1
|
Yuan G, Gao H, Yang T. Exploring the Role of the Plant Actin Cytoskeleton: From Signaling to Cellular Functions. Int J Mol Sci 2023; 24:15480. [PMID: 37895158 PMCID: PMC10607326 DOI: 10.3390/ijms242015480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The plant actin cytoskeleton is characterized by the basic properties of dynamic array, which plays a central role in numerous conserved processes that are required for diverse cellular functions. Here, we focus on how actins and actin-related proteins (ARPs), which represent two classical branches of a greatly diverse superfamily of ATPases, are involved in fundamental functions underlying signal regulation of plant growth and development. Moreover, we review the structure, assembly dynamics, and biological functions of filamentous actin (F-actin) from a molecular perspective. The various accessory proteins known as actin-binding proteins (ABPs) partner with F-actin to finely tune actin dynamics, often in response to various cell signaling pathways. Our understanding of the significance of the actin cytoskeleton in vital cellular activities has been furthered by comparison of conserved functions of actin filaments across different species combined with advanced microscopic techniques and experimental methods. We discuss the current model of the plant actin cytoskeleton, followed by examples of the signaling mechanisms under the supervision of F-actin related to cell morphogenesis, polar growth, and cytoplasmic streaming. Determination of the theoretical basis of how the cytoskeleton works is important in itself and is beneficial to future applications aimed at improving crop biomass and production efficiency.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (G.Y.); (H.G.)
| |
Collapse
|
2
|
Balachandra VK, Ghosh SK. Emerging roles of SWI/SNF remodelers in fungal pathogens. Curr Genet 2022; 68:195-206. [PMID: 35001152 DOI: 10.1007/s00294-021-01219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
Fungal pathogens constantly sense and respond to the environment they inhabit, and this interaction is vital for their survival inside hosts and exhibiting pathogenic traits. Since such responses often entail specific patterns of gene expression, regulators of chromatin structure contribute to the fitness and virulence of the pathogens by modulating DNA accessibility to the transcriptional machinery. Recent studies in several human and plant fungal pathogens have uncovered the SWI/SNF group of chromatin remodelers as an important determinant of pathogenic traits and provided insights into their mechanism of function. Here, we review these studies and highlight the differential functions of these remodeling complexes and their subunits in regulating fungal fitness and pathogenicity. As an extension of our previous study, we also show that loss of specific RSC subunits can predispose the human fungal pathogen Candida albicans cells to filamentous growth in a context-dependent manner. Finally, we consider the potential of targeting the fungal SWI/SNF remodeling complexes for antifungal interventions.
Collapse
Affiliation(s)
- Vinutha K Balachandra
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
3
|
Agarwal P, Miller KM. The nucleosome: orchestrating DNA damage signaling and repair within chromatin. Biochem Cell Biol 2016; 94:381-395. [PMID: 27240007 DOI: 10.1139/bcb-2016-0017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.
Collapse
Affiliation(s)
- Poonam Agarwal
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA
| |
Collapse
|
4
|
|
5
|
Li J, Zhao G, Gao X. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins. J Neurodev Disord 2013; 5:4. [PMID: 23425632 PMCID: PMC3585942 DOI: 10.1186/1866-1955-5-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/25/2013] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Junlin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, People's Republic of China.
| | | | | |
Collapse
|
6
|
Snider AC, Leong D, Wang QT, Wysocka J, Yao MWM, Scott MP. The chromatin remodeling factor Chd1l is required in the preimplantation embryo. Biol Open 2012; 2:121-31. [PMID: 23429299 PMCID: PMC3575647 DOI: 10.1242/bio.20122949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023] Open
Abstract
During preimplantation development, the embryo must establish totipotency and enact the earliest differentiation choices, processes that involve extensive chromatin modification. To identify novel developmental regulators, we screened for genes that are preferentially transcribed in the pluripotent inner cell mass (ICM) of the mouse blastocyst. Genes that encode chromatin remodeling factors were prominently represented in the ICM, including Chd1l, a member of the Snf2 gene family. Chd1l is developmentally regulated and expressed in embryonic stem (ES) cells, but its role in development has not been investigated. Here we show that inhibiting Chd1l protein production by microinjection of antisense morpholinos causes arrest prior to the blastocyst stage. Despite this important function in vivo, Chd1l is non-essential for cultured ES cell survival, pluripotency, or differentiation, suggesting that Chd1l is vital for events in embryos that are distinct from events in ES cells. Our data reveal a novel role for the chromatin remodeling factor Chd1l in the earliest cell divisions of mammalian development.
Collapse
Affiliation(s)
- Alyssa C Snider
- Departments of Developmental Biology, Genetics, and Bioengineering, University School of Medicine , Stanford, CA 94305-5101 , USA
| | | | | | | | | | | |
Collapse
|
7
|
Emelyanov AV, Vershilova E, Ignatyeva MA, Pokrovsky DK, Lu X, Konev AY, Fyodorov DV. Identification and characterization of ToRC, a novel ISWI-containing ATP-dependent chromatin assembly complex. Genes Dev 2012; 26:603-14. [PMID: 22426536 DOI: 10.1101/gad.180604.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SNF2-like motor proteins, such as ISWI, cooperate with histone chaperones in the assembly and remodeling of chromatin. Here we describe a novel, evolutionarily conserved, ISWI-containing complex termed ToRC (Toutatis-containing chromatin remodeling complex). ToRC comprises ISWI, Toutatis/TIP5 (TTF-I-interacting protein 5), and the transcriptional corepressor CtBP (C-terminal-binding protein). ToRC facilitates ATP-dependent nucleosome assembly in vitro. All three subunits are required for its maximal biochemical activity. The toutatis gene exhibits strong synthetic lethal interactions with CtBP. Thus, ToRC mediates, at least in part, biological activities of CtBP and Toutatis. ToRC subunits colocalize in euchromatic arms of polytene chromosomes. Furthermore, nuclear localization and precise distribution of ToRC in chromosomes are dependent on CtBP. ToRC is involved in CtBP-mediated regulation of transcription by RNA polymerase II in vivo. For instance, both Toutatis and CtBP are required for repression of genes of a proneural gene cluster, achaete-scute complex (AS-C), in Drosophila larvae. Intriguingly, native C-terminally truncated Toutatis isoforms do not associate with CtBP and localize predominantly to the nucleolus. Thus, Toutatis forms two alternative complexes that have differential distribution and can participate in distinct aspects of nuclear DNA metabolism.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Interaction between long-term potentiation and depression in CA1 synapses: temporal constrains, functional compartmentalization and protein synthesis. PLoS One 2012; 7:e29865. [PMID: 22272255 PMCID: PMC3260185 DOI: 10.1371/journal.pone.0029865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/05/2011] [Indexed: 12/17/2022] Open
Abstract
Information arriving at a neuron via anatomically defined pathways undergoes spatial and temporal encoding. A proposed mechanism by which temporally and spatially segregated information is encoded at the cellular level is based on the interactive properties of synapses located within and across functional dendritic compartments. We examined cooperative and interfering interactions between long-term synaptic potentiation (LTP) and depression (LTD), two forms of synaptic plasticity thought to be key in the encoding of information in the brain. Two approaches were used in CA1 pyramidal neurons of the mouse hippocampus: (1) induction of LTP and LTD in two separate synaptic pathways within the same apical dendritic compartment and across the basal and apical dendritic compartments; (2) induction of LTP and LTD separated by various time intervals (0–90 min). Expression of LTP/LTD interactions was spatially and temporally regulated. While they were largely restricted within the same dendritic compartment (compartmentalized), the nature of the interaction (cooperation or interference) depended on the time interval between inductions. New protein synthesis was found to regulate the expression of the LTP/LTD interference. We speculate that mechanisms for compartmentalization and protein synthesis confer the spatial and temporal modulation by which neurons encode multiplex information in plastic synapses.
Collapse
|
9
|
Gigek CO, Lisboa LCF, Leal MF, Silva PNO, Lima EM, Khayat AS, Assumpção PP, Burbano RR, Smith MDAC. SMARCA5 methylation and expression in gastric cancer. Cancer Invest 2011; 29:162-6. [PMID: 21261476 DOI: 10.3109/07357907.2010.543365] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here, we first evaluated SMARCA5 expression and promoter DNA methylation in gastric carcinogenesis. Immunohistochemistry and methylation-specific PCR were analyzed in 19 and 48 normal mucosa and in 52 and 92 gastric cancer samples, respectively. We observed higher immunoreactivity of SMARCA5 in gastric cancer samples than in normal mucosa. Moreover, SMARCA5 promoter methylation was associated with the absence of protein expression. Our findings suggest that SMARCA5 has a potential role in proliferation and malignancy in gastric carcinogenesis.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rowe CE, Narlikar GJ. The ATP-dependent remodeler RSC transfers histone dimers and octamers through the rapid formation of an unstable encounter intermediate. Biochemistry 2010; 49:9882-90. [PMID: 20853842 DOI: 10.1021/bi101491u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RSC, an essential chromatin remodeling complex in budding yeast, is involved in a variety of biological processes including transcription, recombination, repair, and replication. How RSC participates in such diverse processes is not fully understood. In vitro, RSC uses ATP to carry out several seemingly distinct reactions: it repositions nucleosomes, transfers H2A/H2B dimers between nucleosomes, and transfers histone octamers between pieces of DNA. This raises the intriguing mechanistic question of how this molecular machine can use a single ATPase subunit to create these varied products. Here, we use a FRET-based approach to kinetically order the products of the RSC reaction. Surprisingly, transfer of H2A/H2B dimers and histone octamers is initiated on a time scale of seconds when assayed by FRET, but formation of stable nucleosomal products occurs on a time scale of minutes when assayed by native gel. These results suggest a model in which RSC action rapidly generates an unstable encounter intermediate that contains the two exchange substrates in close proximity. This intermediate then collapses more slowly to form the stable transfer products seen on native gels. The rapid, biologically relevant time scale on which the transfer products are generated implies that such products can play key roles in vivo.
Collapse
Affiliation(s)
- Claire E Rowe
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
11
|
Faucher D, Wellinger RJ. Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet 2010; 6:e1001082. [PMID: 20865123 PMCID: PMC2928815 DOI: 10.1371/journal.pgen.1001082] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/22/2010] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic genomes are associated with a number of proteins such as histones that constitute chromatin. Post-translational histone modifications are associated with regulatory aspects executed by chromatin and all transactions on genomic DNA are dependent on them. Thus, it will be relevant to understand how histone modifications affect genome functions. Here we show that the mono ubiquitylation of histone H2B and the tri-methylation of histone H3 on lysine 4 (H3K4me3), both known for their involvement in transcription, are also important for a proper response of budding yeast cells to DNA damaging agents and the passage through S-phase. Cells that cannot methylate H3K4 display a defect in double-strand break (DSB) repair by non-homologous end joining. Furthermore, if such cells incur DNA damage or encounter a stress during replication, they very rapidly lose viability, underscoring the functional importance of the modification. Remarkably, the Set1p methyltransferase as well as the H3K4me3 mark become detectable on a newly created DSB. This recruitment of Set1p to the DSB is dependent on the presence of the RSC complex, arguing for a contribution in the ensuing DNA damage repair process. Taken together, our results demonstrate that Set1p and its substrate H3K4me3, which has been reported to be important for the transcription of active genes, also plays an important role in genome stability of yeast cells. Given the high degree of conservation for the methyltransferase and the histone mark in a broad variety of organisms, these results could have similar implications for genome stability mechanisms in vertebrate and mammalian cells.
Collapse
Affiliation(s)
- David Faucher
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
12
|
Emelyanov AV, Konev AY, Vershilova E, Fyodorov DV. Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo. J Biol Chem 2010; 285:15027-15037. [PMID: 20154359 DOI: 10.1074/jbc.m109.064790] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATRX belongs to the family of SWI2/SNF2-like ATP-dependent nucleosome remodeling molecular motor proteins. Mutations of the human ATRX gene result in a severe genetic disorder termed X-linked alpha-thalassemia mental retardation (ATR-X) syndrome. Here we perform biochemical and genetic analyses of the Drosophila melanogaster ortholog of ATRX. The loss of function allele of the Drosophila ATRX/XNP gene is semilethal. Drosophila ATRX is expressed throughout development in two isoforms, p185 and p125. ATRX185 and ATRX125 form distinct multisubunit complexes in fly embryo. The ATRX185 complex comprises p185 and heterochromatin protein HP1a. Consistently, ATRX185 but not ATRX125 is highly concentrated in pericentric beta-heterochromatin of the X chromosome in larval cells. HP1a strongly stimulates biochemical activities of ATRX185 in vitro. Conversely, ATRX185 is required for HP1a deposition in pericentric beta-heterochromatin of the X chromosome. The loss of function allele of the ATRX/XNP gene and mutant allele that does not express p185 are strong suppressors of position effect variegation. These results provide evidence for essential biological functions of Drosophila ATRX in vivo and establish ATRX as a major determinant of pericentric beta-heterochromatin identity.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Alexander Y Konev
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Elena Vershilova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
13
|
Abstract
Helicases are ubiquitous enzymes that are vital to all living organisms. They are motor proteins that move in a specific direction along the nucleic acid and unwind the nucleic acid (DNA and RNA). ATP hydrolysis provides energy for helicase translocation and unwinding. The unwinding process provides ssDNA intermediates necessary for replication, recombination, and repair. Mutations in specific DNA helicases can lead to disruption in DNA metabolism. For example, mutations in helicases genes resulted in diseases such as xeroderma pigmentosum, cockayne's syndrome, Bloom's syndrome, and Werner's syndrome. During unwinding, helicases are most likely to encounter proteins while moving along the nucleic acid. Several different research groups have demonstrated that helicases shift or displace proteins from one nucleic acid-bound location to another. These protein-protein collisions could result in displacement of proteins from nucleic acid or dissociation of helicase from nucleic acid. This report describes several different methods developed to study protein displacement by DNA and RNA helicases.
Collapse
Affiliation(s)
- Laxmi Yeruva
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
14
|
Peng G, Lin SY. The linkage of chromatin remodeling to genome maintenance: contribution from a human disease gene BRIT1/MCPH1. Epigenetics 2009; 4:457-61. [PMID: 19829069 DOI: 10.4161/epi.4.7.10032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genomic DNA is packed into a highly condensed chromatin structure, which acts as natural barrier preventing accessibility of DNA. In various processes to maintain genomic integrity such as DNA replication, DNA repair, telomere regulation, proteins need to overcome the barrier of condensed chromatin to gain access to DNA. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin. However, the chromatin remodeling complex does not contain intrinsic specificity for particular nuclear process, and the mechanism mediating its recruitment to DNA lesions remains to be an outstanding question. To address this question, in this review, we will discuss our current findings and future perspectives about how BRIT1/MCPH1, a human disease gene, specifies the function of chromatin remodelers and links chromatin remodeling to genome maintenance.
Collapse
Affiliation(s)
- Guang Peng
- Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
15
|
Yamada K, Hirota K, Mizuno KI, Shibata T, Ohta K. Essential roles of Snf21, a Swi2/Snf2 family chromatin remodeler, in fission yeast mitosis. Genes Genet Syst 2009; 83:361-72. [PMID: 19168987 DOI: 10.1266/ggs.83.361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ATP-dependent chromatin remodelers (ADCRs) convert local chromatin structure into both transcriptional active and repressive state. Recent studies have revealed that ADCRs play diverse regulatory roles in chromosomal events such as DNA repair and recombination. Here we have newly identified a fission yeast gene encoding a Swi2/Snf2 family ADCR. The amino acid sequence of this gene, snf21(+), implies that Snf21 is a fission yeast orthologue of the budding yeast Sth1, the catalytic core of the RSC chromatin remodeling complex. The snf21(+) gene product is a nuclear protein essential to cell viability: the null mutant cells stop growing after several rounds of cell divisions. A temperature sensitive allele of snf21(+), snf21-36 exhibits at non-permissive temperature (34 degrees C) a cell cycle arrest at G2-M phase and defects in chromosome segregation, thereby causing cell elongation, lack of cell growth, and death of some cell population. snf21-36 shows thiabendazole (TBZ) sensitivity even at permissive temperature (25 degrees C). The TBZ sensitivity becomes severer as snf21-36 is combined with the deletion of a centromere-localized Mad2 spindle checkpoint protein. The cell cycle arrest phenotype at 34 degrees C cannot be rescued by the mad2(+) deletion, although it is substantially alleviated at 30 degrees C in mad2Delta. These data suggest that Snf21 plays an essential role in mitosis possibly functioning in centromeric chromatin.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
16
|
Haseltine CA, Kowalczykowski SC. An archaeal Rad54 protein remodels DNA and stimulates DNA strand exchange by RadA. Nucleic Acids Res 2009; 37:2757-70. [PMID: 19282450 PMCID: PMC2677860 DOI: 10.1093/nar/gkp068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rad54 protein is a key member of the RAD52 epistasis group required for homologous recombination in eukaryotes. Rad54 is a duplex DNA translocase that remodels both DNA and protein–DNA complexes, and functions at multiple steps in the recombination process. Here we use biochemical criteria to demonstrate the existence of this important protein in a prokaryotic organism. The Sulfolobus solfataricus Rad54 (SsoRad54) protein is a double-strand DNA-dependent ATPase that can alter the topology of duplex DNA. Like its eukaryotic homolog, it interacts directly with the S. solfataricus Rad51 homologue, SsoRadA, to stimulate DNA strand exchange. Confirmation of this protein as an authentic Rad54 homolog establishes an essential phylogenetic bridge for identifying Rad54 homologs in the archaeal and bacterial domains.
Collapse
Affiliation(s)
- Cynthia A Haseltine
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
17
|
INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair (Amst) 2009; 8:360-9. [DOI: 10.1016/j.dnarep.2008.11.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/14/2008] [Accepted: 11/20/2008] [Indexed: 11/17/2022]
|
18
|
Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 2008; 457:57-62. [PMID: 19092802 PMCID: PMC2854499 DOI: 10.1038/nature07668] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/27/2008] [Indexed: 12/20/2022]
Abstract
DNA double-stranded breaks present a serious challenge for eukaryotic cells. The inability to repair breaks leads to genomic instability, carcinogenesis and cell death. During the double-strand break response, mammalian chromatin undergoes reorganization demarcated by H2A.X Ser 139 phosphorylation (gamma-H2A.X). However, the regulation of gamma-H2A.X phosphorylation and its precise role in chromatin remodelling during the repair process remain unclear. Here we report a new regulatory mechanism mediated by WSTF (Williams-Beuren syndrome transcription factor, also known as BAZ1B)-a component of the WICH complex (WSTF-ISWI ATP-dependent chromatin-remodelling complex). We show that WSTF has intrinsic tyrosine kinase activity by means of a domain that shares no sequence homology to any known kinase fold. We show that WSTF phosphorylates Tyr 142 of H2A.X, and that WSTF activity has an important role in regulating several events that are critical for the DNA damage response. Our work demonstrates a new mechanism that regulates the DNA damage response and expands our knowledge of domains that contain intrinsic tyrosine kinase activity.
Collapse
Affiliation(s)
- Andrew Xiao
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Johnson TA, Elbi C, Parekh BS, Hager GL, John S. Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter. Mol Biol Cell 2008; 19:3308-22. [PMID: 18508913 DOI: 10.1091/mbc.e08-02-0123] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Brahma (BRM) and Brahma-related gene 1 (BRG1) are the ATP-dependent catalytic subunits of the SWI/SNF family of chromatin-remodeling complexes. These complexes are involved in essential processes such as cell cycle, growth, differentiation, and cancer. Using imaging approaches in a cell line that harbors tandem repeats of stably integrated copies of the steroid responsive MMTV-LTR (mouse mammary tumor virus-long terminal repeat), we show that BRG1 and BRM are recruited to the MMTV promoter in a hormone-dependent manner. The recruitment of BRG1 and BRM resulted in chromatin remodeling and decondensation of the MMTV repeat as demonstrated by an increase in the restriction enzyme accessibility and in the size of DNA fluorescence in situ hybridization (FISH) signals. This chromatin remodeling event was concomitant with an increased occupancy of RNA polymerase II and transcriptional activation at the MMTV promoter. The expression of ATPase-deficient forms of BRG1 (BRG1-K-R) or BRM (BRM-K-R) inhibited the remodeling of local and higher order MMTV chromatin structure and resulted in the attenuation of transcription. In vivo photobleaching experiments provided direct evidence that BRG1, BRG1-K-R, and BRM chromatin-remodeling complexes have distinct kinetic properties on the MMTV array, and they dynamically associate with and dissociate from MMTV chromatin in a manner dependent on hormone and a functional ATPase domain. Our data provide a kinetic and mechanistic basis for the BRG1 and BRM chromatin-remodeling complexes in regulating gene expression at a steroid hormone inducible promoter.
Collapse
Affiliation(s)
- Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | | | | | | | | |
Collapse
|
20
|
Fan T, Schmidtmann A, Xi S, Briones V, Zhu H, Suh HC, Gooya J, Keller JR, Xu H, Roayaei J, Anver M, Ruscetti S, Muegge K. DNA hypomethylation caused by Lsh deletion promotes erythroleukemia development. Epigenetics 2008; 3:134-42. [PMID: 18487951 PMCID: PMC3113485 DOI: 10.4161/epi.3.3.6252] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic malignancies are frequently associated with DNA hypomethylation but the molecular mechanisms involved in tumor formation remain poorly understood. Here we report that mice lacking Lsh develop leukemia associated with DNA hypomethylation and oncogene activation. Lsh is a member of the SNF2 chromatin remodeling family and is required for de novo methylation of genomic DNA. Mice that received Lsh deficient hematopoietic progenitors showed severe impairment of hematopoiesis, suggesting that Lsh is necessary for normal hematopoiesis. A subset of mice developed erythroleukemia, a tumor that does not spontaneously occur in mice. Tumor tissues were CpG hypomethylated and showed a modest elevation of the transcription factor PU.1, an oncogene that is crucial for Friend virus induced erythroleukemia. Analysis of Lsh(-/-) hematopoietic progenitors revealed widespread DNA hypomethylation at repetitive sequences and hypomethylation at specific retroviral elements within the PU.1 gene. Wild type cells showed Lsh and Dnmt3b binding at the retroviral elements located within the PU.1 gene. On the other hand, Lsh deficient cells had no detectable Dnmt3b association suggesting that Lsh is necessary for recruitment of Dnmt3b to its target. Furthermore, Lsh(-/-) hematopoietic precursors showed impaired suppression of retroviral elements in the PU.1 gene, an increase of PU.1 transcripts and protein levels. Thus DNA hypomethylation caused by Lsh depletion is linked to transcriptional upregulation of retroviral elements and oncogenes such as PU.1 which in turn may promote the development of erythroleukemia in mice.
Collapse
Affiliation(s)
- Tao Fan
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Anja Schmidtmann
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Sichuan Xi
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Victorino Briones
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Heming Zhu
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Hyung Chan Suh
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - John Gooya
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Jonathan R. Keller
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Hong Xu
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Jean Roayaei
- Computer and Statistical Services; National Cancer Institute; Frederick, Maryland USA
| | - Miriam Anver
- Pathology/Histotechnology Laboratory; SAIC Frederick; National Cancer Institute; Frederick, Maryland USA
| | - Sandra Ruscetti
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| | - Kathrin Muegge
- Laboratory of Cancer Prevention; SAIC-FCRDC; Basic Research Program; National Cancer Institute; Frederick, Maryland USA
| |
Collapse
|
21
|
Ran S, Wang X, Fu W, Wang W, Li M. Single molecule DNA compaction by purified histones. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0034-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Shukla V, Vaissière T, Herceg Z. Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res 2008; 637:1-15. [PMID: 17850830 DOI: 10.1016/j.mrfmmm.2007.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/30/2007] [Accepted: 07/17/2007] [Indexed: 05/17/2023]
Abstract
Cancers are traditionally viewed as a primarily genetic disorder, however this view has recently been modified by compelling evidence arguing that epigenetic events play important roles in most human cancers. Deregulation of epigenetic information (encoded in DNA methylation and histone modification patterns) in cells with pluripotent potential may alter defining properties of stem cells, self-renewal and differentiation potential, leading to cancer initiation and progression. The level of compaction of chromatin dictates accessibility to genomic DNA and therefore has a key role in establishing and maintaining distinct gene expression patterns and consequently pluripotent state and differentiation fates of stem cells. Unique properties of stem cells defined as "stemness" may be determined by acetylation and methylation of histones near gene promoters that regulate gene transcription, however these histone modifications elsewhere in the genome may also be important. In this review, we discuss new insights into possible mechanisms by which histone acetyltransferases (HATs) and histone acetylation in concert with other chromatin modifications may regulate pluripotency, and speculate how deregulation of histone marking may lead to tumourigenesis.
Collapse
Affiliation(s)
- Vivek Shukla
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | | | | |
Collapse
|
23
|
Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A, Fyodorov DV. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 2007; 317:1087-90. [PMID: 17717186 PMCID: PMC3014568 DOI: 10.1126/science.1145339] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The organization of chromatin affects all aspects of nuclear DNA metabolism in eukaryotes. H3.3 is an evolutionarily conserved histone variant and a key substrate for replication-independent chromatin assembly. Elimination of chromatin remodeling factor CHD1 in Drosophila embryos abolishes incorporation of H3.3 into the male pronucleus, renders the paternal genome unable to participate in zygotic mitoses, and leads to the development of haploid embryos. Furthermore, CHD1, but not ISWI, interacts with HIRA in cytoplasmic extracts. Our findings establish CHD1 as a major factor in replacement histone metabolism in the nucleus and reveal a critical role for CHD1 in the earliest developmental instances of genome-scale, replication-independent nucleosome assembly. Furthermore, our results point to the general requirement of adenosine triphosphate (ATP)-utilizing motor proteins for histone deposition in vivo.
Collapse
Affiliation(s)
- Alexander Y Konev
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shivaswamy S, Iyer VR. Genome-wide analysis of chromatin status using tiling microarrays. Methods 2007; 41:304-11. [PMID: 17309841 PMCID: PMC1876658 DOI: 10.1016/j.ymeth.2006.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/23/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, and chromatin modification and remodeling play an important role in transcriptional regulation, DNA replication, recombination and repair. Recent findings have shown that various post-translational histone modifications cooperate to recruit different effector proteins that bring about mobilization of the nucleosomes and cause distinct downstream consequences. The combination of chromatin immunoprecipitation (ChIP) using antibodies directed against the core histones or specific histone modifications, with high-resolution tiling microarray analysis allows the examination of nucleosome occupancy and histone modification status genome-wide. Comparing genome-wide chromatin status with global gene expression patterns can reveal causal connections between specific patterns of histone modifications and the resulting gene expression. Here, we describe current methods based on recent advances in microarray technology to conduct such studies.
Collapse
Affiliation(s)
| | - Vishwanath R Iyer
- * Corresponding author. Phone: +1 512 232 7833 Fax: +1 512 232 3472 E-mail:
| |
Collapse
|
25
|
Matsumoto T, Kawano H, Shiina H, Sato T, Kato S. Androgen receptor functions in male and female reproduction. Reprod Med Biol 2007; 6:11-17. [PMID: 29699261 DOI: 10.1111/j.1447-0578.2007.00159.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The androgen receptor (AR) is a ligand-dependent transcription factor involved in the regulation of many different physiological processes. Dysfunction of AR causes diverse clinical conditions, such as testicular feminization mutation (Tfm) syndrome and prostate cancer. However, the molecular basis of the AR in these disorders largely remains unknown, as a result of a lack of genetic models. Using conditional targeting technique with Cre-loxP system, we successfully generated null AR mutant (ARKO) mice. The ARKO males grew healthily, but they showed typical Tfm abnormalities. The ARKO males exhibited late onset of obesity with impaired bone metabolism and sexual behaviors. No overt abnormality was found in female ARKO mice, but a premature ovarian failure-like phenotype was found with impaired folliculogenesis. Thus, andorogen/AR system supports normal reproduction as well as normal female reproduction. (Reprod Med Biol 2007; 6: 11-17).
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, and.,ERATO, Japan Science and Technology, Kawaguchi, Saitama, Japan
| | - Hirotaka Kawano
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, and
| | - Hiroko Shiina
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, and
| | - Takashi Sato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, and
| | - Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, and.,ERATO, Japan Science and Technology, Kawaguchi, Saitama, Japan
| |
Collapse
|
26
|
Abstract
Designer molecules that can be used to impose exogenous control on gene transcription, artificial transcription factors (ATFs), are highly desirable as mechanistic probes of gene regulation, as potential therapeutic agents, and as components of cell-based devices. Recently, several advances have been made in the design of ATFs that activate gene transcription (activator ATFs), including reports of small-molecule-based systems and ATFs that exhibit potent activity. However, the many open mechanistic questions about transcriptional activators, in particular, the structure and function of the transcriptional activation domain (TAD), have hindered rapid development of synthetic ATFs. A compelling need thus exists for chemical tools and insights toward a more detailed portrait of the dynamic process of gene activation.
Collapse
Affiliation(s)
- Anna K Mapp
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
27
|
Ataian Y, Krebs JE. Five repair pathways in one context: chromatin modification during DNA repair. Biochem Cell Biol 2007; 84:490-504. [PMID: 16936822 DOI: 10.1139/o06-075] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The eukaryotic cell is faced with more than 10 000 various kinds of DNA lesions per day. Failure to repair such lesions can lead to mutations, genomic instability, or cell death. Therefore, cells have developed 5 major repair pathways in which different kinds of DNA damage can be detected and repaired: homologous recombination, nonhomologous end joining, nucleotide excision repair, base excision repair, and mismatch repair. However, the efficient repair of DNA damage is complicated by the fact that the genomic DNA is packaged through histone and nonhistone proteins into chromatin, a highly condensed structure that hinders DNA accessibility and its subsequent repair. Therefore, the cellular repair machinery has to circumvent this natural barrier to gain access to the damaged site in a timely manner. Repair of DNA lesions in the context of chromatin occurs with the assistance of ATP-dependent chromatin-remodeling enzymes and histone-modifying enzymes, which allow access of the necessary repair factors to the lesion. Here we review recent studies that elucidate the interplay between chromatin modifiers / remodelers and the major DNA repair pathways.
Collapse
Affiliation(s)
- Yeganeh Ataian
- Department of Biological Sciences, University of AK Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | | |
Collapse
|
28
|
Shim EY, Hong SJ, Oum JH, Yanez Y, Zhang Y, Lee SE. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol Cell Biol 2006; 27:1602-13. [PMID: 17178837 PMCID: PMC1820475 DOI: 10.1128/mcb.01956-06] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) protects cells and organisms, as well as their genome integrity. Since DSB repair occurs in the context of chromatin, chromatin must be modified to prevent it from inhibiting DSB repair. Evidence supports the role of histone modifications and ATP-dependent chromatin remodeling in repair and signaling of chromosome DSBs. The key questions are, then, what the nature of chromatin altered by DSBs is and how remodeling of chromatin facilitates DSB repair. Here we report a chromatin alteration caused by a single HO endonuclease-generated DSB at the Saccharomyces cerevisiae MAT locus. The break induces rapid nucleosome migration to form histone-free DNA of a few hundred base pairs immediately adjacent to the break. The DSB-induced nucleosome repositioning appears independent of end processing, since it still occurs when the 5'-to-3' degradation of the DNA end is markedly reduced. The tetracycline-controlled depletion of Sth1, the ATPase of RSC, or deletion of RSC2 severely reduces chromatin remodeling and loading of Mre11 and Yku proteins at the DSB. Depletion of Sth1 also reduces phosphorylation of H2A, processing, and joining of DSBs. We propose that RSC-mediated chromatin remodeling at the DSB prepares chromatin to allow repair machinery to access the break and is vital for efficient DSB repair.
Collapse
Affiliation(s)
- Eun Yong Shim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wong LY, Recht J, Laurent BC. Chromatin remodeling and repair of DNA double-strand breaks. J Mol Histol 2006; 37:261-9. [PMID: 17120107 DOI: 10.1007/s10735-006-9047-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 07/07/2006] [Indexed: 01/19/2023]
Abstract
Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells.
Collapse
Affiliation(s)
- Lai-Yee Wong
- Department of Oncological Sciences, Mount Sinai School of Medicine, Icahn Medical Institute, 1425 Madison Ave., New York, NY 10029, USA
| | | | | |
Collapse
|
30
|
Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN, Kwon J. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J 2006; 25:3986-97. [PMID: 16932743 PMCID: PMC1560357 DOI: 10.1038/sj.emboj.7601291] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 07/27/2006] [Indexed: 12/18/2022] Open
Abstract
Although mammalian SWI/SNF chromatin remodeling complexes have been well established to play important role in transcription, their role in DNA repair has remained largely unexplored. Here we show that inactivation of the SWI/SNF complexes and downregulation of the catalytic core subunits of the complexes both result in inefficient DNA double-strand break (DSB) repair and increased DNA damage sensitivity as well as a large defect in H2AX phosphorylation (gamma-H2AX) and nuclear focus formation after DNA damage. The expression of most DSB repair genes remains unaffected and DNA damage checkpoints are grossly intact in the cells inactivated for the SWI/SNF complexes. Although the SWI/SNF complexes do not affect the expression of ATM, DNA-PK and ATR, or their activation and/or recruitment to DSBs, they rapidly bind to DSB-surrounding chromatin via interaction with gamma-H2AX in the manner that is dependent on the amount of DNA damage. Given the crucial role for gamma-H2AX in efficient DSB repair, these results suggest that the SWI/SNF complexes facilitate DSB repair, at least in part, by promoting H2AX phosphorylation by directly acting on chromatin.
Collapse
Affiliation(s)
- Ji-Hye Park
- Division of Molecular Life Sciences, Department of Life Science and Center for Cell Signaling Research, Ewha Woman's University, Seoul, Korea
| | - Eun-Jung Park
- Division of Molecular Life Sciences, Department of Life Science and Center for Cell Signaling Research, Ewha Woman's University, Seoul, Korea
| | - Han-Sae Lee
- Division of Molecular Life Sciences, Department of Life Science and Center for Cell Signaling Research, Ewha Woman's University, Seoul, Korea
| | - So Jung Kim
- Division of Molecular Life Sciences, Department of Life Science and Center for Cell Signaling Research, Ewha Woman's University, Seoul, Korea
| | - Shin-Kyoung Hur
- Division of Molecular Life Sciences, Department of Life Science and Center for Cell Signaling Research, Ewha Woman's University, Seoul, Korea
| | - Anthony N Imbalzano
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, Massachusetts, USA
| | - Jongbum Kwon
- Division of Molecular Life Sciences, Department of Life Science and Center for Cell Signaling Research, Ewha Woman's University, Seoul, Korea
- Division of Molecular Life Sciences, Department of Life Science and Center for Cell Signaling Research, Ewha Woman's University, Seoul 120-750, Korea. Tel.: +82 2 3277 4334; Fax: +82 2 3277 3760; E-mail:
| |
Collapse
|
31
|
Yamaoka K, Shindo M, Iwasaki K, Yamaoka I, Yamamoto Y, Kitagawa H, Kato S. Multiple co-activator complexes support ligand-induced transactivation function of VDR. Arch Biochem Biophys 2006; 460:166-71. [PMID: 16949543 DOI: 10.1016/j.abb.2006.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 01/14/2023]
Abstract
Vitamin D receptor (VDR) mediates a wide variety of vitamin D actions through transcriptional controls of target genes as a ligand-dependent transcription factor. The transactivation by VDR is known to associate with two co-activator complexes, DRIP/TRAP and p160/CBP, through physical interaction with DRIP205 and p160 members (TIF2) components, respectively. However, functional difference between the two co-activator complexes for VDR co-activation remains unclear. In the present study, to address this issue, a series of point mutants in VDR helix 12 were generated to test the functional association. Alanine replacement of VDR valine 418 resulted in loss of DRIP205 interaction, but it was still transcriptionally potent with ability to interact with TIF2. Surprisingly, the V421A mutant was only partially impaired in transactivation without co-activator interaction, implying presence of a putative co-activator/complex. Thus, these findings suggest that ligand-induced transcriptional controls by VDR require a number of known and unknown co-regulator complexes, that may support the tissue-specific function of VDR.
Collapse
Affiliation(s)
- Kazuyoshi Yamaoka
- ERATO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchisi, Saitama 332-0012, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Marom R, Shur I, Hager GL, Benayahu D. Expression and regulation of CReMM, a chromodomain helicase-DNA-binding (CHD), in marrow stroma derived osteoprogenitors. J Cell Physiol 2006; 207:628-35. [PMID: 16523501 DOI: 10.1002/jcp.20611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study follows the expression of CReMM, a new CHD family member, in osteoprogenitors. CReMM expression was analyzed in primary cultured mesnchymal cells from rat and human. Analysis in ex vivo cultured marrow stromal cells (MSC) from rats revealed higher level of CReMM in cells from young (3 months), when compared to cells from old (15 months) rats. CReMM level was higher in human MSC then in mature trabecular bone cells (TBC). Within the MSC population, osteogenic clones showed higher levels of CReMM then non-osteogenic ones. We used bone marrow derived osteogenic cell line (MBA-15) to elaborate on the regulation of CReMM expression in correlation with cell proliferation and co-expression with alkaline phosphatase (ALK). CReMM is highly expressed in proliferating cells and is inversely related to expression of ALK. MBA-15 cells were challenged with dexamethasone (Dex) or 17beta-estradiol and quantification of CReMM at the protein (ELISA) and mRNA (RT-PCR) levels had shown that Dex upregulated CReMM levels. Since CReMM is regulated by Dex, we analyzed the interaction of CReMM with the glucocorticoid receptor (GR), which mediates Dex action. Co-immunopercipitation (Co-IP) demonstrated an association between CReMM and GR. In summary, CReMM is a CHD protein expressed by osteoprogenitors, and we suggest it plays a role in mediating transcriptional response to hormones that coordinate osteoblast function.
Collapse
Affiliation(s)
- R Marom
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
33
|
Expression and regulation of CReMM, a chromodomain helicase-DNA-binding (CHD), in marrow stroma derived osteoprogenitors. J Cell Physiol 2006. [PMID: 16523501 DOI: org/10.1002/jcp.20611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study follows the expression of CReMM, a new CHD family member, in osteoprogenitors. CReMM expression was analyzed in primary cultured mesnchymal cells from rat and human. Analysis in ex vivo cultured marrow stromal cells (MSC) from rats revealed higher level of CReMM in cells from young (3 months), when compared to cells from old (15 months) rats. CReMM level was higher in human MSC then in mature trabecular bone cells (TBC). Within the MSC population, osteogenic clones showed higher levels of CReMM then non-osteogenic ones. We used bone marrow derived osteogenic cell line (MBA-15) to elaborate on the regulation of CReMM expression in correlation with cell proliferation and co-expression with alkaline phosphatase (ALK). CReMM is highly expressed in proliferating cells and is inversely related to expression of ALK. MBA-15 cells were challenged with dexamethasone (Dex) or 17beta-estradiol and quantification of CReMM at the protein (ELISA) and mRNA (RT-PCR) levels had shown that Dex upregulated CReMM levels. Since CReMM is regulated by Dex, we analyzed the interaction of CReMM with the glucocorticoid receptor (GR), which mediates Dex action. Co-immunopercipitation (Co-IP) demonstrated an association between CReMM and GR. In summary, CReMM is a CHD protein expressed by osteoprogenitors, and we suggest it plays a role in mediating transcriptional response to hormones that coordinate osteoblast function.
Collapse
|
34
|
Widlak P, Pietrowska M, Lanuszewska J. The role of chromatin proteins in DNA damage recognition and repair. Histochem Cell Biol 2006; 125:119-26. [PMID: 16163486 DOI: 10.1007/s00418-005-0053-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The structure of chromatin is the major factor determining the rate and efficiency of DNA repair. Chromatin remodeling events such as rearrangement of nucleosomes and higher order chromatin structures are indispensable features of repair processes. During the last decade numerous chromatin proteins have been identified that preferentially bind to different types of DNA damage. The HMGB proteins, which preferentially interact with DNA intrastrand crosslinks induced by cisplatin, are the archetypal example of such proteins. Several hypothetical models have been proposed describing the role of such damage-binding chromatin proteins. The damage shielding model postulates that binding of chromatin proteins to damaged DNA might disturb damage recognition by repair factors and impair its removal. Alternatively, the damage-recognition/signaling model proposes that the binding of specific chromatin proteins to damaged DNA could serve as a hallmark to be recognized by repair proteins. Additionally, the binding of specific chromatin proteins to damaged DNA could induce chromatin remodeling at the damage site and indirectly affect its repair. This paper aims to critically review current experimental data in relation to such possible roles of chromatin proteins.
Collapse
Affiliation(s)
- Piotr Widlak
- Department of Experimental and Clinical Radiobiology, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Wybrzeze AK 15, 44-100, Gliwice, Poland.
| | | | | |
Collapse
|
35
|
Hertel CB, Längst G, Hörz W, Korber P. Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening. Mol Cell Biol 2006; 25:10755-67. [PMID: 16314501 PMCID: PMC1316968 DOI: 10.1128/mcb.25.24.10755-10767.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coregulated PHO5 and PHO8 genes in Saccharomyces cerevisiae provide typical examples for the role of chromatin in promoter regulation. It has been a long-standing question why the cofactors Snf2 and Gcn5 are essential for full induction of PHO8 but dispensable for opening of the PHO5 promoter. We show that this discrepancy may result from different stabilities of the two promoter chromatin structures. To test this hypothesis, we used our recently established yeast extract in vitro chromatin assembly system, which generates the characteristic PHO5 promoter chromatin. Here we show that this system also assembles the native PHO8 promoter nucleosome pattern. Remarkably, the positioning information for both native patterns is specific to the yeast extract. Salt gradient dialysis or Drosophila embryo extract does not support proper nucleosome positioning unless supplemented with yeast extract. By competitive assemblies in the yeast extract system we show that the PHO8 promoter has greater nucleosome positioning power and that the properly positioned nucleosomes are more stable than those at the PHO5 promoter. Thus we provide evidence for the correlation of inherently more stable chromatin with stricter cofactor requirements.
Collapse
|
36
|
Zhu H, Geiman TM, Xi S, Jiang Q, Schmidtmann A, Chen T, Li E, Muegge K. Lsh is involved in de novo methylation of DNA. EMBO J 2006; 25:335-45. [PMID: 16395332 PMCID: PMC1383509 DOI: 10.1038/sj.emboj.7600925] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 12/01/2005] [Indexed: 12/31/2022] Open
Abstract
Deletion of Lsh perturbs DNA methylation patterns in mice yet it is unknown whether Lsh plays a direct role in the methylation process. Two types of methylation pathways have been distinguished: maintenance methylation by Dnmt1 occurring at the replication fork, and de novo methylation established by the methyltransferases Dnmt3a and Dnmt3b. Using an episomal vector in Lsh-/- embryonic fibroblasts, we demonstrate that the acquisition of DNA methylation depends on the presence of Lsh. In contrast, maintenance of previously methylated episomes does not require Lsh, implying a functional role for Lsh in the establishment of novel methylation patterns. Lsh affects Dnmt3a as well as Dnmt3b directed methylation suggesting that Lsh can cooperate with both enzymatic activities. Furthermore, we demonstrate that embryonic stem cells with reduced Lsh protein levels show a decreased ability to silence retroviral vector or to methylate endogenous genes. Finally, we demonstrate that Lsh associates with Dnmt3a or Dnmt3b but not with Dnmt1 in embryonic cells. These results suggest that the epigenetic regulator, Lsh, is directly involved in the control of de novo methylation of DNA.
Collapse
Affiliation(s)
- Heming Zhu
- Laboratory of Cancer Prevention, SAIC-FCRDC, Basic Research Program, National Cancer Institute, Frederick, MD, USA
| | - Theresa M Geiman
- Laboratory of Cancer Prevention, SAIC-FCRDC, Basic Research Program, National Cancer Institute, Frederick, MD, USA
| | - Sichuan Xi
- Laboratory of Cancer Prevention, SAIC-FCRDC, Basic Research Program, National Cancer Institute, Frederick, MD, USA
| | - Qiong Jiang
- Laboratory of Molecular Immnuoregulation, National Cancer Institute, Frederick, MD, USA
| | - Anja Schmidtmann
- Laboratory of Cancer Prevention, SAIC-FCRDC, Basic Research Program, National Cancer Institute, Frederick, MD, USA
| | - Taiping Chen
- Epigenetics Program, Novartis Institute for Biomedical Research, Inc., Cambridge, MA, USA
| | - En Li
- Epigenetics Program, Novartis Institute for Biomedical Research, Inc., Cambridge, MA, USA
| | - Kathrin Muegge
- Laboratory of Cancer Prevention, SAIC-FCRDC, Basic Research Program, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
37
|
Korber P, Barbaric S, Luckenbach T, Schmid A, Schermer UJ, Blaschke D, Hörz W. The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J Biol Chem 2006; 281:5539-45. [PMID: 16407267 DOI: 10.1074/jbc.m513340200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression starts off from a largely obstructive chromatin substrate that has to be rendered accessible by regulated mechanisms of chromatin remodeling. The yeast PHO5 promoter is a well known example for the contribution of positioned nucleosomes to gene repression and for extensive chromatin remodeling in the course of gene induction. Recently, the mechanism of this remodeling process was shown to lead to the disassembly of promoter nucleosomes and the eviction of the constituent histones in trans. This finding called for a histone acceptor in trans and thus made histone chaperones likely to be involved in this process. In this study we have shown that the histone chaperone Asf1 increases the rate of histone eviction at the PHO5 promoter. In the absence of Asf1 histone eviction is delayed, but the final outcome of the chromatin transition is not affected. The same is true for the coregulated PHO8 promoter where induction also leads to histone eviction and where the rate of histone loss is reduced in asf1 strains as well, although less severely. Importantly, the final extent of chromatin remodeling is not affected. We have also presented evidence that Asf1 and the SWI/SNF chromatin remodeling complex work in distinct parallel but functionally overlapping pathways, i.e. they both contribute toward the same outcome without being mutually strictly dependent.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, Universität München, Schillerstrasse 44, 80336 Münich, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A requirement of nuclear processes that use DNA as a substrate is the manipulation of chromatin in which the DNA is packaged. Chromatin modifications cause alterations of histones and DNA, and result in a permissive chromatin environment for these nuclear processes. Recent advances in the fields of DNA repair and chromatin reveal that both histone modifications and chromatin-remodeling complexes are essential for the repair of DNA lesions, such as DNA double strand breaks (DSBs). In particular, chromatin-modifying complexes, such as the INO80, SWR1, RSC, and SWI/SNF ATP-dependent chromatin-remodeling complexes and the NuA4 and Tip60 histone acetyltransferase complexes are implicated in DNA repair. The activity of these chromatin-modifying complexes influences the efficiency of the DNA repair process, which ultimately affects genome integrity and carcinogenesis. Thus, the process of DNA repair requires the cooperative activities of evolutionarily conserved chromatin-modifying complexes that facilitate the dynamic chromatin alterations needed during repair of DNA damage.
Collapse
Affiliation(s)
- Ashby J Morrison
- University of Texas, M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
39
|
Fazzio TG, Gelbart ME, Tsukiyama T. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo. Mol Cell Biol 2005; 25:9165-74. [PMID: 16227570 PMCID: PMC1265836 DOI: 10.1128/mcb.25.21.9165-9174.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously shown that Saccharomyces cerevisiae Isw2 complex slides nucleosomes to remodel chromatin in vivo. Our data suggested a model in which Isw2 complex binds the histone octamer and DNA separately to generate the force necessary for nucleosome movement. Here we find that the histone H4 "basic patch" is the only portion of any amino-terminal histone tail required for both target-specific association of Isw2 complex with chromatin and chromatin remodeling in vivo, whereas it is dispensable for basal levels of chromatin binding. Similarly, we find that nonremodeled chromatin structure and integrity of Isw2 complex are required only for target-specific association of Isw2 with chromatin. These data demonstrate fundamental differences between the target-specific and basal modes of chromatin binding by Isw2 complex in vivo and suggest that only the former involves contributions from DNA, histone H4, and sequence-specific DNA binding proteins. We propose a model for target recognition and chromatin remodeling by Isw2 complex in vivo.
Collapse
Affiliation(s)
- Thomas G Fazzio
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Mail stop A1-162, P.O. Box 19024, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | | | | |
Collapse
|
40
|
Fan Z, Zhang H, Zhang Q. Tumor suppressor pp32 represses cell growth through inhibition of transcription by blocking acetylation and phosphorylation of histone H3 and initiating its proapoptotic activity. Cell Death Differ 2005; 13:1485-94. [PMID: 16341127 DOI: 10.1038/sj.cdd.4401825] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
pp32 belongs to a family of leucine-rich acidic nuclear proteins, which play important roles in many cellular processes including regulation of chromatin remodeling, transcription, RNA transport, transformation and apoptosis. pp32 is described as a new tumor suppressor. It is unknown as to how pp32 works in tumor suppression. We found that overexpression of pp32 in human Jurkat T cells inhibits cell growth, and silenced pp32 promotes growth. We first showed that hyperacetylation and hyperphosphorylation of histone H3 are required for T-cell activation. Phosphorylation of histone H3 precedes acetylation during T-cell activation. pp32 specifically binds to histone H3 and blocks its acetylation and phosphorylation. pp32 directly initiates caspase activity and also promotes granzyme A-mediated caspase-independent cell death. Taken together, pp32 plays a repressive role by inhibiting transcription and triggering apoptosis.
Collapse
Affiliation(s)
- Z Fan
- National Laboratory of Biomacromolecules and Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | |
Collapse
|
41
|
Abstract
Lymphoid-specific helicase (Lsh) is a crucial factor for normal embryonic development; targeted deletion of Lsh is lethal. Lsh belongs to a family of chromatin-remodeling proteins and is closely associated with pericentromeric heterochromatin. Lsh deficiency leads to abnormal heterochromatin organization, with a loss of DNA methylation, and an altered pattern of histone-tail acetylation and methylation. As a functional consequence of perturbed heterochromatin, aberrant reactivation of parasitic retroviral elements in the genome and abnormal mitosis with amplified centrosomes and genomic instability were observed. Thus, Lsh is a major epigenetic regulator crucial for normal heterochromatin structure and function.
Collapse
Affiliation(s)
- Kathrin Muegge
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, MD 21701, USA.
| |
Collapse
|
42
|
Fujiki R, Kim MS, Sasaki Y, Yoshimura K, Kitagawa H, Kato S. Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J 2005; 24:3881-94. [PMID: 16252006 PMCID: PMC1283952 DOI: 10.1038/sj.emboj.7600853] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 10/06/2005] [Indexed: 01/21/2023] Open
Abstract
We have previously shown that the novel ATP-dependent chromatin-remodeling complex WINAC is required for the ligand-bound vitamin D receptor (VDR)-mediated transrepression of the 25(OH)D3 1alpha-hydroxylase (1alpha(OH)ase) gene. However, the molecular basis for VDR promoter association, which does not involve its binding to specific DNA sequences, remains unclear. To address this issue, we investigated the function of WSTF in terms of the association between WINAC and chromatin for ligand-induced transrepression by VDR. Results of in vitro experiments using chromatin templates showed that the association of unliganded VDR with the promoter required physical interactions between WSTF and both VDR and acetylated histones prior to VDR association with chromatin. The acetylated histone-interacting region of WSTF was mapped to the bromodomain, and a WSTF mutant lacking the bromodomain served as a dominant-negative mutant in terms of ligand-induced transrepression of the 1alpha(OH)ase gene. Thus, our findings indicate that WINAC associates with chromatin through a physical interaction between the WSTF bromodomain and acetylated his tones, which appears to be indispensable for VDR/promoter association for ligand-induced transrepression of 1alpha(OH)ase gene expression.
Collapse
Affiliation(s)
- Ryoji Fujiki
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mi-sun Kim
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasumasa Sasaki
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kimihiro Yoshimura
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirochika Kitagawa
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeaki Kato
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ERATO, Japan Science and Technology, Kawaguchi, Saitama, Japan
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. Tel.: +81 3 5841 8478; Fax: +81 3 5841 8477; E-mail:
| |
Collapse
|
43
|
Shur I, Benayahu D. Characterization and functional analysis of CReMM, a novel chromodomain helicase DNA-binding protein. J Mol Biol 2005; 352:646-55. [PMID: 16095617 DOI: 10.1016/j.jmb.2005.06.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/12/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
The present study describes a newly identified protein named CReMM (chromatin-related mesenchymal modulator). The protein was studied by bioinformatic means and classified as a member of the third subfamily of chromodomain helicase DNA-binding proteins (CHD). In silico translation defined CReMM as a multiple domains protein including two chromodomains, SNF2/ATPase, helicase C domain and an A/T-DNA-binding domain (DBD). Predicted extensive post-translation phosphorylation on serine and tyrosine residues was demonstrated by Western blot in the presence and in the absence of phosphatase inhibitors using specific antibodies. Immunoprecipitated CReMM disclosed a DNA-dependent ATPase activity quantified by colorimetric assay. Electrophoresis mobility-shift assay (EMSA) validated that CReMM binds to A/T-rich DNA. CReMM is expressed in mesenchymal progenitors, as shown in vitro and in vivo. CReMM protein structural motifs and proven biochemical activities highlight its role in chromatin remodeling. Further delineation of the function of this protein will provide information about its dynamics in transcriptional regulation of mesenchymal cells.
Collapse
Affiliation(s)
- I Shur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Israel
| | | |
Collapse
|
44
|
Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol 2005; 25:3934-44. [PMID: 15870268 PMCID: PMC1087737 DOI: 10.1128/mcb.25.10.3934-3944.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Repair of chromosome double-strand breaks (DSBs) is central to cell survival and genome integrity. Nonhomologous end joining (NHEJ) is the major cellular repair pathway that eliminates chromosome DSBs. Here we report our genetic screen that identified Rsc8 and Rsc30, subunits of the Saccharomyces cerevisiae chromatin remodeling complex RSC, as novel NHEJ factors. Deletion of RSC30 gene or the C-terminal truncation of RSC8 impairs NHEJ of a chromosome DSB created by HO endonuclease in vivo. rsc30Delta maintains a robust level of homologous recombination and the damage-induced cell cycle checkpoints. By chromatin immunoprecipitation, we show recruitment of RSC to a chromosome DSB with kinetics congruent with its involvement in NHEJ. Recruitment of RSC to a DSB depends on Mre11, Rsc30, and yKu70 proteins. Rsc1p and Rsc2p, two other RSC subunits, physically interact with yKu80p and Mre11p. The interaction of Rsc1p with Mre11p appears to be vital for survival from genotoxic stress. These results suggest that chromatin remodeling by RSC is important for NHEJ.
Collapse
Affiliation(s)
- Eun Yong Shim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
In eukaryotes, chromatin is the natural form of DNA in the nucleus. For hundreds of millions of years, DNA-binding factors have evolved with chromatin. It is therefore more desirable to study the molecular mechanisms of DNA-directed processes with chromatin than with naked DNA templates. To this end, it is necessary to reconstitute DNA and histones into chromatin. Fortunately, there are a variety of methods by which a nonspecialist can prepare chromatin of high quality. Here, we describe strategies and techniques for the reconstitution of chromatin in vitro.
Collapse
Affiliation(s)
- Alexandra Lusser
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
46
|
Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 2005; 119:767-75. [PMID: 15607974 DOI: 10.1016/j.cell.2004.11.037] [Citation(s) in RCA: 418] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/20/2004] [Accepted: 11/11/2004] [Indexed: 11/21/2022]
Abstract
While the role of ATP-dependent chromatin remodeling in transcription is well established, a link between chromatin remodeling and DNA repair has remained elusive. We have found that the evolutionarily conserved INO80 chromatin remodeling complex directly participates in the repair of a double-strand break (DSB) in yeast. The INO80 complex is recruited to a HO endonuclease-induced DSB through a specific interaction with the DNA damage-induced phosphorylated histone H2A (gamma-H2AX). This interaction requires Nhp10, an HMG-like subunit of the INO80 complex. The loss of Nhp10 or gamma-H2AX results in reduced INO80 recruitment to the DSB. Finally, components of the INO80 complex show synthetic genetic interactions with the RAD52 DNA repair pathway, the main pathway for DSB repair in yeast. Our findings reveal a new role of ATP-dependent chromatin remodeling in nuclear processes and suggest that an ATP-dependent chromatin remodeling complex can read a DNA repair histone code.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Carcinogenesis, MD Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Kandasamy MK, Deal RB, McKinney EC, Meagher RB. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:845-58. [PMID: 15743449 DOI: 10.1111/j.1365-313x.2005.02345.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Actin-related proteins (ARPs) share moderate sequence homology and basal structure with conventional actins and are found in all eukaryotes. While the functions of most of the divergent ARPs are not clear, several of them are localized to the nucleus and have been identified as components of various chromatin-modifying complexes. Using an antibody to Arabidopsis AtARP4, we found this conserved homolog of human BAF53 and yeast Arp4 is concentrated in the nucleoplasm of Arabidopsis, Brassica, and tobacco cells. To gain further insight into the role of ARP4, we have examined Arabidopsis plants that are defective in AtARP4 expression. Phenotypic analysis of the arp4-1 mutant allele, which has a T-DNA insertion in the promoter region and a moderate reduction in the level of AtARP4 protein expression, revealed partial sterility due to defects in anther development. Targeting the distinct, 3' UTR of AtARP4 transcripts with RNA interference caused a drastic reduction in the level of AtARP4 protein expression in several independent transgenic lines, and resulted in strong pleiotropic phenotypes such as altered organization of plant organs, early flowering, delayed flower senescence and high levels of sterility. Western blot analysis and immunolabeling demonstrated a clear correlation between reductions in the level of AtARP4 expression and severity of the phenotypes. Based on our results and data on the orthologs of AtARP4 in yeast and other organisms, we suggest that AtARP4 is likely to exert its effects on plant development through the modulation of chromatin structure and subsequent changes in gene regulation.
Collapse
|
48
|
Prado A, Ramos I, Frehlick LJ, Muga A, Ausió J. Nucleoplasmin: a nuclear chaperone. Biochem Cell Biol 2005; 82:437-45. [PMID: 15284896 DOI: 10.1139/o04-042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this article, we briefly review the structural and functional information currently available on nucleoplasmin. Special emphasis is placed on the discussion of the molecular mechanism involved in the sperm chromatin remodelling activity of this protein. A model is proposed based on current crystallographic data, recent biophysical and functional studies, as well as in the previously available information.
Collapse
|
49
|
Ohmido N, Kijima K, Hoshi O, Ushiki T, Fukui K. Comparison of Surface Structures between Extended and Condensed Stages of Barley Chromosomes Revealed with Atomic Force Microscopy. CYTOLOGIA 2005. [DOI: 10.1508/cytologia.70.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - Osamu Hoshi
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| |
Collapse
|
50
|
Jónsson ZO, Jha S, Wohlschlegel JA, Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 2004; 16:465-77. [PMID: 15525518 DOI: 10.1016/j.molcel.2004.09.033] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 06/03/2004] [Accepted: 08/18/2004] [Indexed: 01/25/2023]
Abstract
The Rvb1p and Rvb2p (or TIP48 and TIP49) nuclear ATP binding proteins are universally conserved in eukaryotes and essential for viability of yeasts. Rvbp associate with each other as a double hexamer, with YHR034c and with two complexes involved in chromatin remodeling, Ino80.com and Swr1.com. Loss of Rvb1p or Ino80p affects many yeast promoters similarly. Rvbp are not essential for the recruitment of Ino80p to promoters but are essential for the catalytic activity of Ino80.com. Loss of Rvbp leads to loss of the functionally critical Arp5p in Ino80.com. Rvb2p associates with Arp5p in vitro in a reaction dependent on the presence of ATP and Ino80p. Therefore, Rvbp are required for the structural and functional integrity of the Ino80 chromatin remodeling complex.
Collapse
Affiliation(s)
- Zophonías O Jónsson
- University of Virginia School of Medicine, Jordan 1240, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|