1
|
Xing W, Chen Y, Udayakumar A, Zhao H, Mohan S. Leucine-Rich Repeat Kinase 1 Signaling Targets Proteins Critical for Endosome/Lysosome Sorting and Trafficking in Osteoclasts. BIOLOGY 2025; 14:326. [PMID: 40282191 PMCID: PMC12024951 DOI: 10.3390/biology14040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025]
Abstract
Global knockout (KO) of the Lrrk1 gene in mice causes severe osteopetrosis because of the failure of osteoclasts to resorb bone. The molecular mechanism of LRRK1 regulation of osteoclast function is not fully understood. Here, we performed a 2D DIGE phosphor-proteomics analysis to identify potential LRRK1 targets in osteoclasts. Splenocytes from Lrrk1 KO and wild-type (WT) mice were differentiated into osteoclasts for protein extraction. Lysates from Lrrk1 KO and WT cells were labeled with Cy3- and Cy5-dye, respectively. Labeled proteins were mixed and analyzed on the same 2D SDS PAGE for protein profiling. The same amounts of cellular protein were also labeled with Cy3-dye and ran on a 2D SDS PAGE. The gels were then stained using Pro-Q® Diamond Phosphoprotein Gel Stain for phosphoprotein profiling. Differentially phosphorylated protein spots between the two types of cells were collected, digested with trypsin, and identified by mass spectrometry. Seventeen phosphoproteins were identified, six of which are known to be involved in endosome/lysosome sorting, vacuolar protection, and trafficking. While five of these proteins (SNX2, VPS35, VTA1, CFL1, and CTSA) were significantly hypophosphorylated, SNX3 was hyperphosphorylated in LRRK1-deficient osteoclasts. The downregulation of VSP35 and CFL1 phosphorylation in LRRK1-deficient cells was validated by Phos-tag SDS PAGE analysis. Our results indicate that LRRK1 signaling regulates osteoclast function via modulating VPS35 and CFL1 phosphorylation critical for endosome/lysosome trafficking and dynamic cytoskeleton arrangement in osteoclasts.
Collapse
Affiliation(s)
- Weirong Xing
- The Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA; (Y.C.); (A.U.); (S.M.)
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yian Chen
- The Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA; (Y.C.); (A.U.); (S.M.)
| | - Anakha Udayakumar
- The Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA; (Y.C.); (A.U.); (S.M.)
- Graduate Schools, Loma Linda University, Loma Linda, CA 92354, USA
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA 90815, USA;
| | - Subburaman Mohan
- The Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA; (Y.C.); (A.U.); (S.M.)
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
2
|
Jacobs T, Isasti Sanchez J, Reger S, Luschnig S. Rho/Rok-dependent regulation of actomyosin contractility at tricellular junctions restricts epithelial permeability in Drosophila. Curr Biol 2025; 35:1181-1196.e5. [PMID: 39965573 DOI: 10.1016/j.cub.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
Cell contacts in epithelia are remodeled to regulate paracellular permeability and to control the passage of migrating cells, but how barrier function is modulated while preserving epithelial integrity is not clear. In the follicular epithelium of Drosophila ovaries, tricellular junctions (TCJs) open transiently in a process termed patency to allow passage of externally produced yolk proteins for uptake by the oocyte. Here, we show that modulation of actomyosin contractility at cell vertices controls TCJ permeability. Before patency, circumferential actomyosin bundles are anchored at apical follicle cell vertices, where tension-sensing junctional proteins, Rho-associated kinase (Rok), and active myosin II accumulate and maintain vertices closed. TCJ opening is initiated by redistribution of myosin II from circumferential bundles to the medial zone, accompanied by decreasing tension on vertices. This transition requires activation of Cofilin-dependent filamentous actin (F-actin) disassembly by the phosphatase Slingshot and myosin II inactivation by myosin light-chain phosphatase and is counteracted by Rok. Accordingly, constitutive activation of myosin or of Rho signaling prevents vertex opening, whereas reduced myosin II or Rok activity causes excessive vertex opening. Thus, the opening of intercellular gaps in the follicular epithelium relies on relaxation of actomyosin contractility rather than active actomyosin-based pulling forces. Conversely, F-actin assembly is required for closing intercellular gaps after patency. Our findings are consistent with a force transduction model in which TCJ integrity is maintained by vertex-anchored contractile actomyosin. We propose that the cell-type-specific organization of actomyosin at cell vertices determines the mode of contractility-dependent regulation of epithelial permeability.
Collapse
Affiliation(s)
- Thea Jacobs
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Jone Isasti Sanchez
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Steven Reger
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany.
| |
Collapse
|
3
|
Zhang H, Zhai X, Zhang W, He Y, Yu B, Liu H, Meng X, Ji F. Unraveling the role of SSH1 in chronic neuropathic pain: A focus on LIMK1 and Cofilin Dephosphorylation in the prefrontal cortex. Exp Cell Res 2025; 445:114383. [PMID: 39701356 DOI: 10.1016/j.yexcr.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Neuropathic pain, a debilitating condition stemming from nervous system injuries, has profound impacts on quality of life. The medial prefrontal cortex (mPFC) plays a crucial role in the modulation of pain perception and emotional response. This study explores the involvement of Slingshot Homolog 1 (SSH1) protein in neuropathic pain and related emotional and cognitive dysfunctions in a mouse model of spared nerve injury (SNI). METHODS SNI was induced in C57BL/6J mice. SSH1's role was investigated via its overexpression and knockdown using lentiviral vectors in the mPFC. Behavioral assays (thermal and mechanical allodynia, open field test, elevated plus maze, tail suspension test, Y-maze, and novel object recognition were conducted to assess pain sensitivity, anxiety, depression, and cognitive function. Tissue samples underwent Hematoxylin and Eosin staining, Western blotting, immunofluorescence, co-immunoprecipitation, and enzyme-linked immunosorbent assay for inflammatory markers. RESULTS SNI mice displayed significant reductions in neuronal density and dendritic integrity in the mPFC, alongside heightened pain perception and emotional disturbances, as compared to sham controls. Overexpression of SSH1 ameliorated these alterations, improving mechanical and thermal thresholds, reducing anxiety and depressive behaviors, and enhancing cognitive performance. Conversely, SSH1 knockdown exacerbated these phenotypes. Molecular investigations revealed that SSH1 modulates pain processing and neuronal health in the mPFC partially through the dephosphorylation of Cofilin and LIM domain kinase 1 (LIMK1), as evidenced by changes in their phosphorylation states and interaction patterns. CONCLUSION SSH1 plays a pivotal role in the modulation of neuropathic pain and associated neuropsychological disturbances in the mPFC of mice. Manipulating SSH1 expression can potentially reverse the neurophysiological and behavioral abnormalities induced by SNI, highlighting a promising therapeutic target for treating neuropathic pain and its complex comorbidities.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China; Institute of Anesthesiology, Soochow University, Suzhou City, Jiangsu Province, 215006, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China
| | - XiaoJing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, China; Department of Pain, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China
| | - WenWen Zhang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China; Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, China
| | - Yu He
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China; Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, China
| | - BeiBei Yu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221002, China; Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, China
| | - He Liu
- Department of Anesthesiology, Clinical Research Center of Anesthesia and Perioperative Medicine, Huzhou Central Hospital, Huzhou City, Zhejiang Province, 313003, China; Huzhou Hospital, Zhejiang University School of Medicine, Huzhou City, Zhejiang Province, 313003, China
| | - XiaoWen Meng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China; Institute of Anesthesiology, Soochow University, Suzhou City, Jiangsu Province, 215006, China
| | - FuHai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China; Institute of Anesthesiology, Soochow University, Suzhou City, Jiangsu Province, 215006, China.
| |
Collapse
|
4
|
Souza‐Silva IM, Carregari VC, Steckelings UM, Verano‐Braga T. Phosphoproteomics for studying signaling pathways evoked by hormones of the renin-angiotensin system: A source of untapped potential. Acta Physiol (Oxf) 2025; 241:e14280. [PMID: 39821680 PMCID: PMC11737475 DOI: 10.1111/apha.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT1 receptor (AT1R), and in contrast the protective axis, which includes the receptors Mas, AT2R and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease. On the other hand, therapeutic benefits can be achieved by selectively activating protective receptors and their associated signaling pathways. Traditionally, robust "hypothesis-driven" methods like Western blotting have built a solid knowledge foundation on RAS signaling. In this review, we introduce untargeted mass spectrometry-based phosphoproteomics, a "hypothesis-generating approach", to explore RAS signaling pathways. This technology enables the unbiased discovery of phosphorylation events, offering insights into previously unknown signaling mechanisms. We review the existing studies which used phosphoproteomics to study RAS signaling and discuss potential future applications of phosphoproteomics in RAS research including advantages and limitations. Ultimately, phosphoproteomics represents a so far underused tool for deepening our understanding of RAS signaling and unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Igor Maciel Souza‐Silva
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Victor Corasolla Carregari
- Laboratório de Neuroproteômica, Instituto de BiologiaUniversidade de CampinasSão PauloBrazil
- Department of Biochemistry and Molecular Biology, Protein Research GroupUniversity of Southern DenmarkOdense MDenmark
| | - U. Muscha Steckelings
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Thiago Verano‐Braga
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Instituto Nacional de Ciência e Tecnologia Em Nanobiofarmacêutica (INCT‐Nanobiofar)Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
5
|
Casanova-Sepúlveda G, Boggon TJ. Regulation and signaling of the LIM domain kinases. Bioessays 2025; 47:e2400184. [PMID: 39361252 DOI: 10.1002/bies.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
The LIM domain kinases (LIMKs) are important actin cytoskeleton regulators. These proteins, LIMK1 and LIMK2, are nodes downstream of Rho GTPases and are the key enzymes that phosphorylate cofilin/actin depolymerization factors to regulate filament severing. They therefore perform an essential role in cascades that control actin depolymerization. Signaling of the LIMKs is carefully regulated by numerous inter- and intra-molecular mechanisms. In this review, we discuss recent findings that improve the understanding of LIM domain kinase regulation mechanisms. We also provide an up-to-date review of the role of the LIM domain kinases, their architectural features, how activity is impacted by other proteins, and the implications of these findings for human health and disease.
Collapse
Affiliation(s)
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Alsegiani AS, Shah ZA. Age-dependent sex differences in cofilin1 pathway (LIMK1/SSH1) and its association with AD biomarkers after chronic systemic inflammation in mice. Neurobiol Aging 2024; 144:43-55. [PMID: 39265451 DOI: 10.1016/j.neurobiolaging.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Chronic systemic inflammation (CSI) results in neuroinflammation and neurodegeneration. Cofilin1 is a stress protein that activates microglia and induces neuroinflammation, but its role in CSI at different aging stages remains unidentified. Therefore, the study aims to identify cofilin1 and its upstream regulators LIMK1 and SSH1 after CSI in young-, middle-, and advanced-aged mice. CSI was induced by injecting the male and female mice with a sub-lethal dose of Lipopolysaccharide weekly for six weeks. The results showed that normal male mice did not show cofilin pathway dysregulation, but a significant dysregulation was observed in CSI advanced-aged mice. In females, cofilin1 dysregulation was observed in healthy and CSI advanced-aged mice, while significant cofilin1 dysregulation was observed in middle-aged mice during CSI. Furthermore, cofilin1 pathway dysregulations correlated with Alzheimer's disease (AD) biomarkers in the brain and saliva, astrocyte activation, synaptic degeneration, neurobehavioral impairments, gut-microbiota abnormalities, and circulatory inflammation. These results provide new insights into cofilin1 sex and age-dependent mechanistic differences that might help identify targets for modulating neuroinflammation and early onset of AD.
Collapse
Affiliation(s)
- Amsha S Alsegiani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
7
|
Jiménez-Florido P, Aquilino M, Buckley D, Bella JL, Planelló R. Differential gene expression in Chorthippus parallelus (Zetterstedt, 1821) (Orthoptera: Acrididae: Gomphocerinae) induced by Wolbachia infection. INSECT SCIENCE 2024. [PMID: 39614636 DOI: 10.1111/1744-7917.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Distinct lineages of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae) form well-known hybrid zones (HZs) both in the Pyrenees and the Alps mountain ranges in South Europe. These HZs represent unique experimental systems to identify "key genes" that maintain genetic boundaries between emerging species. The Iberian endemism C. p. erythropus (Cpe) and the subspecies C. p. parallelus (Cpp), widely distributed throughout the rest of Europe, overlap and form the Pyrenean HZ. Both subspecies differ morphologically, as well as in behavioral, mitochondrial, nuclear, and chromosomal traits, and in the strains of the maternally transmitted bacterial endosymbiont Wolbachia infecting them. This results in either unidirectional and bidirectional cytoplasmic incompatibility between both grasshopper subspecies, pointing out that Wolbachia clearly affects gene expression in the infected individuals. Here we explore how Wolbachia may modify the expression of some major genes involved in relevant pathways in Cpp in the Pyrenean HZ. We have analyzed, through molecular biomarkers, the physiological responses in C. parallelus individuals infected by Wolbachia, with particular attention to the energy metabolism, the immune system response, and the reproduction. qPCR was used to evaluate the expression of selected genes in the gonads of infected and uninfected adults of both sexes, since this tissue constitutes the main target of Wolbachia infection. Transcriptional analyses also showed differential sex-dependent responses in most of the analyzed biomarkers in infected and noninfected individuals. We identified for the first time new sensitive biomarkers that might be involved in the reproductive barrier induced by Wolbachia in the hybrid zone.
Collapse
Affiliation(s)
- Patricia Jiménez-Florido
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Entomología Molecular, Biomarcadores y Estrés Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - David Buckley
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - José L Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Planelló
- Grupo de Entomología Molecular, Biomarcadores y Estrés Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
8
|
Sahu S, Mishra M. Alteration of Cytoskeletal Proteins Leads to Retinal Degeneration in Drosophila. Cytoskeleton (Hoboken) 2024. [PMID: 39508206 DOI: 10.1002/cm.21955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The eye holds a special fascination for many neuroscientists because of its meticulously organized structure. Vertebrates typically possess a simple camera-type eye, whereas the compound eye structure is predominantly observed in arthropods including model organism Drosophila melanogaster. Cell shape, cell polarization, and tissue integrity are the cell biological processes crucial for shaping the eye, which directly or indirectly depends on the cytoskeleton. Henceforth the cytoskeleton, specifically actin microfilaments, essentially has a dynamic role in the normal development and growth of eye structure. This review provides insight into the roles played by the actin cytoskeleton during the development and maintenance of the Drosophila eye.
Collapse
Affiliation(s)
- Surajita Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| |
Collapse
|
9
|
Khoukaz HB, Vadali M, Schoenherr A, Ramirez-Perez FI, Morales-Quinones M, Sun Z, Fujie S, Foote CA, Lyu Z, Zeng S, Augenreich MA, Cai D, Chen SY, Joshi T, Ji Y, Hill MA, Martinez-Lemus LA, Fay WP. PAI-1 Regulates the Cytoskeleton and Intrinsic Stiffness of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2024; 44:2191-2203. [PMID: 38868940 PMCID: PMC11424258 DOI: 10.1161/atvbaha.124.320938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.
Collapse
Affiliation(s)
- Hekmat B Khoukaz
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Manisha Vadali
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Alex Schoenherr
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Zhe Sun
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan (S.F.)
| | - Christopher A Foote
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Zhen Lyu
- Electrical Engineering and Computer Science (Z.L., S.Z.), University of Missouri, Columbia
| | - Shuai Zeng
- Electrical Engineering and Computer Science (Z.L., S.Z.), University of Missouri, Columbia
| | - Marc A Augenreich
- Nutrition and Exercise Physiology (M.A.A.), University of Missouri, Columbia
| | - Dunpeng Cai
- Surgery (D.C., S.-Y.C.), University of Missouri, Columbia
| | - Shi-You Chen
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Surgery (D.C., S.-Y.C.), University of Missouri, Columbia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (S.-Y.C., W.P.F.)
| | - Trupti Joshi
- Health Management and Informatics (T.J.), University of Missouri, Columbia
| | - Yan Ji
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Michael A Hill
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Luis A Martinez-Lemus
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - William P Fay
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (S.-Y.C., W.P.F.)
| |
Collapse
|
10
|
Shen Y, You Z, Li L, Tang X, Shan X. The interaction of PRDX1 with Cofilin promotes oral squamous cell carcinoma metastasis. Int J Cancer 2024; 155:1290-1302. [PMID: 38738971 DOI: 10.1002/ijc.34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Peroxiredoxin 1 (PRDX1) is an important member of the peroxiredoxin family (PRDX) and is upregulated in a variety of tumors. Previous studies have found that high PRDX1 expression is closely related to the metastasis of oral squamous cell carcinoma (OSCC), but the specific molecular mechanism is elusive. To elucidate the role of PRDX1 in the metastasis process of OSCC, we evaluated the expression of PRDX1 in OSCC clinical specimens and its impact on the prognosis of OSCC patients. Then, the effect of PRDX1 on OSCC metastasis and cytoskeletal reconstruction was explored in vitro and in nude mouse tongue cancer models, and the molecular mechanisms were also investigated. PRDX1 can directly interact with the actin-binding protein Cofilin, inhibiting the phosphorylation of its Ser3 site, accelerating the depolymerization and turnover of actin, promoting OSCC cell movement, and aggravating the invasion and metastasis of OSCC. In clinical samples and mouse tongue cancer models, PRDX1 also increased lymph node metastasis of OSCC and was negatively correlated with the phosphorylation of Cofilin; PRDX1 also reduced the overall survival rate of OSCC patients. In summary, our study identified that PRDX1 may be a potential therapeutic target to inhibit OSCC metastasis.
Collapse
Affiliation(s)
- Yajun Shen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Zixuan You
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lingyu Li
- Department of Oral Pathology, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaofeng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
11
|
Gómez-Morón Á, Alegre-Gómez S, Ramirez-Muñoz R, Hernaiz-Esteban A, Carrasco-Padilla C, Scagnetti C, Aguilar-Sopeña Ó, García-Gil M, Borroto A, Torres-Ruiz R, Rodriguez-Perales S, Sánchez-Madrid F, Martín-Cófreces NB, Roda-Navarro P. Human T-cell receptor triggering requires inactivation of Lim kinase-1 by Slingshot-1 phosphatase. Commun Biol 2024; 7:918. [PMID: 39080357 PMCID: PMC11289303 DOI: 10.1038/s42003-024-06605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process. Our data show that SSH1 rapidly polarises to nascent cognate synaptic contacts and later relocalises to peripheral F-actin networks organised at the mature immunological synapse. Knockdown of SSH1 expression by CRISPR/Cas9-mediated genome editing or small interfering RNA reveal a regulatory role for SSH1 in CD3ε conformational change, allowing Nck binding and proper downstream signalling and immunological synapse organisation. TCR triggering induces SSH1-mediated activation of actin dynamics through a mechanism mediated by Limk-1 inactivation. These data suggest that during early TCR activation, SSH1 is required for rapid F-actin rearrangements that mediate initial conformational changes of the TCR, integrin organisation and proximal signalling events for proper synapse organisation. Therefore, the SSH1 and Limk-1 axis is a key regulatory element for full T cell activation.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Rocio Ramirez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Alicia Hernaiz-Esteban
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Carlos Carrasco-Padilla
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Marta García-Gil
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT); Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain.
| |
Collapse
|
12
|
Christophers B, Leahy SN, Soffar DB, von Saucken VE, Broadie K, Baylies MK. Muscle cofilin alters neuromuscular junction postsynaptic development to strengthen functional neurotransmission. Development 2024; 151:dev202558. [PMID: 38869008 PMCID: PMC11266751 DOI: 10.1242/dev.202558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - David B. Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Victoria E. von Saucken
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Mary K. Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
13
|
Saleh M, Hummel K, Schlosser S, Razzazi-Fazeli E, Bartholomew JL, Holzer A, Secombes CJ, El-Matbouli M. The myxozoans Myxobolus cerebralis and Tetracapsuloides bryosalmonae modulate rainbow trout immune responses: quantitative shotgun proteomics at the portals of entry after single and co-infections. Front Cell Infect Microbiol 2024; 14:1369615. [PMID: 38803570 PMCID: PMC11129561 DOI: 10.3389/fcimb.2024.1369615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Little is known about the proteomic changes at the portals of entry in rainbow trout after infection with the myxozoan parasites, Myxobolus cerebralis, and Tetracapsuloides bryosalmonae. Whirling disease (WD) is a severe disease of salmonids, caused by the myxosporean M. cerebralis, while, proliferative kidney disease (PKD) is caused by T. bryosalmonae, which instead belongs to the class Malacosporea. Climate change is providing more suitable conditions for myxozoan parasites lifecycle, posing a high risk to salmonid aquaculture and contributing to the decline of wild trout populations in North America and Europe. Therefore, the aim of this study was to provide the first proteomic profiles of the host in the search for evasion strategies during single and coinfection with M. cerebralis and T. bryosalmonae. Methods One group of fish was initially infected with M. cerebralis and another group with T. bryosalmonae. After 30 days, half of the fish in each group were co-infected with the other parasite. Using a quantitative proteomic approach, we investigated proteomic changes in the caudal fins and gills of rainbow trout before and after co-infection. Results In the caudal fins, 16 proteins were differentially regulated post exposure to M. cerebralis, whereas 27 proteins were differentially modulated in the gills of the infected rainbow trout post exposure to T. bryosalmonae. After co-infection, 4 proteins involved in parasite recognition and the regulation of host immune responses were differentially modulated between the groups in the caudal fin. In the gills, 11 proteins involved in parasite recognition and host immunity, including 4 myxozoan proteins predicted to be virulence factors, were differentially modulated. Discussion The results of this study increase our knowledge on rainbow trout co-infections by myxozoan parasites and rainbow trout immune responses against myxozoans at the portals of entry, supporting a better understanding of these host-parasite interactions.
Collapse
Affiliation(s)
- Mona Saleh
- Division of Fish Health, University of Veterinary Medicine, Vienna, Austria
| | - Karin Hummel
- VetCore, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Astrid Holzer
- Division of Fish Health, University of Veterinary Medicine, Vienna, Austria
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, United Kingdom
| | | |
Collapse
|
14
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
15
|
Uruk G, Mocanu E, Shaw AE, Bamburg JR, Swanson RA. Cofilactin rod formation mediates inflammation-induced neurite degeneration. Cell Rep 2024; 43:113914. [PMID: 38451813 PMCID: PMC11068216 DOI: 10.1016/j.celrep.2024.113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Stroke, trauma, and neurodegenerative disorders cause loss of neurites (axons and dendrites) in addition to neuronal death. Neurite loss may result directly from a primary insult, secondary to parental neuron death, or secondary to a post-injury inflammatory response. Here, we use lipopolysaccharide and the alarmin S100β to selectively evaluate neurite loss caused by the inflammatory response. Activation of microglia and infiltrating macrophages by these stimuli causes neurite loss that far exceeds neuronal death, both in vitro and in vivo. Neurite loss is accompanied by the formation of cofilactin rods and aggregates (CARs), which are polymers of cofilin-1 and actin induced by oxidative stress and other factors. Mice deficient in either cofilin-1 or the superoxide-generating enzyme NADPH oxidase-2 show reduced CAR formation, neurite loss, and motor impairment. The findings identify a mechanism by which inflammation leads to neurite loss via CAR formation and highlight the relevance of neurite loss to functional impairment.
Collapse
Affiliation(s)
- Gökhan Uruk
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Ebony Mocanu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
16
|
Zhuravlev AV, Vetrovoy OV, Zalomaeva ES, Egozova ES, Nikitina EA, Savvateeva-Popova EV. Overexpression of the limk1 Gene in Drosophila melanogaster Can Lead to Suppression of Courtship Memory in Males. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:393-406. [PMID: 38648760 DOI: 10.1134/s0006297924030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 04/25/2024]
Abstract
Courtship suppression is a behavioral adaptation of the fruit fly. When majority of the females in a fly population are fertilized and non-receptive for mating, a male, after a series of failed attempts, decreases its courtship activity towards all females, saving its energy and reproductive resources. The time of courtship decrease depends on both duration of unsuccessful courtship and genetically determined features of the male nervous system. Thereby, courtship suppression paradigm can be used for studying molecular mechanisms of learning and memory. p-Cofilin, a component of the actin remodeling signaling cascade and product of LIM-kinase 1 (LIMK1), regulates Drosophila melanogaster forgetting in olfactory learning paradigm. Previously, we have shown that limk1 suppression in the specific types of nervous cells differently affects fly courtship memory. Here, we used Gal4 > UAS system to induce limk1 overexpression in the same types of neurons. limk1 activation in the mushroom body, glia, and fruitless neurons decreased learning index compared to the control strain or the strain with limk1 knockdown. In cholinergic and dopaminergic/serotoninergic neurons, both overexpression and knockdown of limk1 impaired Drosophila short-term memory. Thus, proper balance of the limk1 activity is crucial for normal cognitive activity of the fruit fly.
Collapse
Affiliation(s)
- Aleksandr V Zhuravlev
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia.
| | - Oleg V Vetrovoy
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia.
| | - Ekaterina S Zalomaeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia.
- Herzen State Pedagogical University of Russia, Saint Petersburg, 191186, Russia
| | - Ekaterina S Egozova
- Herzen State Pedagogical University of Russia, Saint Petersburg, 191186, Russia.
| | - Ekaterina A Nikitina
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia.
- Herzen State Pedagogical University of Russia, Saint Petersburg, 191186, Russia
| | | |
Collapse
|
17
|
Almarghalani DA, Bahader GA, Ali M, Tillekeratne LMV, Shah ZA. Cofilin Inhibitor Improves Neurological and Cognitive Functions after Intracerebral Hemorrhage by Suppressing Endoplasmic Reticulum Stress Related-Neuroinflammation. Pharmaceuticals (Basel) 2024; 17:114. [PMID: 38256947 PMCID: PMC10818666 DOI: 10.3390/ph17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation after intracerebral hemorrhage (ICH) is a crucial factor that determines the extent of the injury. Cofilin is a cytoskeleton-associated protein that drives neuroinflammation and microglia activation. A novel cofilin inhibitor (CI) synthesized and developed in our lab has turned out to be a potential therapeutic agent for targeting cofilin-mediated neuroinflammation in an in vitro model of ICH and traumatic brain injury. The current study aims to examine the therapeutic potential of CI in a mouse collagenase model of ICH and examine the neurobehavioral outcomes and its mechanism of action. Male mice were subjected to intrastriatal collagenase injection to induce ICH, and sham mice received needle insertion. Various concentrations (25, 50, and 100 mg/kg) of CI were administered to different cohorts of the animals as a single intravenous injection 3 h following ICH and intraperitoneally every 12 h for 3 days. The animals were tested for neurobehavioral parameters for up to 7 days and sacrificed to collect brains for hematoma volume measurement, Western blotting, and immunohistochemistry. Blood was collected for cofilin, TNF-α, and IL-1β assessments. The results indicated that 50 mg/kg CI improved neurological outcomes, reversed post-stroke cognitive impairment, accelerated hematoma resolution, mitigated cofilin rods/aggregates, and reduced microglial and astrocyte activation in mice with ICH. Microglia morphological analysis demonstrated that CI restored the homeostasis ramification pattern of microglia in mice treated with CI. CI suppressed endoplasmic reticulum stress-related neuroinflammation by inhibiting inflammasomes and cell death signaling pathways. We also showed that CI prevented synaptic loss by reviving the pre- and post-synaptic markers. Our results unveil a novel therapeutic approach to treating ICH and open a window for using CI in clinical practice.
Collapse
Affiliation(s)
- Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ghaith A. Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - L. M. Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
18
|
Reggi E, Kaiser S, Sahnane N, Uccella S, La Rosa S, Diviani D. AKAP2-anchored protein phosphatase 1 controls prostatic neuroendocrine carcinoma cell migration and invasion. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166916. [PMID: 37827203 DOI: 10.1016/j.bbadis.2023.166916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer (PC) is the second leading cause of cancer-related death in men. The growth of primary prostate cancer cells relies on circulating androgens and thus the standard therapy for the treatment of localized and advanced PC is the androgen deprivation therapy. Prostatic neuroendocrine carcinoma (PNEC) is an aggressive and highly metastatic subtype of prostate cancer, which displays poor prognosis and high lethality. Most of PNECs develop from prostate adenocarcinoma in response to androgen deprivation therapy, however the mechanisms involved in this transition and in the elevated biological aggressiveness of PNECs are poorly defined. Our current findings indicate that AKAP2 expression is dramatically upregulated in PNECs as compared to non-cancerous prostate tissues. Using a PNEC cell model, we could show that AKAP2 is localized both intracellularly and at the cell periphery where it colocalizes with F-actin. AKAP2 and F-actin interact directly through a newly identified actin-binding domain located on AKAP2. RNAi-mediated silencing of AKAP2 promotes the phosphorylation and deactivation of cofilin, a protein involved in actin turnover. This effect correlates with a significant reduction in cell migration and invasion. Co-immunoprecipitation experiments and proximity ligation assays revealed that AKAP2 forms a complex with the catalytic subunit of protein phosphatase 1 (PP1) in PNECs. Importantly, AKAP2-mediated anchoring of PP1 to the actin cytoskeleton regulates cofilin dephosphorylation and activation, which, in turn, enhances F-actin dynamics and favors migration and invasion. In conclusion, this study identified AKAP2 as an anchoring protein overexpressed in PNECs that controls cancer cell invasive properties by regulating cofilin phosphorylation.
Collapse
Affiliation(s)
- Erica Reggi
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Simon Kaiser
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nora Sahnane
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Pathology Service, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas Research Hospital, Milan, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy; Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
19
|
Henderson JM, Ljubojevic N, Belian S, Chaze T, Castaneda D, Battistella A, Giai Gianetto Q, Matondo M, Descroix S, Bassereau P, Zurzolo C. Tunnelling nanotube formation is driven by Eps8/IRSp53-dependent linear actin polymerization. EMBO J 2023; 42:e113761. [PMID: 38009333 PMCID: PMC10711657 DOI: 10.15252/embj.2023113761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023] Open
Abstract
Tunnelling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How cells generate these actin-mediated protrusions to span lengths beyond those attainable by canonical filopodia remains unknown. Through a combination of micropatterning, microscopy, and optical tweezer-based approaches, we demonstrate that TNTs formed through the outward extension of actin achieve distances greater than the mean length of filopodia and that branched Arp2/3-dependent pathways attenuate the extent to which actin polymerizes in nanotubes, thus limiting their occurrence. Proteomic analysis using epidermal growth factor receptor kinase substrate 8 (Eps8) as a positive effector of TNTs showed that, upon Arp2/3 inhibition, proteins enhancing filament turnover and depolymerization were reduced and Eps8 instead exhibited heightened interactions with the inverted Bin/Amphiphysin/Rvs (I-BAR) domain protein IRSp53 that provides a direct connection with linear actin polymerases. Our data reveals how common protrusion players (Eps8 and IRSp53) form tunnelling nanotubes, and that when competing pathways overutilizing such proteins and monomeric actin in Arp2/3 networks are inhibited, processes promoting linear actin growth dominate to favour tunnelling nanotube formation.
Collapse
Affiliation(s)
- J Michael Henderson
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Present address:
Department of ChemistryBowdoin CollegeBrunswickMEUSA
| | - Nina Ljubojevic
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Sorbonne UniversitéParisFrance
| | - Sevan Belian
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Daryl Castaneda
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Keele UniversityKeeleUK
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
- Bioinformatics and Biostatistics Hub, Computational Biology DepartmentCNRS USR 3756, Institut PasteurParisFrance
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Institut Pierre‐Gilles de GennesParisFrance
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
20
|
Christophers B, Leahy SN, Soffar DB, von Saucken VE, Broadie K, Baylies MK. Muscle cofilin alters neuromuscular junction postsynaptic development to strengthen functional neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568166. [PMID: 38045306 PMCID: PMC10690168 DOI: 10.1101/2023.11.21.568166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cofilin, an actin severing protein, plays critical roles in muscle sarcomere addition and maintenance. Our previous work has shown Drosophila cofilin (DmCFL) knockdown causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy (NM) caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA sequencing analysis which unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL deficiency causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown results in mislocalization of glutamate receptors containing the GluRIIA subunit in more deteriorated muscles and neurotransmission strength is strongly impaired. These findings expand our understanding of cofilin's roles in muscle to include NMJ structural development and suggest that NMJ defects may contribute to NM pathophysiology.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - David B. Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Victoria E. von Saucken
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Mary K. Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
21
|
Ventura Santos C, Rogers SL, Carter AP. CryoET shows cofilactin filaments inside the microtubule lumen. EMBO Rep 2023; 24:e57264. [PMID: 37702953 PMCID: PMC10626427 DOI: 10.15252/embr.202357264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Cytoplasmic microtubules are tubular polymers that can harbor small proteins or filaments inside their lumen. The identities of these objects and mechanisms for their accumulation have not been conclusively established. Here, we used cryogenic electron tomography of Drosophila S2 cell protrusions and found filaments inside the microtubule lumen, which resemble those reported recently in human HAP1 cells. The frequency of these filaments increased upon inhibition of the sarco/endoplasmic reticulum Ca2+ ATPase with the small molecule drug thapsigargin. Subtomogram averaging showed that the luminal filaments adopt a helical structure reminiscent of cofilin-bound actin (cofilactin). Consistent with this, we observed cofilin dephosphorylation, an activating modification, in cells under the same conditions that increased luminal filament occurrence. Furthermore, RNA interference knock-down of cofilin reduced the frequency of luminal filaments with cofilactin morphology. These results suggest that cofilin activation stimulates its accumulation on actin filaments inside the microtubule lumen.
Collapse
Affiliation(s)
| | - Stephen L Rogers
- Department of Biology and Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
22
|
Cazzaro S, Woo JAA, Wang X, Liu T, Rego S, Kee TR, Koh Y, Vázquez-Rosa E, Pieper AA, Kang DE. Slingshot homolog-1-mediated Nrf2 sequestration tips the balance from neuroprotection to neurodegeneration in Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2217128120. [PMID: 37463212 PMCID: PMC10374160 DOI: 10.1073/pnas.2217128120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-β accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.
Collapse
Affiliation(s)
- Sara Cazzaro
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Jung-A A. Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Tian Liu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Shanon Rego
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Teresa R. Kee
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
- Brain Health Medicines, Center Harrington Discovery Institute, Cleveland, OH44106
| | - David E. Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
| |
Collapse
|
23
|
Dahlstroem C, Paraschiakos T, Sun H, Windhorst S. Cryo-EM structures of actin binding proteins as tool for drug discovery. Biochem Pharmacol 2023:115680. [PMID: 37399949 DOI: 10.1016/j.bcp.2023.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Cellular actin dynamic is controlled by a plethora of actin binding proteins (ABPs), including actin nucleating, bundling, cross-linking, capping, and severing proteins. In this review, regulation of actin dynamics by ABPs will be introduced, and the role of the F-actin severing protein cofilin-1 and the F-actin bundling protein L-plastin in actin dynamics discussed in more detail. Since up-regulation of these proteins in different kinds of cancers is associated with malignant progression of cancer cells, we suggest the cryogenic electron microscopy (Cryo-EM) structure of F- actin with the respective ABP as template for in silico drug design to specifically disrupt the interaction of these ABPs with F-actin.
Collapse
Affiliation(s)
- Christian Dahlstroem
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg
| | - Themistoklis Paraschiakos
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg
| | - Han Sun
- Structural Chemistry and Computational Biophysics Group, Leipniz-Forschungsinstitut für Moekulare Pharmakologie, Robert-Rössle-Strasse 10, D-13125, Berlin; Institute of Chemistry, Technical University of Berlin, D-10623, Berlin
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg.
| |
Collapse
|
24
|
Bahader GA, James AW, Almarghalani DA, Shah ZA. Cofilin Inhibitor Protects against Traumatic Brain Injury-Induced Oxidative Stress and Neuroinflammation. BIOLOGY 2023; 12:630. [PMID: 37106830 PMCID: PMC10136258 DOI: 10.3390/biology12040630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Microglial activation and failure of the antioxidant defense mechanisms are major hallmarks in different brain injuries, particularly traumatic brain injury (TBI). Cofilin is a cytoskeleton-associated protein involved in actin binding and severing. In our previous studies, we identified the putative role of cofilin in mediating microglial activation and apoptosis in ischemic and hemorrhagic conditions. Others have highlighted the involvement of cofilin in ROS production and the resultant neuronal death; however, more studies are needed to delineate the role of cofilin in oxidative stress conditions. The present study aims to investigate the cellular and molecular effects of cofilin in TBI using both in vitro and in vivo models as well as the first-in-class small-molecule cofilin inhibitor (CI). An in vitro H2O2-induced oxidative stress model was used in two different types of cells, human neuroblastoma (SH-SY5Y) and microglia (HMC3), along with an in vivo controlled cortical impact model of TBI. Our results show that treatment with H2O2 increases the expression of cofilin and slingshot-1 (SSH-1), an upstream regulator of cofilin, in microglial cells, which was significantly reduced in the CI-treated group. Cofilin inhibition significantly attenuated H2O2-induced microglial activation by reducing the release of proinflammatory mediators. Furthermore, we demonstrate that CI protects against H2O2-induced ROS accumulation and neuronal cytotoxicity, activates the AKT signaling pathway by increasing its phosphorylation, and modulates mitochondrial-related apoptogenic factors. The expression of NF-E2-related factor 2 (Nrf2) and its associated antioxidant enzymes were also increased in CI-treated SY-SY5Y. In the mice model of TBI, CI significantly activated the Nrf2 and reduced the expression of oxidative/nitrosative stress markers at the protein and gene levels. Together, our data suggest that cofilin inhibition provides a neuroprotective effect in in vitro and in vivo TBI mice models by inhibiting oxidative stress and inflammatory responses, the pivotal mechanisms involved in TBI-induced brain damage.
Collapse
Affiliation(s)
- Ghaith A. Bahader
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| |
Collapse
|
25
|
Almarghalani DA, Sha X, Mrak RE, Shah ZA. Spatiotemporal Cofilin Signaling, Microglial Activation, Neuroinflammation, and Cognitive Impairment Following Hemorrhagic Brain Injury. Cells 2023; 12:1153. [PMID: 37190062 PMCID: PMC10137307 DOI: 10.3390/cells12081153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a significant health concern associated with high mortality. Cofilin plays a crucial role in stress conditions, but its signaling following ICH in a longitudinal study is yet to be ascertained. In the present study, we examined the cofilin expression in human ICH autopsy brains. Then, the spatiotemporal cofilin signaling, microglia activation, and neurobehavioral outcomes were investigated in a mouse model of ICH. Human autopsy brain sections from ICH patients showed increased intracellular cofilin localization within microglia in the perihematomal area, possibly associated with microglial activation and morphological changes. Various cohorts of mice were subjected to intrastriatal collagenase injection and sacrificed at time points of 1, 3, 7, 14, 21, and 28 days. Mice suffered from severe neurobehavioral deficits after ICH, lasting for 7 days, followed by a gradual improvement. Mice suffered post-stroke cognitive impairment (PSCI) both acutely and in the chronic phase. Hematoma volume increased from day 1 to 3, whereas ventricle size increased from day 21 to 28. Cofilin protein expression increased in the ipsilateral striatum on days 1 and 3 and then decreased from days 7 to 28. An increase in activated microglia was observed around the hematoma on days 1 to 7, followed by a gradual reduction up to day 28. Around the hematoma, activated microglia showed morphological changes from ramified to amoeboid. mRNA levels of inflammatory [tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin-6 (IL-6) and anti-inflammatory markers [interleukin-10 (IL-10), transforming growth factor-β TGF-β, and arginase I (Arg1)] increased during the acute phase and decreased in the chronic phase. Blood cofilin levels increased on day 3 and matched the increase in chemokine levels. slingshot protein phosphatase 1 (SSH1) protein, which activates cofilin, was increased from day 1 to 7. These results suggest that microglial activation might be the sequel of cofilin overactivation following ICH, leading to widespread neuroinflammation and consequent PSCI.
Collapse
Affiliation(s)
- Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojin Sha
- Department of Pathology, College of Medicine, The University of Toledo, Toledo, OH 43614, USA
| | - Robert E. Mrak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
26
|
Senatus L, Egaña-Gorroño L, López-Díez R, Bergaya S, Aranda JF, Amengual J, Arivazhagan L, Manigrasso MB, Yepuri G, Nimma R, Mangar KN, Bernadin R, Zhou B, Gugger PF, Li H, Friedman RA, Theise ND, Shekhtman A, Fisher EA, Ramasamy R, Schmidt AM. DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice. Commun Biol 2023; 6:280. [PMID: 36932214 PMCID: PMC10023694 DOI: 10.1038/s42003-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sonia Bergaya
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jaume Amengual
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ramesh Nimma
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kaamashri N Mangar
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Rollanda Bernadin
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Boyan Zhou
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Huilin Li
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Neil D Theise
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, USA
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
27
|
Nakajima M, Kawahara R, Simizu S. Cofilin promotes vasculogenic mimicry by regulating the actin cytoskeleton in human breast cancer cells. FEBS Lett 2023; 597:1114-1124. [PMID: 36737242 DOI: 10.1002/1873-3468.14594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Vasculogenic mimicry (VM) is the formation of microvascular channels by cancer cells. VM requires cellular processes that are regulated by changes in cellular migration and morphology. Cofilin (CFL), a key regulator of actin depolymerization, has been reported to affect malignant phenotypes of cancer. We show that treatment with inhibitors of actin dynamics suppresses VM in MDA-MB-231 human breast cancer cells. We established CFL-knockout (KO) MDA-MB-231 cells and found that VM was attenuated in CFL-KO cells. Although the re-expression of wild-type CFL restored VM in CFL-KO cells, inactive phosphomimetic CFL failed to do so. Collectively, our results demonstrate that CFL is a critical regulator of VM and implicate CFL as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Minami Nakajima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
28
|
Tahtamouni L, Alzghoul A, Alderfer S, Sun J, Ahram M, Prasad A, Bamburg J. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS One 2022; 17:e0279746. [PMID: 36584207 PMCID: PMC9803305 DOI: 10.1371/journal.pone.0279746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is highly metastatic and of poor prognosis. Metastasis involves coordinated actin filament dynamics mediated by cofilin and associated proteins. Activated androgen receptor (AR) is believed to contribute to TNBC tumorigenesis. Our current work studied roles of activated AR and cofilin phospho-regulation during migration of three AR+ TNBC cell lines to determine if altered cofilin regulation can explain their migratory differences. Untreated or AR agonist-treated BT549, MDA-MB-453, and SUM159PT cells were compared to cells silenced for cofilin (KD) or AR expression/function (bicalutamide). Cofilin-1 was found to be the only ADF/cofilin isoform expressed in each TNBC line. Despite a significant increase in cofilin kinase caused by androgens, the ratio of cofilin:p-cofilin (1:1) did not change in SUM159PT cells. BT549 and MDA-MB-453 cells contain high p-cofilin levels which underwent androgen-induced dephosphorylation through increased cofilin phosphatase expression, but surprisingly maintain a leading-edge with high p-cofilin/total cofilin not found in SUM159PT cells. Androgens enhanced cell polarization in all lines, stimulated wound healing and transwell migration rates and increased N/E-cadherin mRNA ratios while reducing cell adhesion in BT549 and MDA-MB-453 cells. Cofilin KD negated androgen effects in MDA-MB-453 except for cell adhesion, while in BT549 cells it abrogated androgen-reduced cell adhesion. In SUM159PT cells, cofilin KD with and without androgens had similar effects in almost all processes studied. AR dependency of the processes were confirmed. In conclusion, cofilin regulation downstream of active AR is dependent on which actin-mediated process is being examined in addition to being cell line-specific. Although MDA-MB-453 cells demonstrated some control of cofilin through an AR-dependent mechanism, other AR-dependent pathways need to be further studied. Non-cofilin-dependent mechanisms that modulate migration of SUM159PT cells need to be investigated. Categorizing TNBC behavior as AR responsive and/or cofilin dependent can inform on decisions for therapeutic treatment.
Collapse
Affiliation(s)
- Lubna Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail: ,
| | - Ahmad Alzghoul
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sydney Alderfer
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Jiangyu Sun
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
29
|
Sánchez-Roncancio C, García B, Gallardo-Hidalgo J, Yáñez JM. GWAS on Imputed Whole-Genome Sequence Variants Reveal Genes Associated with Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). Genes (Basel) 2022; 14:114. [PMID: 36672855 PMCID: PMC9859203 DOI: 10.3390/genes14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) allow the identification of associations between genetic variants and important phenotypes in domestic animals, including disease-resistance traits. Whole Genome Sequencing (WGS) data can help increase the resolution and statistical power of association mapping. Here, we conduced GWAS to asses he facultative intracellular bacterium Piscirickettsia salmonis, which affects farmed rainbow trout, Oncorhynchus mykiss, in Chile using imputed genotypes at the sequence level and searched for candidate genes located in genomic regions associated with the trait. A total of 2130 rainbow trout were intraperitoneally challenged with P. salmonis under controlled conditions and genotyped using a 57K single nucleotide polymorphism (SNP) panel. Genotype imputation was performed in all the genotyped animals using WGS data from 102 individuals. A total of 488,979 imputed WGS variants were available in the 2130 individuals after quality control. GWAS revealed genome-wide significant quantitative trait loci (QTL) in Omy02, Omy03, Omy25, Omy26 and Omy27 for time to death and in Omy26 for binary survival. Twenty-four (24) candidate genes associated with P. salmonis resistance were identified, which were mainly related to phagocytosis, innate immune response, inflammation, oxidative response, lipid metabolism and apoptotic process. Our results provide further knowledge on the genetic variants and genes associated with resistance to intracellular bacterial infection in rainbow trout.
Collapse
Affiliation(s)
- Charles Sánchez-Roncancio
- Doctorado en Acuicultura, Programa Cooperativo: Universidad de Chile. Universidad Católica del Norte. Pontificia Universidad Católica de Valparaíso, Chile
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
| | - Baltasar García
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | - Jousepth Gallardo-Hidalgo
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | - José M. Yáñez
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Núcleo Milenio de Salmonidos Invasores Australes (INVASAL), Concepcion 4030000, Chile
| |
Collapse
|
30
|
Increased Expression of the RBPMS Splice Variants Inhibits Cell Proliferation in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms232314742. [PMID: 36499073 PMCID: PMC9738375 DOI: 10.3390/ijms232314742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
RNA-Binding Protein with Multiple Splicing (RBPMS) is a member of family proteins that bind to nascent RNA transcripts and regulate their splicing, localization, and stability. Evidence indicates that RBPMS controls the activity of transcription factors associated with cell growth and proliferation, including AP-1 and Smads. Three major RBPMS protein splice variants (RBPMSA, RBPMSB, and RBPMSC) have been described in the literature. We previously reported that reduced RBPMS levels decreased the sensitivity of ovarian cancer cells to cisplatin treatment. However, little is known about the biological role of the RBPMS splice variants in ovarian cancer cells. We performed RT-PCR and Western blots and observed that both RBPMSA and RBPMSC are reduced at the mRNA and protein levels in cisplatin resistant as compared with cisplatin sensitive ovarian cancer cells. The mRNA and protein levels of RBPMSB were not detectable in any of the ovarian cancer cells tested. To better understand the biological role of each RBPMSA and RBPMSC, we transfected these two splice variants in the A2780CP20 and OVCAR3CIS cisplatin resistant ovarian cancer cells and performed cell proliferation, cell migration, and invasion assays. Compared with control clones, a significant reduction in the number of colonies, colony size, cell migration, and invasion was observed with RBPMSA and RBPMSC overexpressed cells. Moreover, A2780CP20-RBPMSA and A2780CP20-RBPMSC clones showed reduced senescence-associated β-galactosidase (β-Gal)-levels when compared with control clones. A2780CP20-RBPMSA clones were more sensitive to cisplatin treatment as compared with A2780CP20-RBPMSC clones. The A2780CP20-RBPMSA and A2780CP20-RBPMSC clones subcutaneously injected into athymic nude mice formed smaller tumors as compared with A2780CP20-EV control group. Additionally, immunohistochemical analysis showed lower proliferation (Ki67) and angiogenesis (CD31) staining in tissue sections of A2780CP20-RBPMSA and A2780CP20-RBPMSC tumors compared with controls. RNAseq studies revealed many common RNA transcripts altered in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. Unique RNA transcripts deregulated by each RBPMS variant were also observed. Kaplan-Meier (KM) plotter database information identified clinically relevant RBPMSA and RBPMSC downstream effectors. These studies suggest that increased levels of RBPMSA and RBPMSC reduce cell proliferation in ovarian cancer cells. However, only RBPMSA expression levels were associated with the sensitivity of ovarian cancer cells to cisplatin treatment.
Collapse
|
31
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
32
|
Abe M, Kamiyama T, Izumi Y, Qian Q, Yoshihashi Y, Degawa Y, Watanabe K, Hattori Y, Uemura T, Niwa R. Shortened lifespan induced by a high-glucose diet is associated with intestinal immune dysfunction in Drosophila sechellia. J Exp Biol 2022; 225:jeb244423. [PMID: 36226701 PMCID: PMC9687539 DOI: 10.1242/jeb.244423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022]
Abstract
Organisms can generally be divided into two nutritional groups: generalists that consume various types of food and specialists that consume specific types of food. However, it remains unclear how specialists adapt to only limited nutritional conditions in nature. In this study, we addressed this question by focusing on Drosophila fruit flies. The generalist Drosophila melanogaster can consume a wide variety of foods that contain high glucose levels. In contrast, the specialist Drosophila sechellia consumes only the Indian mulberry, known as noni (Morinda citrifolia), which contains relatively little glucose. We showed that the lifespan of D. sechellia was significantly shortened under a high-glucose diet, but this effect was not observed for D. melanogaster. In D. sechellia, a high-glucose diet induced disorganization of the gut epithelia and visceral muscles, which was associated with abnormal digestion and constipation. RNA-sequencing analysis revealed that many immune-responsive genes were suppressed in the gut of D. sechellia fed a high-glucose diet compared with those fed a control diet. Consistent with this difference in the expression of immune-responsive genes, high glucose-induced phenotypes were restored by the addition of tetracycline or scopoletin, a major nutritional component of noni, each of which suppresses gut bacterial growth. We propose that, in D. sechellia, a high-glucose diet impairs gut immune function, which leads to a change in gut microbiota, disorganization of the gut epithelial structure and a shortened lifespan.
Collapse
Affiliation(s)
- Maiko Abe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Takumi Kamiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Qingyin Qian
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yuma Yoshihashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadairakogen 1278-294, Nagano 386-2204, Japan
| | - Yousuke Degawa
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadairakogen 1278-294, Nagano 386-2204, Japan
| | - Kaori Watanabe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED, Otemachi 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
- AMED-CREST, AMED, Otemachi 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
33
|
Collins R, Lee H, Jones DH, Elkins JM, Gillespie JA, Thomas C, Baldwin AG, Jones K, Waters L, Paine M, Atack JR, Ward SE, Grubisha O, Foley DW. Comparative Analysis of Small-Molecule LIMK1/2 Inhibitors: Chemical Synthesis, Biochemistry, and Cellular Activity. J Med Chem 2022; 65:13705-13713. [PMID: 36205722 PMCID: PMC9619402 DOI: 10.1021/acs.jmedchem.2c00751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/30/2022]
Abstract
LIM domain kinases 1 and 2 (LIMK1 and LIMK2) regulate actin dynamics and subsequently key cellular functions such as proliferation and migration. LIMK1 and LIMK2 phosphorylate and inactivate cofilin leading to increased actin polymerization. As a result, LIMK inhibitors are emerging as a promising treatment strategy for certain cancers and neurological disorders. High-quality chemical probes are required if the role of these kinases in health and disease is to be understood. To that end, we report the results of a comparative assessment of 17 reported LIMK1/2 inhibitors in a variety of in vitro enzymatic and cellular assays. Our evaluation has identified three compounds (TH-257, LIJTF500025, and LIMKi3) as potent and selective inhibitors suitable for use as in vitro and in vivo pharmacological tools for the study of LIMK function in cell biology.
Collapse
Affiliation(s)
- Ross Collins
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Hyunah Lee
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - D. Heulyn Jones
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Jonathan M. Elkins
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Jason A. Gillespie
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Carys Thomas
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Alex G. Baldwin
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Kimberley Jones
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Loren Waters
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Marie Paine
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - John R. Atack
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Simon E. Ward
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Olivera Grubisha
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - David W. Foley
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
34
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
35
|
Cazzaro S, Fang C, Khan H, Witas R, Kee TR, Woo JAA, Kang DE. Slingshot homolog-1 mediates the secretion of small extracellular vesicles containing misfolded proteins by regulating autophagy cargo receptors and actin dynamics. Front Aging Neurosci 2022; 14:933979. [PMID: 36092812 PMCID: PMC9452914 DOI: 10.3389/fnagi.2022.933979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence indicates that the accumulation misfolded proteins in Alzheimer's disease (AD) arises from clearance defects in the autophagy-lysosome pathway. Misfolded proteins such as Aβ and tau are secreted in small extracellular vesicles (i.e., exosomes) and are propagated from cell to cell in part through secreted small extracellular vesicles (sEVs). Recent studies suggest that autophagic activity and exosome secretion are coregulated events, and multiple autophagy-related proteins are found in sEVs, including the cargo receptors Sqstm1/p62 and optineurin. However, whether and how autophagy cargo receptors per se regulate the secretion of sEVs is unknown. Moreover, despite the prominent role of actin dynamics in secretory vesicle release, its role in EV secretion is unknown. In this study, we leveraged the dual axes of Slingshot Homolog-1 (SSH1), which inhibits Sqstm1/p62-mediated autophagy and activates cofilin-mediated actin dynamics, to study the regulation of sEV secretion. Here we show that cargo receptors Sqstm1/p62 and optineurin inhibit sEV secretion, an activity that requires their ability to bind ubiquitinated cargo. Conversely, SSH1 increases sEV secretion by dephosphorylating Sqstm1/p62 at pSer403, the phospho-residue that allows Sqstm1/p62 to bind ubiquitinated cargo. In addition, increasing actin dynamics through the SSH1-cofilin activation pathway also increases sEV secretion, which is mimicked by latrunculin B treatment. Finally, Aβ42 oligomers and mutant tau increase sEV secretion and are physically associated with secreted sEVs. These findings suggest that increasing cargo receptor engagement with autophagic cargo and reducing actin dynamics (i.e., SSH1 inhibition) represents an attractive strategy to promote misfolded protein degradation while reducing sEV-mediated cell to cell spread of pathology.
Collapse
Affiliation(s)
- Sara Cazzaro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Cenxiao Fang
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Hirah Khan
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Richard Witas
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Teresa R. Kee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Jung-A. A. Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David E. Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
36
|
Rademaker G, Costanza B, Pyr Dit Ruys S, Peiffer R, Agirman F, Maloujahmoum N, Vertommen D, Turtoi A, Bellahcène A, Castronovo V, Peulen O. Paladin, overexpressed in colon cancer, is required for actin polymerisation and liver metastasis dissemination. Oncogenesis 2022; 11:42. [PMID: 35882839 PMCID: PMC9325978 DOI: 10.1038/s41389-022-00416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Colorectal cancer remains a public health issue and most colon cancer patients succumb to the development of metastases. Using a specific protocol of pressure-assisted interstitial fluid extrusion to recover soluble biomarkers, we identified paladin as a potential colon cancer liver metastases biomarker. Methods Using shRNA gene knockdown, we explored the biological function of paladin in colon cancer cells and investigated the phospho-proteome within colon cancer cells. We successively applied in vitro migration assays, in vivo metastasis models and co-immunoprecipitation experiments. Results We discovered that paladin is required for colon cancer cell migration and metastasis, and that paladin depletion altered the phospho-proteome within colon cancer cells. Data are available via ProteomeXchange with identifier PXD030803. Thanks to immunoprecipitation experiments, we demonstrated that paladin, was interacting with SSH1, a phosphatase involved in colon cancer metastasis. Finally, we showed that paladin depletion in cancer cells results in a less dynamic actin cytoskeleton. Conclusions Paladin is an undervalued protein in oncology. This study highlights for the first time that, paladin is participating in actin cytoskeleton remodelling and is required for efficient cancer cell migration. ![]()
Collapse
Affiliation(s)
- Gilles Rademaker
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium.,Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Brunella Costanza
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, 20139, Italy
| | - Sébastien Pyr Dit Ruys
- MassProt platform, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Didier Vertommen
- MassProt platform, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andrei Turtoi
- Tumor microenvironment and resistance to treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Akeila Bellahcène
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium.
| |
Collapse
|
37
|
Chou HC, Cheng CM, Yang CH, Lin TY, Liu YW, Tan TH, Chen YR. DUSP3 regulates phosphorylation-mediated degradation of occludin and is required for maintaining epithelial tight junction. J Biomed Sci 2022; 29:40. [PMID: 35705979 PMCID: PMC9199239 DOI: 10.1186/s12929-022-00826-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background Tight junctions (TJ) are multi-protein complexes that hold epithelial cells together and form structural and functional barriers for maintaining proper biological activities. Dual specificity phosphatase 3 (DUSP3), a suppressor of multiple protein tyrosine (Tyr) kinases, is decreased in lung cancer tissues. Here we demonstrated the role of DUSP3 in regulation of epithelial TJ. Methods Barrier functions of TJ were examined in wild-type or DUSP3-deficient lung epithelial cells. Animal and clinical data were analyzed for the association between DUSP3 deficiency and lung cancer progression. Proximity ligation assay, immunoblotting, and phosphatase assay were performed to study the effect of DUSP3 on the TJ protein occludin (OCLN). Mutations of Tyr residues on OCLN showed the role of Tyr phosphorylation in regulating OCLN. Results Compared to those of the DUSP3-expressing cells, we found the expression and distribution of ZO-1, a TJ-anchoring molecule, were abnormal in DUSP3-deficient cells. OCLN had an increased phosphorylation level in DUSP3-deficient cells. We identified that OCLN is a direct substrate of DUSP3. DUSP3 regulated OCLN ubiquitination and degradation through decreasing OCLN tyrosine phosphorylation directly or through suppressing focal adhesion kinase, the OCLN kinase. Conclusion Our study revealed that DUSP3 is an important TJ regulatory protein and its decrease may be involved in progression of epithelial cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00826-x.
Collapse
Affiliation(s)
- Hsiao-Chin Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Chun-Mei Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Chi-Hwa Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Tzu-Yin Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Rong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan.
| |
Collapse
|
38
|
Yang Y, Liu JJ. Structural LTP: Signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines. Curr Opin Neurobiol 2022; 74:102534. [DOI: 10.1016/j.conb.2022.102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 01/05/2023]
|
39
|
Schiavi-Ehrenhaus LJ, Romarowski A, Jabloñski M, Krapf D, Luque GM, Buffone MG. The early molecular events leading to COFILIN phosphorylation during mouse sperm capacitation are essential for acrosomal exocytosis. J Biol Chem 2022; 298:101988. [PMID: 35487245 PMCID: PMC9142561 DOI: 10.1016/j.jbc.2022.101988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
The actin cytoskeleton reorganization during sperm capacitation is essential for the occurrence of acrosomal exocytosis (AR) in several mammalian species. Here, we demonstrate that in mouse sperm, within the first minutes of exposure upon capacitating conditions, the activity of RHOA/C and RAC1 is essential for LIMK1 and COFILIN phosphorylation. However, we observed that the signaling pathway involving RAC1 and PAK4 is the main player in controlling actin polymerization in the sperm head necessary for the occurrence of AR. Moreover, we show that the transient phosphorylation of COFILIN is also influenced by the Slingshot family of protein phosphatases (SSH1). The activity of SSH1 is regulated by the dual action of two pathways. On one hand, RHOA/C and RAC1 activity promotes SSH1 phosphorylation (inactivation). On the other hand, the activating dephosphorylation is driven by okadaic acid-sensitive phosphatases. This regulatory mechanism is independent of the commonly observed activating mechanisms involving PP2B and emerges as a new finely tuned modulation that is, so far, exclusively observed in mouse sperm. However, persistent phosphorylation of COFILIN by SSH1 inhibition or okadaic acid did not altered actin polymerization and the AR. Altogether, our results highlight the role of small GTPases in modulating actin dynamics required for AR.
Collapse
Affiliation(s)
- Liza J Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Ana Romarowski
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
40
|
Lawal O, Ulloa Severino FP, Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022; 70:1467-1483. [PMID: 35535566 PMCID: PMC9233050 DOI: 10.1002/glia.24191] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Brain circuits undergo substantial structural changes during development, driven by the formation, stabilization, and elimination of synapses. Synaptic connections continue to undergo experience‐dependent structural rearrangements throughout life, which are postulated to underlie learning and memory. Astrocytes, a major glial cell type in the brain, are physically in contact with synaptic circuits through their structural ensheathment of synapses. Astrocytes strongly contribute to the remodeling of synaptic structures in healthy and diseased central nervous systems by regulating synaptic connectivity and behaviors. However, whether structural plasticity of astrocytes is involved in their critical functions at the synapse is unknown. This review will discuss the emerging evidence linking astrocytic structural plasticity to synaptic circuit remodeling and regulation of behaviors. Moreover, we will survey possible molecular and cellular mechanisms regulating the structural plasticity of astrocytes and their non‐cell‐autonomous effects on neuronal plasticity. Finally, we will discuss how astrocyte morphological changes in different physiological states and disease conditions contribute to neuronal circuit function and dysfunction.
Collapse
Affiliation(s)
- Oluwadamilola Lawal
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neuroscience and Psychology, Duke University, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, Durham, North Carolina, USA
| |
Collapse
|
41
|
Li ZD, Yu X, Mei Z, Zeng T, Chen L, Xu XL, Li H, Huang T, Cai YD. Identifying luminal and basal mammary cell specific genes and their expression patterns during pregnancy. PLoS One 2022; 17:e0267211. [PMID: 35486595 PMCID: PMC9053804 DOI: 10.1371/journal.pone.0267211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Mammary gland is present in all mammals and usually functions in producing milk to feed the young offspring. Mammogenesis refers to the growth and development of mammary gland, which begins at puberty and ends after lactation. Pregnancy is regulated by various cytokines, which further contributes to mammary gland development. Epithelial cells, including basal and luminal cells, are one of the major components of mammary gland cells. The development of basal and luminal cells has been observed to significantly differ at different stages. However, the underlying mechanisms for differences between basal and luminal cells have not been fully studied. To explore the mechanisms underlying the differentiation of mammary progenitors or their offspring into luminal and myoepithelial cells, the single-cell sequencing data on mammary epithelia cells of virgin and pregnant mouse was deeply investigated in this work. We evaluated features by using Monte Carlo feature selection and plotted the incremental feature selection curve with support vector machine or RIPPER to find the optimal gene features and rules that can divide epithelial cells into four clusters with different cell subtypes like basal and luminal cells and different phases like pregnancy and virginity. As representations, the feature genes Cldn7, Gjb6, Sparc, Cldn3, Cited1, Krt17, Spp1, Cldn4, Gjb2 and Cldn19 might play an important role in classifying the epithelial mammary cells. Notably, seven most important rules based on the combination of cell-specific and tissue-specific expressions of feature genes effectively classify the epithelial mammary cells in a quantitative and interpretable manner.
Collapse
Affiliation(s)
- Zhan Dong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Xiangtian Yu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zi Mei
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xian Ling Xu
- Guangdong AIB Polytechnic College, Guangzhou, China
| | - Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (TH); (YDC)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- * E-mail: (TH); (YDC)
| |
Collapse
|
42
|
Alaqel SI, Dlamini S, Almarghalani DA, Shettigar A, Alhadidi Q, Kodithuwakku SH, Stary C, Tillekeratne LMV, Shah ZA. Synthesis and Development of a Novel First-in-Class Cofilin Inhibitor for Neuroinflammation in Hemorrhagic Brain Injury. ACS Chem Neurosci 2022; 13:1014-1029. [PMID: 35302736 PMCID: PMC9996837 DOI: 10.1021/acschemneuro.2c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is devastating among stroke types with high mortality. To date, not a single therapeutic intervention has been successful. Cofilin plays a critical role in inflammation and cell death. In the current study, we embarked on designing and synthesizing a first-in-class small-molecule inhibitor of cofilin to target secondary complications of ICH, mainly neuroinflammation. A series of compounds were synthesized, and two lead compounds SZ-3 and SK-1-32 were selected for further studies. Neuronal and microglial viabilities were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay using neuroblastoma (SHSY-5Y) and human microglial (HMC-3) cell lines, respectively. Lipopolysaccharide (LPS)-induced inflammation in HMC-3 cells was used for neurotoxicity assay. Other assays include nitric oxide (NO) by Griess reagent, cofilin inhibition by F-actin depolymerization, migration by scratch wound assay, tumor necrosis factor (TNF-α) by enzyme-linked immunosorbent assay (ELISA), protease-activated receptor-1 (PAR-1) by immunocytochemistry and Western blotting (WB), and protein expression levels of several proteins by WB. SK-1-32 increased neuronal/microglial survival, reduced NO, and prevented neurotoxicity. However, SZ-3 showed no effect on neuronal/microglial survival but prevented microglia from LPS-induced inflammation by decreasing NO and preventing neurotoxicity. Therefore, we selected SZ-3 for further molecular studies, as it showed potent anti-inflammatory activities. SZ-3 decreased cofilin severing activity, and its treatment of LPS-activated HMC-3 cells attenuated microglial activation and suppressed migration and proliferation. HMC-3 cells subjected to thrombin, as an in vitro model for hemorrhagic stroke, and treated with SZ-3 after 3 h showed significantly decreased NO and TNF-α, significantly increased protein expression of phosphocofilin, and decreased PAR-1. In addition, SZ-3-treated SHSY-5Y showed a significant increase in cell viability by significantly reducing nuclear factor-κ B (NF-κB), caspase-3, and high-temperature requirement (HtrA2). Together, our results support the novel idea of targeting cofilin to counter neuroinflammation during secondary injury following ICH.
Collapse
Affiliation(s)
- Saleh I. Alaqel
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Samkeliso Dlamini
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH, USA 43614
| | - Arjun Shettigar
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Sinali H. Kodithuwakku
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Creed Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA 94305
| | | | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| |
Collapse
|
43
|
Ribba AS, Fraboulet S, Sadoul K, Lafanechère L. The Role of LIM Kinases during Development: A Lens to Get a Glimpse of Their Implication in Pathologies. Cells 2022; 11:cells11030403. [PMID: 35159213 PMCID: PMC8834001 DOI: 10.3390/cells11030403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022] Open
Abstract
The organization of cell populations within animal tissues is essential for the morphogenesis of organs during development. Cells recognize three-dimensional positions with respect to the whole organism and regulate their cell shape, motility, migration, polarization, growth, differentiation, gene expression and cell death according to extracellular signals. Remodeling of the actin filaments is essential to achieve these cell morphological changes. Cofilin is an important binding protein for these filaments; it increases their elasticity in terms of flexion and torsion and also severs them. The activity of cofilin is spatiotemporally inhibited via phosphorylation by the LIM domain kinases 1 and 2 (LIMK1 and LIMK2). Phylogenetic analysis indicates that the phospho-regulation of cofilin has evolved as a mechanism controlling the reorganization of the actin cytoskeleton during complex multicellular processes, such as those that occur during embryogenesis. In this context, the main objective of this review is to provide an update of the respective role of each of the LIM kinases during embryonic development.
Collapse
|
44
|
Bizzozero L, Pergolizzi M, Pascal D, Maldi E, Villari G, Erriquez J, Volante M, Serini G, Marchiò C, Bussolino F, Arese M. Tumoral Neuroligin 1 Promotes Cancer-Nerve Interactions and Synergizes with the Glial Cell Line-Derived Neurotrophic Factor. Cells 2022; 11:280. [PMID: 35053395 PMCID: PMC8774081 DOI: 10.3390/cells11020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor-nerve interactions, we assessed a potential NLGN1-GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.
Collapse
Affiliation(s)
- Laura Bizzozero
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (L.B.); (M.P.); (D.P.); (G.V.); (M.V.); (G.S.); (F.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Margherita Pergolizzi
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (L.B.); (M.P.); (D.P.); (G.V.); (M.V.); (G.S.); (F.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Davide Pascal
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (L.B.); (M.P.); (D.P.); (G.V.); (M.V.); (G.S.); (F.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Elena Maldi
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.M.); (C.M.)
| | - Giulia Villari
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (L.B.); (M.P.); (D.P.); (G.V.); (M.V.); (G.S.); (F.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | | | - Marco Volante
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (L.B.); (M.P.); (D.P.); (G.V.); (M.V.); (G.S.); (F.B.)
| | - Guido Serini
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (L.B.); (M.P.); (D.P.); (G.V.); (M.V.); (G.S.); (F.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Caterina Marchiò
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.M.); (C.M.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (L.B.); (M.P.); (D.P.); (G.V.); (M.V.); (G.S.); (F.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Marco Arese
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (L.B.); (M.P.); (D.P.); (G.V.); (M.V.); (G.S.); (F.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| |
Collapse
|
45
|
Chatterjee D, Preuss F, Dederer V, Knapp S, Mathea S. Structural Aspects of LIMK Regulation and Pharmacology. Cells 2022; 11:cells11010142. [PMID: 35011704 PMCID: PMC8750758 DOI: 10.3390/cells11010142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Malfunction of the actin cytoskeleton is linked to numerous human diseases including neurological disorders and cancer. LIMK1 (LIM domain kinase 1) and its paralogue LIMK2 are two closely related kinases that control actin cytoskeleton dynamics. Consequently, they are potential therapeutic targets for the treatment of such diseases. In the present review, we describe the LIMK conformational space and its dependence on ligand binding. Furthermore, we explain the unique catalytic mechanism of the kinase, shedding light on substrate recognition and how LIMK activity is regulated. The structural features are evaluated for implications on the drug discovery process. Finally, potential future directions for targeting LIMKs pharmacologically, also beyond just inhibiting the kinase domain, are discussed.
Collapse
Affiliation(s)
- Deep Chatterjee
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Franziska Preuss
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Verena Dederer
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
46
|
Howard J, Goh CY, Gorzel KW, Higgins M, McCann A. The potential role of cofilin-1 in promoting triple negative breast cancer (TNBC) metastasis via the extracellular vesicles (EVs). Transl Oncol 2022; 15:101247. [PMID: 34678587 PMCID: PMC8529549 DOI: 10.1016/j.tranon.2021.101247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 02/09/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive cancer, particularly prone to metastasis and is associated with poor survival outcomes. The key to unravelling the aggressiveness of TNBC lies in decoding the mechanism by which it metastasises. Cofilin-1 is a well-studied member of the cofilin family, involved in actin depolymerisation. Studies have described the diverse roles of cofilin-1 including cell motility, apoptosis and lipid metabolism. Levels of cofilin-1 have been shown to be increased in many different types of malignant cells, with increased cofilin-1 protein levels associated with poor prognosis in patients with TNBC. Extracellular vesicles (EVs) are microvesicles typically around 100 nm in size, found in all biological fluids examined to date (Lötvall et al., 2014). Proteomic studies on extracellular vesicles (EVs) have shown that cofilin-1 is amongst the most frequently detected. Moreover, decreased levels of cofilin-1 potentially inhibit the release of EVs from cells. Additionally, Cofilin-1 is essential for the maturation of EVs and may also play a key role in the establishment of the pre-metastatic niche, thus promoting tumour cell migration. Further work into the exact mechanism by which cofilin-1 advances TNBC metastasis, may potentially prevent disease progression and improve outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Jane Howard
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Chia Yin Goh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
| | - Karolina Weiner Gorzel
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; St Vincent's University Hospital (SVUH), Elm Park, Dublin 4, Ireland
| | - Michaela Higgins
- St Vincent's University Hospital (SVUH), Elm Park, Dublin 4, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
47
|
LIM Kinases in Osteosarcoma Development. Cells 2021; 10:cells10123542. [PMID: 34944050 PMCID: PMC8699892 DOI: 10.3390/cells10123542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Tumorigenesis is a long-term and multistage process that often leads to the formation of metastases. During this pathological course, two major events appear to be crucial: primary tumour growth and metastatic expansion. In this context, despite research and clinical advances during the past decades, bone cancers remain a leading cause of death worldwide among paediatric cancer patients. Osteosarcomas are the most common malignant bone tumours in children and adolescents. Notwithstanding advances in therapeutic treatments, many patients succumb to these diseases. In particular, less than 30% of patients who demonstrate metastases at diagnosis or are poor responders to chemotherapy survive 5 years after initial diagnosis. LIM kinases (LIMKs), comprising LIMK1 and LIMK2, are common downstream effectors of several signalization pathways, and function as a signalling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. In recent decades, several reports have indicated that the functions of LIMKs are mainly implicated in the regulation of actin microfilament and the control of microtubule dynamics. Previous studies have thus identified LIMKs as cancer-promoting regulators in multiple organ cancers, such as breast cancer or prostate cancer. This review updates the current understanding of LIMK involvement in osteosarcoma progression.
Collapse
|
48
|
Steinberg SF. Decoding the Cardiac Actions of Protein Kinase D Isoforms. Mol Pharmacol 2021; 100:558-567. [PMID: 34531296 PMCID: PMC8626784 DOI: 10.1124/molpharm.121.000341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Protein kinase D (PKD) consists of a family of three structurally related enzymes that play key roles in a wide range of biological functions that contribute to the evolution of cardiac hypertrophy and heart failure. PKD1 (the founding member of this enzyme family) has been implicated in the phosphorylation of substrates that regulate cardiac hypertrophy, contraction, and susceptibility to ischemia/reperfusion injury, and de novo PRKD1 (protein kinase D1 gene) mutations have been identified in patients with syndromic congenital heart disease. However, cardiomyocytes coexpress all three PKDs. Although stimulus-specific activation patterns for PKD1, PKD2, and PKD3 have been identified in cardiomyocytes, progress toward identifying PKD isoform-specific functions in the heart have been hampered by significant gaps in our understanding of the molecular mechanisms that regulate PKD activity. This review incorporates recent conceptual breakthroughs in our understanding of various alternative mechanisms for PKD activation, with an emphasis on recent evidence that PKDs activate certain effector responses as dimers, to consider the role of PKD isoforms in signaling pathways that drive cardiac hypertrophy and ischemia/reperfusion injury. The focus is on whether the recently identified activation mechanisms that enhance the signaling repertoire of PKD family enzymes provide novel therapeutic strategies to target PKD enzymes and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling. SIGNIFICANCE STATEMENT: PKD isoforms regulate a large number of fundamental biological processes, but the understanding of the biological actions of individual PKDs (based upon studies using adenoviral overexpression or gene-silencing methods) remains incomplete. This review focuses on dimerization, a recently identified mechanism for PKD activation, and the notion that this mechanism provides a strategy to develop novel PKD-targeted pharmaceuticals that restrict proliferation, invasion, or angiogenesis in cancer and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling.
Collapse
|
49
|
Liao KA, Rangarajan KV, Bai X, Taylor JM, Mack CP. The actin depolymerizing factor destrin serves as a negative feedback inhibitor of smooth muscle cell differentiation. Am J Physiol Heart Circ Physiol 2021; 321:H893-H904. [PMID: 34559579 DOI: 10.1152/ajpheart.00142.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that several components of the RhoA signaling pathway control smooth muscle cell (SMC) phenotype by altering serum response factor (SRF)-dependent gene expression. Because our genome-wide analyses of chromatin structure and transcription factor binding suggested that the actin depolymerizing factor, destrin (DSTN), was regulated in a SMC-selective fashion, the goals of the current study were to identify the transcription mechanisms that control DSTN expression in SMC and to test whether it regulates SMC function. Immunohistochemical analyses revealed strong and at least partially SMC-selective expression of DSTN in many mouse tissues, a result consistent with human data from the genotype-tissue expression (GTEx) consortium. We identified several regulatory regions that control DSTN expression including a SMC-selective enhancer that was activated by myocardin-related transcription factor-A (MRTF-A), recombination signal binding protein for immunoglobulin κ-J region (RBPJ), and the SMAD transcription factors. Indeed, enhancer activity and endogenous DSTN expression were upregulated by RhoA and transforming growth factor-β (TGF-β) signaling and downregulated by inhibition of Notch cleavage. We also showed that DSTN expression was decreased in vivo by carotid artery injury and in cultured SMC cells by platelet-derived growth factor-BB (PDGF-BB) treatment. siRNA-mediated depletion of DSTN significantly enhanced MRTF-A nuclear localization and SMC differentiation marker gene expression, decreased SMC migration in scratch wound assays, and decreased SMC proliferation, as measured by cell number and cyclin-E expression. Taken together our data indicate that DSTN is a negative feedback inhibitor of RhoA/SRF-dependent gene expression in SMC that coordinately promotes SMC phenotypic modulation. Interventions that target DSTN expression or activity could serve as potential therapies for atherosclerosis and restenosis.NEW & NOTEWORTHY First, DSTN is selectively expressed in SMC in RhoA/SRF-dependent manner. Second, a SMC-selective enhancer just upstream of DSTN TSS harbors functional SRF, SMAD, and Notch/RBPJ binding elements. Third, DSTN depletion increased SRF-dependent SMC marker gene expression while inhibiting SMC migration and proliferation. Taken together, our data suggest that DSTN is a critical negative feedback inhibitor of SMC differentiation.
Collapse
Affiliation(s)
- Kuo An Liao
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Krsna V Rangarajan
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xue Bai
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joan M Taylor
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher P Mack
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
50
|
Hoffmann L, Waclawczyk MS, Tang S, Hanschmann EM, Gellert M, Rust MB, Culmsee C. Cofilin1 oxidation links oxidative distress to mitochondrial demise and neuronal cell death. Cell Death Dis 2021; 12:953. [PMID: 34657120 PMCID: PMC8520533 DOI: 10.1038/s41419-021-04242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Many cell death pathways, including apoptosis, regulated necrosis, and ferroptosis, are relevant for neuronal cell death and share common mechanisms such as the formation of reactive oxygen species (ROS) and mitochondrial damage. Here, we present the role of the actin-regulating protein cofilin1 in regulating mitochondrial pathways in oxidative neuronal death. Cofilin1 deletion in neuronal HT22 cells exerted increased mitochondrial resilience, assessed by quantification of mitochondrial ROS production, mitochondrial membrane potential, and ATP levels. Further, cofilin1-deficient cells met their energy demand through enhanced glycolysis, whereas control cells were metabolically impaired when challenged by ferroptosis. Further, cofilin1 was confirmed as a key player in glutamate-mediated excitotoxicity and associated mitochondrial damage in primary cortical neurons. Using isolated mitochondria and recombinant cofilin1, we provide a further link to toxicity-related mitochondrial impairment mediated by oxidized cofilin1. Our data revealed that the detrimental impact of cofilin1 on mitochondria depends on the oxidation of cysteine residues at positions 139 and 147. Overall, our findings show that cofilin1 acts as a redox sensor in oxidative cell death pathways of ferroptosis, and also promotes glutamate excitotoxicity. Protective effects by cofilin1 inhibition are particularly attributed to preserved mitochondrial integrity and function. Thus, interfering with the oxidation and pathological activation of cofilin1 may offer an effective therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lena Hoffmann
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Marcel S Waclawczyk
- Department of Neurology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Stephan Tang
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Marco B Rust
- Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany.,Molecular Neurobiology Group, Institute of Physiological Chemistry, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,DFG Research Training Group "Membrane Plasticity in Tissue Development and Remodeling", GRK 2213, University of Marburg, 35032, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany. .,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany. .,Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|