattacharjee A, Elias G, Stilger M, Winter J, Woods WS, Anand D, Lim CKW, Gaj T, Perez-Pinera P. In vivo CRISPR base editing for treatment of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602282. [PMID: 39005280 PMCID: PMC11245100 DOI: 10.1101/2024.07.05.602282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Huntington's disease (HD) is an inherited and ultimately fatal neurodegenerative disorder caused by an expanded polyglutamine-encoding CAG repeat within exon 1 of the huntingtin (HTT) gene, which produces a mutant protein that destroys striatal and cortical neurons. Importantly, a critical event in the pathogenesis of HD is the proteolytic cleavage of the mutant HTT protein by caspase-6, which generates fragments of the N-terminal domain of the protein that form highly toxic aggregates. Given the role that proteolysis of the mutant HTT protein plays in HD, strategies for preventing this process hold potential for treating the disorder. By screening 141 CRISPR base editor variants targeting splice elements in the HTT gene, we identified platforms capable of producing HTT protein isoforms resistant to caspase-6-mediated proteolysis via editing of the splice acceptor sequence for exon 13. When delivered to the striatum of a rodent HD model, these base editors induced efficient exon skipping and decreased the formation of the N-terminal fragments, which in turn reduced HTT protein aggregation and attenuated striatal and cortical atrophy. Collectively, these results illustrate the potential for CRISPR base editing to decrease the toxicity of the mutant HTT protein for HD.
Collapse
|
48
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
49
|
Baldwin KT, Murai KK, Khakh BS. Astrocyte morphology. Trends Cell Biol 2024; 34:547-565. [PMID: 38180380 PMCID: PMC11590062 DOI: 10.1016/j.tcb.2023.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system (CNS). A cardinal feature of astrocytes is their complex and visually enchanting morphology, referred to as bushy, spongy, and star-like. A central precept of this review is that such complex morphological shapes evolved to allow astrocytes to contact and signal with diverse cells at a range of distances in order to sample, regulate, and contribute to the extracellular milieu, and thus participate widely in cell-cell signaling during physiology and disease. The recent use of improved imaging methods and cell-specific molecular evaluations has revealed new information on the structural organization and molecular underpinnings of astrocyte morphology, the mechanisms of astrocyte morphogenesis, and the contributions to disease states of reduced morphology. These insights have reignited interest in astrocyte morphological complexity as a cornerstone of fundamental glial biology and as a critical substrate for multicellular spatial and physiological interactions in the CNS.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA.
| |
Collapse
|
50
|
Linsley JW, Reisine T, Finkbeiner S. Three dimensional and four dimensional live imaging to study mechanisms of progressive neurodegeneration. J Biol Chem 2024; 300:107433. [PMID: 38825007 PMCID: PMC11261153 DOI: 10.1016/j.jbc.2024.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Neurodegenerative diseases are complex and progressive, posing challenges to their study and understanding. Recent advances in microscopy imaging technologies have enabled the exploration of neurons in three spatial dimensions (3D) over time (4D). When applied to 3D cultures, tissues, or animals, these technologies can provide valuable insights into the dynamic and spatial nature of neurodegenerative diseases. This review focuses on the use of imaging techniques and neurodegenerative disease models to study neurodegeneration in 4D. Imaging techniques such as confocal microscopy, two-photon microscopy, miniscope imaging, light sheet microscopy, and robotic microscopy offer powerful tools to visualize and analyze neuronal changes over time in 3D tissue. Application of these technologies to in vitro models of neurodegeneration such as mouse organotypic culture systems and human organoid models provide versatile platforms to study neurodegeneration in a physiologically relevant context. Additionally, use of 4D imaging in vivo, including in mouse and zebrafish models of neurodegenerative diseases, allows for the investigation of early dysfunction and behavioral changes associated with neurodegeneration. We propose that these studies have the power to overcome the limitations of two-dimensional monolayer neuronal cultures and pave the way for improved understanding of the dynamics of neurodegenerative diseases and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jeremy W Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, California, USA; Operant Biopharma, San Francisco, California, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, California, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, California, USA; Operant Biopharma, San Francisco, California, USA; Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, California, USA; Departments of Neurology and Physiology, University of California, San Francisco, California, USA; Neuroscience Graduate Program, University of California, San Francisco, California, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA.
| |
Collapse
|