1
|
Fujita S, Sugio Y, Kawamura T, Yamagami R, Oka N, Hirata A, Yokogawa T, Hori H. ArcS from Thermococcus kodakarensis transfers L-lysine to preQ 0 nucleoside derivatives as minimum substrate RNAs. J Biol Chem 2024; 300:107505. [PMID: 38944122 PMCID: PMC11298593 DOI: 10.1016/j.jbc.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Yuzuru Sugio
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Tokushima, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
2
|
Umuhire Juru A, Ghirlando R, Zhang J. Structural basis of tRNA recognition by the widespread OB fold. Nat Commun 2024; 15:6385. [PMID: 39075051 PMCID: PMC11286949 DOI: 10.1038/s41467-024-50730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The widespread oligonucleotide/oligosaccharide-binding (OB)-fold recognizes diverse substrates from sugars to nucleic acids and proteins, and plays key roles in genome maintenance, transcription, translation, and tRNA metabolism. OB-containing bacterial Trbp and yeast Arc1p proteins are thought to recognize the tRNA elbow or anticodon regions. Here we report a 2.6 Å co-crystal structure of Aquifex aeolicus Trbp111 bound to tRNAIle, which reveals that Trbp recognizes tRNAs solely by capturing their 3' ends. Structural, mutational, and biophysical analyses show that the Trbp/EMAPII-like OB fold precisely recognizes the single-stranded structure, 3' terminal location, and specific sequence of the 3' CA dinucleotide - a universal feature of mature tRNAs. Arc1p supplements its OB - tRNA 3' end interaction with additional contacts that involve an adjacent basic region and the tRNA body. This study uncovers a previously unrecognized mode of tRNA recognition by an ancient protein fold, and provides insights into protein-mediated tRNA aminoacylation, folding, localization, trafficking, and piracy.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
3
|
Yared MJ, Marcelot A, Barraud P. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation. Genes (Basel) 2024; 15:374. [PMID: 38540433 PMCID: PMC10969862 DOI: 10.3390/genes15030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024] Open
Abstract
Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.
Collapse
Affiliation(s)
| | | | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France; (M.-J.Y.); (A.M.)
| |
Collapse
|
4
|
Sievers K, Neumann P, Sušac L, Da Vela S, Graewert M, Trowitzsch S, Svergun D, Tampé R, Ficner R. Structural and functional insights into tRNA recognition by human tRNA guanine transglycosylase. Structure 2024; 32:316-327.e5. [PMID: 38181786 DOI: 10.1016/j.str.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Eukaryotic tRNA guanine transglycosylase (TGT) is an RNA-modifying enzyme which catalyzes the base exchange of the genetically encoded guanine 34 of tRNAsAsp,Asn,His,Tyr for queuine, a hypermodified 7-deazaguanine derivative. Eukaryotic TGT is a heterodimer comprised of a catalytic and a non-catalytic subunit. While binding of the tRNA anticodon loop to the active site is structurally well understood, the contribution of the non-catalytic subunit to tRNA binding remained enigmatic, as no complex structure with a complete tRNA was available. Here, we report a cryo-EM structure of eukaryotic TGT in complex with a complete tRNA, revealing the crucial role of the non-catalytic subunit in tRNA binding. We decipher the functional significance of these additional tRNA-binding sites, analyze solution state conformation, flexibility, and disorder of apo TGT, and examine conformational transitions upon tRNA binding.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
5
|
Zhang J. Recognition of the tRNA structure: Everything everywhere but not all at once. Cell Chem Biol 2024; 31:36-52. [PMID: 38159570 PMCID: PMC10843564 DOI: 10.1016/j.chembiol.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
tRNAs are among the most abundant and essential biomolecules in cells. These spontaneously folding, extensively structured yet conformationally flexible anionic polymers literally bridge the worlds of RNAs and proteins, and serve as Rosetta stones that decipher and interpret the genetic code. Their ubiquitous presence, functional irreplaceability, and privileged access to cellular compartments and ribosomes render them prime targets for both endogenous regulation and exogenous manipulation. There is essentially no part of the tRNA that is not touched by another interaction partner, either as programmed or imposed by an external adversary. Recent progresses in genetic, biochemical, and structural analyses of the tRNA interactome produced a wealth of new knowledge into their interaction networks, regulatory functions, and molecular interfaces. In this review, I describe and illustrate the general principles of tRNA recognition by proteins and other RNAs, and discuss the underlying molecular mechanisms that deliver affinity, specificity, and functional competency.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
7
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
8
|
Schultz SK, Kothe U. Fluorescent labeling of tRNA for rapid kinetic interaction studies with tRNA-binding proteins. Methods Enzymol 2023; 692:103-126. [PMID: 37925176 DOI: 10.1016/bs.mie.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Transfer RNA (tRNA) plays a critical role during translation and interacts with numerous proteins during its biogenesis, functional cycle and degradation. In particular, tRNA is extensively post-transcriptionally modified by various tRNA modifying enzymes which each target a specific nucleotide at different positions within tRNAs to introduce different chemical modifications. Fluorescent assays can be used to study the interaction between a protein and tRNA. Moreover, rapid mixing fluorescence stopped-flow assays provide insights into the kinetics of the tRNA-protein interaction in order to elucidate the tRNA binding mechanism for the given protein. A prerequisite for these studies is a fluorescently labeled molecule, such as fluorescent tRNA, wherein a change in fluorescence occurs upon protein binding. In this chapter, we discuss the utilization of tRNA modifications in order to introduce fluorophores at particular positions within tRNAs. Particularly, we focus on in vitro thiolation of a uridine at position 8 within tRNAs using the tRNA modification enzyme ThiI, followed by labeling of the thiol group with fluorescein. As such, this fluorescently labeled tRNA is primarily unmodified, with the exception of the thiolation modification to which the fluorophore is attached, and can be used as a substrate to study the binding of different tRNA-interacting factors. Herein, we discuss the example of studying the tRNA binding mechanism of the tRNA modifying enzymes TrmB and DusA using internally fluorescein-labeled tRNA.
Collapse
Affiliation(s)
- Sarah K Schultz
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
9
|
Keszthelyi TM, Tory K. The importance of pseudouridylation: human disorders related to the fifth nucleoside. Biol Futur 2023:10.1007/s42977-023-00158-3. [PMID: 37000312 DOI: 10.1007/s42977-023-00158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Pseudouridylation is one of the most abundant RNA modifications in eukaryotes, making pseudouridine known as the "fifth nucleoside." This highly conserved alteration affects all non-coding and coding RNA types. Its role and importance have been increasingly widely researched, especially considering that its absence or damage leads to serious hereditary diseases. Here, we summarize the human genetic disorders described to date that are related to the participants of the pseudouridylation process.
Collapse
Affiliation(s)
| | - Kálmán Tory
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Zhao YH, Zhou T, Wang JX, Li Y, Fang MF, Liu JN, Li ZH. Evolution and structural variations in chloroplast tRNAs in gymnosperms. BMC Genomics 2021; 22:750. [PMID: 34663228 PMCID: PMC8524817 DOI: 10.1186/s12864-021-08058-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
Background Chloroplast transfer RNAs (tRNAs) can participate in various vital processes. Gymnosperms have important ecological and economic value, and they are the dominant species in forest ecosystems in the Northern Hemisphere. However, the evolution and structural changes in chloroplast tRNAs in gymnosperms remain largely unclear. Results In this study, we determined the nucleotide evolution, phylogenetic relationships, and structural variations in 1779 chloroplast tRNAs in gymnosperms. The numbers and types of tRNA genes present in the chloroplast genomes of different gymnosperms did not differ greatly, where the average number of tRNAs was 33 and the frequencies of occurrence for various types of tRNAs were generally consistent. Nearly half of the anticodons were absent. Molecular sequence variation analysis identified the conserved secondary structures of tRNAs. About a quarter of the tRNA genes were found to contain precoded 3′ CCA tails. A few tRNAs have undergone novel structural changes that are closely related to their minimum free energy, and these structural changes affect the stability of the tRNAs. Phylogenetic analysis showed that tRNAs have evolved from multiple common ancestors. The transition rate was higher than the transversion rate in gymnosperm chloroplast tRNAs. More loss events than duplication events have occurred in gymnosperm chloroplast tRNAs during their evolutionary process. Conclusions These findings provide novel insights into the molecular evolution and biological characteristics of chloroplast tRNAs in gymnosperms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08058-3.
Collapse
Affiliation(s)
- Yu-He Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tong Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiu-Xia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Min-Feng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jian-Ni Liu
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
11
|
Sievers K, Welp L, Urlaub H, Ficner R. Structural and functional insights into human tRNA guanine transgylcosylase. RNA Biol 2021; 18:382-396. [PMID: 34241577 DOI: 10.1080/15476286.2021.1950980] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eukaryotic tRNA guanine transglycosylase (TGT) is an RNA modifying enzyme incorporating queuine, a hypermodified guanine derivative, into the tRNAsAsp,Asn,His,Tyr. While both subunits of the functional heterodimer have been crystallized individually, much of our understanding of its dimer interface or recognition of a target RNA has been inferred from its more thoroughly studied bacterial homolog. However, since bacterial TGT, by incorporating queuine precursor preQ1, deviates not only in function, but as a homodimer, also in its subunit architecture, any inferences regarding the subunit association of the eukaryotic heterodimer or the significance of its unique catalytically inactive subunit are based on unstable footing. Here, we report the crystal structure of human TGT in its heterodimeric form and in complex with a 25-mer stem loop RNA, enabling detailed analysis of its dimer interface and interaction with a minimal substrate RNA. Based on a model of bound tRNA, we addressed a potential functional role of the catalytically inactive subunit QTRT2 by UV-crosslinking and mutagenesis experiments, identifying the two-stranded βEβF-sheet of the QTRT2 subunit as an additional RNA-binding motif.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany
| | - Luisa Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (Mbexc), University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Graille M. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric RNA methyltransferases? WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1673. [PMID: 34044474 DOI: 10.1002/wrna.1673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| |
Collapse
|
13
|
Faivre B, Lombard M, Fakroun S, Vo CDT, Goyenvalle C, Guérineau V, Pecqueur L, Fontecave M, De Crécy-Lagard V, Brégeon D, Hamdane D. Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes. RNA Biol 2021; 18:2278-2289. [PMID: 33685366 DOI: 10.1080/15476286.2021.1899653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusBMCap), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusBMCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.
Collapse
Affiliation(s)
- Bruno Faivre
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Murielle Lombard
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Soufyan Fakroun
- Sorbonne Université, IBPS, Biology of Aging and Adaptation, Paris, France
| | - Chau-Duy-Tam Vo
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | | | - Vincent Guérineau
- Institue De Chimie De Substances Naturelles, Centre De Recherche De Gif CNRS, Gif-sur-Yvette, France
| | - Ludovic Pecqueur
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Marc Fontecave
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Valérie De Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, Gainesville, FL, USA
| | - Damien Brégeon
- Sorbonne Université, IBPS, Biology of Aging and Adaptation, Paris, France
| | - Djemel Hamdane
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| |
Collapse
|
14
|
Donsbach P, Yee BA, Sanchez-Hevia D, Berenguer J, Aigner S, Yeo GW, Klostermeier D. The Thermus thermophilus DEAD-box protein Hera is a general RNA binding protein and plays a key role in tRNA metabolism. RNA (NEW YORK, N.Y.) 2020; 26:1557-1574. [PMID: 32669294 PMCID: PMC7566566 DOI: 10.1261/rna.075580.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
RNA helicases catalyze the ATP-dependent destabilization of RNA duplexes. DEAD-box helicases share a helicase core that mediates ATP binding and hydrolysis, RNA binding and unwinding. Most members of this family contain domains flanking the core that can confer RNA substrate specificity and guide the helicase to a specific RNA. However, the in vivo RNA substrates of most helicases are currently not defined. The DEAD-box helicase Hera from Thermus thermophilus contains a helicase core, followed by a dimerization domain and an RNA binding domain that folds into an RNA recognition motif (RRM). The RRM mediates high affinity binding to an RNA hairpin, and an adjacent duplex is then unwound by the helicase core. Hera is a cold-shock protein, and has been suggested to act as an RNA chaperone under cold-shock conditions. Using crosslinking immunoprecipitation of Hera/RNA complexes and sequencing, we show that Hera binds to a large fraction of T. thermophilus RNAs under normal-growth and cold-shock conditions without a strong sequence preference, in agreement with a structure-specific recognition of RNAs and a general function in RNA metabolism. Under cold-shock conditions, Hera is recruited to RNAs with high propensities to form stable secondary structures. We show that selected RNAs identified, including a set of tRNAs, bind to Hera in vitro, and activate the Hera helicase core. Gene ontology analysis reveals an enrichment of genes related to translation, including mRNAs of ribosomal proteins, tRNAs, tRNA ligases, and tRNA-modifying enzymes, consistent with a key role of Hera in ribosome and tRNA metabolism.
Collapse
Affiliation(s)
- Pascal Donsbach
- University of Muenster, Institute for Physical Chemistry, 48149 Muenster, Germany
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Dione Sanchez-Hevia
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, 48149 Muenster, Germany
| |
Collapse
|
15
|
Schultz SKL, Kothe U. tRNA elbow modifications affect the tRNA pseudouridine synthase TruB and the methyltransferase TrmA. RNA (NEW YORK, N.Y.) 2020; 26:1131-1142. [PMID: 32385137 PMCID: PMC7430675 DOI: 10.1261/rna.075473.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 05/20/2023]
Abstract
tRNAs constitute the most highly modified class of RNA. Every tRNA contains a unique set of modifications, and Ψ55, m5U54, and m7G46 are frequently found within the elbow of the tRNA structure. Despite the abundance of tRNA modifications, we are only beginning to understand the orchestration of modification enzymes during tRNA maturation. Here, we investigated whether pre-existing modifications impact the binding affinity or catalysis by tRNA elbow modification enzymes. Specifically, we focused on the Escherichia coli enzymes TruB, TrmA, and TrmB which generate Ψ55, m5U54, and m7G46, respectively. tRNAs containing a single modification were prepared, and the binding and activity preferences of purified E. coli TrmA, TruB, and TrmB were examined in vitro. TruB preferentially binds and modifies unmodified tRNA. TrmA prefers to modify unmodified tRNA, but binds most tightly to tRNA that already contains Ψ55. In contrast, binding and modification by TrmB is insensitive to the tRNA modification status. Our results suggest that TrmA and TruB are likely to act on mostly unmodified tRNA precursors during the early stages of tRNA maturation whereas TrmB presumably acts on later tRNA intermediates that are already partially modified. In conclusion, we uncover the mechanistic basis for the preferred modification order in the E. coli tRNA elbow region.
Collapse
Affiliation(s)
- Sarah Kai-Leigh Schultz
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
16
|
Busby KN, Devaraj NK. Enzymatic covalent labeling of RNA with RNA transglycosylation at guanosine (RNA-TAG). Methods Enzymol 2020; 641:373-399. [PMID: 32713531 DOI: 10.1016/bs.mie.2020.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Technologies for the labeling, detection, and manipulation of biomolecules have drastically improved our understanding of cell biology. As the myriad of functional roles for RNA in the cell are increasingly recognized, such tools to enable further investigation of RNA are the subject of much interest. RNA-TAG is an enzymatic method for site-specific, covalent labeling of RNA. This methodology makes use of a bacterial tRNA modifying enzyme, tRNA guanine transglycosylase, to incorporate modified substrate analogs into a target RNA, resulting in highly efficient and site-specific RNA labeling. In this chapter, we introduce the underlying principles of the RNA labeling reaction, discuss various applications of RNA-TAG, and present protocols for labeling specific RNA transcripts using this system.
Collapse
Affiliation(s)
- Kayla N Busby
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| |
Collapse
|
17
|
Chan CW, Badong D, Rajan R, Mondragón A. Crystal structures of an unmodified bacterial tRNA reveal intrinsic structural flexibility and plasticity as general properties of unbound tRNAs. RNA (NEW YORK, N.Y.) 2020; 26:278-289. [PMID: 31848215 PMCID: PMC7025506 DOI: 10.1261/rna.073478.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Ubiquitous across all domains of life, tRNAs constitute an essential component of cellular physiology, carry out an indispensable role in protein synthesis, and have been historically the subject of a wide range of biochemical and biophysical studies as prototypical folded RNA molecules. Although conformational flexibility is a well-established characteristic of tRNA structure, it is typically regarded as an adaptive property exhibited in response to an inducing event, such as the binding of a tRNA synthetase or the accommodation of an aminoacyl-tRNA into the ribosome. In this study, we present crystallographic data of a tRNA molecule to expand on this paradigm by showing that structural flexibility and plasticity are intrinsic properties of tRNAs, apparent even in the absence of other factors. Based on two closely related conformations observed within the same crystal, we posit that unbound tRNAs by themselves are flexible and dynamic molecules. Furthermore, we demonstrate that the formation of the T-loop conformation by the tRNA TΨC stem-loop, a well-characterized and classic RNA structural motif, is possible even in the absence of important interactions observed in fully folded tRNAs.
Collapse
Affiliation(s)
- Clarence W Chan
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500, USA
| | - Deanna Badong
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500, USA
| | - Rakhi Rajan
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500, USA
| |
Collapse
|
18
|
Dégut C, Roovers M, Barraud P, Brachet F, Feller A, Larue V, Al Refaii A, Caillet J, Droogmans L, Tisné C. Structural characterization of B. subtilis m1A22 tRNA methyltransferase TrmK: insights into tRNA recognition. Nucleic Acids Res 2019; 47:4736-4750. [PMID: 30931478 PMCID: PMC6511850 DOI: 10.1093/nar/gkz230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
1-Methyladenosine (m1A) is a modified nucleoside found at positions 9, 14, 22 and 58 of tRNAs, which arises from the transfer of a methyl group onto the N1-atom of adenosine. The yqfN gene of Bacillus subtilis encodes the methyltransferase TrmK (BsTrmK) responsible for the formation of m1A22 in tRNA. Here, we show that BsTrmK displays a broad substrate specificity, and methylates seven out of eight tRNA isoacceptor families of B. subtilis bearing an A22. In addition to a non-Watson–Crick base-pair between the target A22 and a purine at position 13, the formation of m1A22 by BsTrmK requires a full-length tRNA with intact tRNA elbow and anticodon stem. We solved the crystal structure of BsTrmK showing an N-terminal catalytic domain harbouring the typical Rossmann-like fold of Class-I methyltransferases and a C-terminal coiled-coil domain. We used NMR chemical shift mapping to drive the docking of BstRNASer to BsTrmK in complex with its methyl-donor cofactor S-adenosyl-L-methionine (SAM). In this model, validated by methyltransferase activity assays on BsTrmK mutants, both domains of BsTrmK participate in tRNA binding. BsTrmK recognises tRNA with very few structural changes in both partner, the non-Watson–Crick R13–A22 base-pair positioning the A22 N1-atom close to the SAM methyl group.
Collapse
Affiliation(s)
- Clément Dégut
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | - Pierre Barraud
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Franck Brachet
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - André Feller
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Valéry Larue
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Abdalla Al Refaii
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Joël Caillet
- Laboratoire d'Expression génétique microbienne, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
19
|
Identification of a radical SAM enzyme involved in the synthesis of archaeosine. Nat Chem Biol 2019; 15:1148-1155. [DOI: 10.1038/s41589-019-0390-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/16/2019] [Indexed: 01/27/2023]
|
20
|
Kim M, Park SH, Park JS, Kim HJ, Han BW. Crystal Structure of Human EOLA1 Implies Its Possibility of RNA Binding. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24193529. [PMID: 31569543 PMCID: PMC6803910 DOI: 10.3390/molecules24193529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/07/2023]
Abstract
Human endothelial-overexpressed lipopolysaccharide-associated factor 1 (EOLA1) has been suggested to regulate inflammatory responses in endothelial cells by controlling expression of proteins, interleukin-6 and vascular cell adhesion molecule-1, and by preventing apoptosis. To elucidate the structural basis of the EOLA1 function, we determined its crystal structure at 1.71 Å resolution and found that EOLA1 is structurally similar to an activating signal cointegrator-1 homology (ASCH) domain with a characteristic β-barrel fold surrounded by α-helices. Despite its low sequence identity with other ASCH domains, EOLA1 retains a conserved 'GxKxxExR' motif in its cavity structure. The cavity harbors aromatic and polar residues, which are speculated to accommodate nucleotide molecules as do YT521-B homology (YTH) proteins. Additionally, EOLA1 exhibits a positively charged cleft, similar to those observed in YTH proteins and the ASCH protein from Zymomonas mobilis that exerts ribonuclease activity. This implies that the positively charged cleft in EOLA1 could stabilize the binding of RNA molecules. Taken together, we suggest that EOLA1 controls protein expression through RNA binding to play protective roles against endothelial cell injuries resulting from lipopolysaccharide (LPS)-induced inflammation responses.
Collapse
Affiliation(s)
- Minju Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Sang Ho Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
21
|
Bagheri Y, Shafiei F, Chedid S, Zhao B, You M. Lipid-DNA conjugates for cell membrane modification, analysis, and regulation. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1632454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Fatemeh Shafiei
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Sara Chedid
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Bin Zhao
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
22
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
23
|
Han L, Phizicky EM. A rationale for tRNA modification circuits in the anticodon loop. RNA (NEW YORK, N.Y.) 2018; 24:1277-1284. [PMID: 30026310 PMCID: PMC6140457 DOI: 10.1261/rna.067736.118] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The numerous post-transcriptional modifications of tRNA play a crucial role in tRNA function. While most modifications are introduced to tRNA independently, several sets of modifications are found to be interconnected such that the presence of one set of modifications drives the formation of another modification. The vast majority of these modification circuits are found in the anticodon loop (ACL) region where the largest variety and highest density of modifications occur compared to the other parts of the tRNA and where there is relatively limited sequence and structural information. We speculate here that the modification circuits in the ACL region arise to enhance enzyme modification specificity by direct or indirect use of the first modification in the circuit as an additional recognition element for the second modification. We also describe the five well-studied modification circuits in the ACL, and outline possible mechanisms by which they may act. The prevalence of these modification circuits in the ACL and the phylogenetic conservation of some of them suggest that a number of other modification circuits will be found in this region in different organisms.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
24
|
Crystal Structure of the Human tRNA Guanine Transglycosylase Catalytic Subunit QTRT1. Biomolecules 2018; 8:biom8030081. [PMID: 30149595 PMCID: PMC6165067 DOI: 10.3390/biom8030081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
RNA modifications have been implicated in diverse and important roles in all kingdoms of life with over 100 of them present on tRNAs. A prominent modification at the wobble base of four tRNAs is the 7-deaza-guanine derivative queuine which substitutes the guanine at position 34. This exchange is catalyzed by members of the enzyme class of tRNA guanine transglycosylases (TGTs). These enzymes incorporate guanine substituents into tRNAAsp, tRNAAsn tRNAHis, and tRNATyr in all kingdoms of life. In contrast to the homodimeric bacterial TGT, the active eukaryotic TGT is a heterodimer in solution, comprised of a catalytic QTRT1 subunit and a noncatalytic QTRT2 subunit. Bacterial TGT enzymes, that incorporate a queuine precursor, have been identified or proposed as virulence factors for infections by pathogens in humans and therefore are valuable targets for drug design. To date no structure of a eukaryotic catalytic subunit is reported, and differences to its bacterial counterpart have to be deducted from sequence analysis and models. Here we report the first crystal structure of a eukaryotic QTRT1 subunit and compare it to known structures of the bacterial TGT and murine QTRT2. Furthermore, we were able to determine the crystal structure of QTRT1 in complex with the queuine substrate.
Collapse
|
25
|
Ahmed YL, Schleich S, Bohlen J, Mandel N, Simon B, Sinning I, Teleman AA. DENR-MCTS1 heterodimerization and tRNA recruitment are required for translation reinitiation. PLoS Biol 2018; 16:e2005160. [PMID: 29889857 PMCID: PMC6013234 DOI: 10.1371/journal.pbio.2005160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/21/2018] [Accepted: 05/23/2018] [Indexed: 02/05/2023] Open
Abstract
The succession of molecular events leading to eukaryotic translation reinitiation—whereby ribosomes terminate translation of a short open reading frame (ORF), resume scanning, and then translate a second ORF on the same mRNA—is not well understood. Density-regulated reinitiation and release factor (DENR) and multiple copies in T-cell lymphoma-1 (MCTS1) are implicated in promoting translation reinitiation both in vitro in translation extracts and in vivo. We present here the crystal structure of MCTS1 bound to a fragment of DENR. Based on this structure, we identify and experimentally validate that DENR residues Glu42, Tyr43, and Tyr46 are important for MCTS1 binding and that MCTS1 residue Phe104 is important for tRNA binding. Mutation of these residues reveals that DENR-MCTS1 dimerization and tRNA binding are both necessary for DENR and MCTS1 to promote translation reinitiation in human cells. These findings thereby link individual residues of DENR and MCTS1 to specific molecular functions of the complex. Since DENR–MCTS1 can bind tRNA in the absence of the ribosome, this suggests the DENR–MCTS1 complex could recruit tRNA to the ribosome during reinitiation analogously to the eukaryotic initiation factor 2 (eIF2) complex in cap-dependent translation. Usually, eukaryotic ribosomes translate only a single open reading frame (ORF) on an mRNA and then dissociate from the mRNA. In some cases, when there is a short upstream open reading frame (uORF) that precedes the main ORF, ribosomes can translate the uORF, terminate translation, and then undergo a poorly understood process called “translation reinitiation” whereby they resume scanning for another AUG initiation codon and then translate the main ORF. The molecular functions required for translation reinitiation are not known. We previously showed that two noncanonical initiation factors, density-regulated reinitiation and release factor (DENR) and multiple copies in T-cell lymphoma-1 (MCTS1), are involved in this process. We show here, based on a structure of MCTS1 bound to a fragment of DENR, that in order to successfully promote translation reinitiation, DENR and MCTS1 need to dimerize, and they need to bind tRNA. We thereby identify two molecular functions needed for translation reinitiation.
Collapse
Affiliation(s)
| | - Sibylle Schleich
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Nicolas Mandel
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
- * E-mail: (IS); (AAT)
| | - Aurelio A. Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- * E-mail: (IS); (AAT)
| |
Collapse
|
26
|
Liu RJ, Long T, Li J, Li H, Wang ED. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res 2017; 45:6684-6697. [PMID: 28531330 PMCID: PMC5499824 DOI: 10.1093/nar/gkx473] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
5-methylcytosine (m5C) modifications of RNA are ubiquitous in nature and play important roles in many biological processes such as protein translational regulation, RNA processing and stress response. Aberrant expressions of RNA:m5C methyltransferases are closely associated with various human diseases including cancers. However, no structural information for RNA-bound RNA:m5C methyltransferase was available until now, hindering elucidation of the catalytic mechanism behind RNA:m5C methylation. Here, we have solved the structures of NSun6, a human tRNA:m5C methyltransferase, in the apo form and in complex with a full-length tRNA substrate. These structures show a non-canonical conformation of the bound tRNA, rendering the base moiety of the target cytosine accessible to the enzyme for methylation. Further biochemical assays reveal the critical, but distinct, roles of two conserved cysteine residues for the RNA:m5C methylation. Collectively, for the first time, we have solved the complex structure of a RNA:m5C methyltransferase and addressed the catalytic mechanism of the RNA:m5C methyltransferase family, which may allow for structure-based drug design toward RNA:m5C methyltransferase–related diseases.
Collapse
Affiliation(s)
- Ru-Juan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Tao Long
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jing Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Hao Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
| |
Collapse
|
27
|
Crystal structure of an ASCH protein from Zymomonas mobilis and its ribonuclease activity specific for single-stranded RNA. Sci Rep 2017; 7:12303. [PMID: 28951575 PMCID: PMC5615036 DOI: 10.1038/s41598-017-12186-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/05/2017] [Indexed: 01/29/2023] Open
Abstract
Activating signal cointegrator-1 homology (ASCH) domains were initially reported in human as a part of the ASC-1 transcriptional regulator, a component of a putative RNA-interacting protein complex; their presence has now been confirmed in a wide range of organisms. Here, we have determined the trigonal and monoclinic crystal structures of an ASCH domain-containing protein from Zymomonas mobilis (ZmASCH), and analyzed the structural determinants of its nucleic acid processing activity. The protein has a central β-barrel structure with several nearby α-helices. Positively charged surface patches form a cleft that runs through the pocket formed between the β-barrel and the surrounding α-helices. We further demonstrate by means of in vitro assays that ZmASCH binds nucleic acids, and degrades single-stranded RNAs in a magnesium ion-dependent manner with a cleavage preference for the phosphodiester bond between the pyrimidine and adenine nucleotides. ZmASCH also removes a nucleotide at the 5′-end. Mutagenesis studies, guided by molecular dynamics simulations, confirmed that three residues (Tyr47, Lys53, and Ser128) situated in the cleft contribute to nucleic acid-binding and RNA cleavage activities. These structural and biochemical studies imply that prokaryotic ASCH may function to control the cellular RNA amount.
Collapse
|
28
|
Weisser M, Schäfer T, Leibundgut M, Böhringer D, Aylett CHS, Ban N. Structural and Functional Insights into Human Re-initiation Complexes. Mol Cell 2017; 67:447-456.e7. [PMID: 28732596 DOI: 10.1016/j.molcel.2017.06.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023]
Abstract
After having translated short upstream open reading frames, ribosomes can re-initiate translation on the same mRNA. This process, referred to as re-initiation, controls the translation of a large fraction of mammalian cellular mRNAs, many of which are important in cancer. Key ribosomal binding proteins involved in re-initiation are the eukaryotic translation initiation factor 2D (eIF2D) or the homologous complex of MCT-1/DENR. We determined the structures of these factors bound to the human 40S ribosomal subunit in complex with initiator tRNA positioned on an mRNA start codon in the P-site using a combination of cryoelectron microscopy and X-ray crystallography. The structures, supported by biochemical experiments, reveal how eIF2D emulates the function of several canonical translation initiation factors by using three independent, flexibly connected RNA binding domains to simultaneously monitor codon-anticodon interactions in the ribosomal P-site and position the initiator tRNA.
Collapse
Affiliation(s)
- Melanie Weisser
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Tanja Schäfer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Böhringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
29
|
Suzuki H, Kaneko A, Yamamoto T, Nambo M, Hirasawa I, Umehara T, Yoshida H, Park SY, Tamura K. Binding Properties of Split tRNA to the C-terminal Domain of Methionyl-tRNA Synthetase of Nanoarchaeum equitans. J Mol Evol 2017; 84:267-278. [PMID: 28589220 DOI: 10.1007/s00239-017-9796-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/30/2017] [Indexed: 11/28/2022]
Abstract
The C-terminal domain of methionyl-tRNA synthetase (MetRS-C) from Nanoarchaeum equitans is homologous to a tRNA-binding protein consisting of 111 amino acids (Trbp111) from Aquifex aeolicus. The crystal structure of MetRS-C showed that it existed as a homodimer, and that each monomer possessed an oligonucleotide/oligosaccharide-binding fold (OB-fold). Analysis using a quartz crystal microbalance indicated that MetRS-C freshly isolated from N. equitans was bound to tRNA. However, binding of the split 3'-half tRNA species was stronger than that of the 5'-half species. The T-loop and the 3'-end regions of the split 3'-half tRNA were found to be responsible for the binding. The minimum structure for binding to MetRS-C might be a minihelix-like stem-loop with single-stranded 3'-terminus. After successive duplications of such a small hairpin structure with the assistance of a Trbp-like structure, the interaction of the T-loop region of the 3'-half with a Trbp-like structure could have been evolutionarily replaced by RNA-RNA interactions, along with many combinational tertiary interactions, to form the modern tRNA structure.
Collapse
Affiliation(s)
- Hidemichi Suzuki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Akihiro Kaneko
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Taro Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mahoko Nambo
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ito Hirasawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Takuya Umehara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Hisashi Yoshida
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
30
|
Trm5 and TrmD: Two Enzymes from Distinct Origins Catalyze the Identical tRNA Modification, m¹G37. Biomolecules 2017; 7:biom7010032. [PMID: 28335556 PMCID: PMC5372744 DOI: 10.3390/biom7010032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 11/17/2022] Open
Abstract
The N¹-atom of guanosine at position 37 in transfer RNA (tRNA) is methylated by tRNA methyltransferase 5 (Trm5) in eukaryotes and archaea, and by tRNA methyltransferase D (TrmD) in bacteria. The resultant modified nucleotide m¹G37 positively regulates the aminoacylation of the tRNA, and simultaneously functions to prevent the +1 frameshift on the ribosome. Interestingly, Trm5 and TrmD have completely distinct origins, and therefore bear different tertiary folds. In this review, we describe the different strategies utilized by Trm5 and TrmD to recognize their substrate tRNAs, mainly based on their crystal structures complexed with substrate tRNAs.
Collapse
|
31
|
Peng Y, Alexov E. Computational investigation of proton transfer, pKa shifts and pH-optimum of protein-DNA and protein-RNA complexes. Proteins 2017; 85:282-295. [PMID: 27936518 PMCID: PMC9843452 DOI: 10.1002/prot.25221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/19/2023]
Abstract
Protein-nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein-nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein-nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein-protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH-optimum of protein-DNA/RNA binding free energy and the pH-optimum of protein folding free energy. Overall, the pH-dependence of protein-nucleic acid binding is not predicted to be as significant as that of protein-protein association. Proteins 2017; 85:282-295. © 2016 Wiley Periodicals, Inc.
Collapse
|
32
|
Hutinet G, Swarjo MA, de Crécy-Lagard V. Deazaguanine derivatives, examples of crosstalk between RNA and DNA modification pathways. RNA Biol 2016; 14:1175-1184. [PMID: 27937735 PMCID: PMC5699537 DOI: 10.1080/15476286.2016.1265200] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Seven-deazapurine modifications were thought to be highly specific of tRNAs, but have now been discovered in DNA of phages and of phylogenetically diverse bacteria, illustrating the plasticity of these modification pathways. The intermediate 7-cyano-7-deazaguanine (preQ0) is a shared precursor in the pathways leading to the insetion of 7-deazapurine derivatives in both tRNA and DNA. It is also used as an intermediate in the synthesis of secondary metabolites such as toyocamacin. The presence of 7-deazapurine in DNA is proposed to be a protection mechanism against endonucleases. This makes preQ0 a metabolite of underappreaciated but central importance.
Collapse
Affiliation(s)
- Geoffrey Hutinet
- a Department of Microbiology and Cell Science , University of Florida , Gainesville , FL , USA
| | - Manal A Swarjo
- b Department of Chemistry and Biochemistry , San Diego State University , San Diego , CA , USA
| | - Valérie de Crécy-Lagard
- a Department of Microbiology and Cell Science , University of Florida , Gainesville , FL , USA
| |
Collapse
|
33
|
Mei X, Alvarez J, Bon Ramos A, Samanta U, Iwata-Reuyl D, Swairjo MA. Crystal structure of the archaeosine synthase QueF-like-Insights into amidino transfer and tRNA recognition by the tunnel fold. Proteins 2016; 85:103-116. [PMID: 27802572 DOI: 10.1002/prot.25202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/10/2022]
Abstract
The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ0 ) base of preQ0 -modified tRNA to a formamidino group. The structure, determined in the presence of preQ0 , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ0 forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ0 binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xianghan Mei
- Department of Chemistry and Biochemistry, San Diego State University- 5500 Campanile Drive, San Diego, California, 92182
| | - Jonathan Alvarez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, 91766-1854
| | - Adriana Bon Ramos
- Department of Chemistry, Portland State University, Portland, Oregon, 97207
| | - Uttamkumar Samanta
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, 91766-1854
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon, 97207
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University- 5500 Campanile Drive, San Diego, California, 92182
| |
Collapse
|
34
|
Abstract
Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB's RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870-1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones.
Collapse
|
35
|
Majumder M, Bosmeny MS, Gupta R. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation. RNA (NEW YORK, N.Y.) 2016; 22:1604-1619. [PMID: 27539785 PMCID: PMC5029457 DOI: 10.1261/rna.057547.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 05/31/2023]
Abstract
In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Michael S Bosmeny
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
36
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
37
|
Kuhn CD. RNA versatility governs tRNA function: Why tRNA flexibility is essential beyond the translation cycle. Bioessays 2016; 38:465-73. [PMID: 26990636 DOI: 10.1002/bies.201500190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
tRNAs undergo multiple conformational changes during the translation cycle that are required for tRNA translocation and proper communication between the ribosome and translation factors. Recent structural data on how destabilized tRNAs utilize the CCA-adding enzyme to proofread themselves put a spotlight on tRNA flexibility beyond the translation cycle. In analogy to tRNA surveillance, this review finds that other processes also exploit versatile tRNA folding to achieve, amongst others, specific aminoacylation, translational regulation by riboswitches or a block of bacterial translation. tRNA flexibility is thereby not restricted to the hinges utilized during translation. In contrast, the flexibility of tRNA is distributed all over its L-shape and is actively exploited by the tRNA-interacting partners to discriminate one tRNA from another. Since the majority of tRNA modifications also modulate tRNA flexibility it seems that cells devote enormous resources to tightly sense and regulate tRNA structure. This is likely required for error-free protein synthesis.
Collapse
Affiliation(s)
- Claus-D Kuhn
- BIOmac Research Center, Elite Network of Bavaria and University of Bayreuth, NW I, Bayreuth, Germany
| |
Collapse
|
38
|
Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology. Arch Biochem Biophys 2016; 602:95-105. [PMID: 26968773 DOI: 10.1016/j.abb.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
Abstract
Transfer RNAs (tRNAs) play a key role in protein synthesis as adaptor molecules between messenger RNA and protein sequences on the ribosome. Their discovery in the early sixties provoked a worldwide infatuation with the study of their architecture and their function in the decoding of genetic information. tRNAs are also emblematic molecules in crystallography: the determination of the first tRNA crystal structures represented a milestone in structural biology and tRNAs were for a long period the sole source of information on RNA folding, architecture, and post-transcriptional modifications. Crystallographic data on tRNAs in complex with aminoacyl-tRNA synthetases (aaRSs) also provided the first insight into protein:RNA interactions. Beyond the translation process and the history of structural investigations on tRNA, this review also illustrates the renewal of tRNA biology with the discovery of a growing number of tRNA partners in the cell, the involvement of tRNAs in a variety of regulatory and metabolic pathways, and emerging applications in biotechnology and synthetic biology.
Collapse
|
39
|
The tRNA Elbow in Structure, Recognition and Evolution. Life (Basel) 2016; 6:life6010003. [PMID: 26771646 PMCID: PMC4810234 DOI: 10.3390/life6010003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/07/2023] Open
Abstract
Prominent in the L-shaped three-dimensional structure of tRNAs is the "elbow" where their two orthogonal helical stacks meet. It has a conserved structure arising from the interaction of the terminal loops of the D- and T-stem-loops, and presents to solution a flat face of a tertiary base pair between the D- and T-loops. In addition to the ribosome, which interacts with the elbow in all three of its tRNA binding sites, several cellular RNAs and many proteins are known to recognize the elbow. At least three classes of non-coding RNAs, namely 23S rRNA, ribonuclease P, and the T-box riboswitches, recognize the tRNA elbow employing an identical structural motif consisting of two interdigitated T-loops. In contrast, structural solutions to tRNA-elbow recognition by proteins are varied. Some enzymes responsible for post-transcriptional tRNA modification even disrupt the elbow structure in order to access their substrate nucleotides. The evolutionary origin of the elbow is mysterious, but, because it does not explicitly participate in the flow of genetic information, it has been proposed to be a late innovation. Regardless, it is biologically essential. Even some viruses that hijack the cellular machinery using tRNA decoys have convergently evolved near-perfect mimics of the tRNA elbow.
Collapse
|
40
|
Kawamura T, Hirata A, Ohno S, Nomura Y, Nagano T, Nameki N, Yokogawa T, Hori H. Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon. Nucleic Acids Res 2015; 44:1894-908. [PMID: 26721388 PMCID: PMC4770233 DOI: 10.1093/nar/gkv1522] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022] Open
Abstract
Archaeosine (G+), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G+ by archaeosine synthase. However, tRNALeu from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G+13 and G+15 modifications. In this study, we focused on the biosynthesis mechanism of G+13 and G+15 modifications in this tRNALeu. Purified ArcTGT from Pyrococcus horikoshii, for which the tRNA recognition mechanism and structure were previously characterized, exchanged only the G15 base in a tRNALeu transcript with 14C-guanine. In contrast, T. acidophilum cell extract exchanged both G13 and G15 bases. Because T. acidophilum ArcTGT could not be expressed as a soluble protein in Escherichia coli, we employed an expression system using another thermophilic archaeon, Thermococcus kodakarensis. The arcTGT gene in T. kodakarensis was disrupted, complemented with the T. acidophilum arcTGT gene, and tRNALeu variants were expressed. Mass spectrometry analysis of purified tRNALeu variants revealed the modifications of G+13 and G+15 in the wild-type tRNALeu. Thus, T. acidophilum ArcTGT has a multisite specificity and is responsible for the formation of both G+13 and G+15 modifications.
Collapse
Affiliation(s)
- Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Ohno
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Yuichiro Nomura
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Tomoko Nagano
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Tenjin 1-5-1, Kiryu, Gunma 376-8515, Japan
| | - Takashi Yokogawa
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
41
|
Nomura Y, Ohno S, Nishikawa K, Yokogawa T. Correlation between the stability of tRNA tertiary structure and the catalytic efficiency of a tRNA-modifying enzyme, archaeal tRNA-guanine transglycosylase. Genes Cells 2015; 21:41-52. [PMID: 26663416 DOI: 10.1111/gtc.12317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Abstract
In many archaeal tRNAs, archaeosine is found at position 15. During archaeosine biosynthesis, archaeal tRNA-guanine transglycosylase (ArcTGT) first replaces the guanine base at position 15 with 7-cyano-7-deazaguanine (preQ0). In this study, we investigated whether modified nucleosides in tRNA substrates would affect ArcTGT incorporation of preQ0. We prepared a series of hypomodified tRNAs(Ser)(GGA) from Escherichia coli strains lacking each tRNA-modifying enzyme. Measurement of ArcTGT kinetic parameters with the various tRNAs(Ser)(GGA) as substrates showed that the Km decreased due to the lack of modified nucleosides. The tRNAs(Ser)(GGA) melting profiles resulted in experimental evidence showing that each modified nucleoside in tRNA(Ser)(GGA) enhanced tRNA stability. Furthermore, the ArcTGT K(m) strongly correlated with the melting temperature (T(m)), suggesting that the unstable tRNA containing fewer modified nucleosides served as a better ArcTGT substrate. These results show that preQ0 incorporation into tRNA by ArcTGT takes place early in the archaeal tRNA modification process.
Collapse
Affiliation(s)
- Yuichiro Nomura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Satoshi Ohno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuya Nishikawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
42
|
Crystal Structure of the Human tRNA m(1)A58 Methyltransferase-tRNA(3)(Lys) Complex: Refolding of Substrate tRNA Allows Access to the Methylation Target. J Mol Biol 2015; 427:3862-76. [PMID: 26470919 DOI: 10.1016/j.jmb.2015.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022]
Abstract
Human tRNA3(Lys) is the primer for reverse transcription of HIV; the 3' end is complementary to the primer-binding site on HIV RNA. The complementarity ends at the 18th base, A58, which in tRNA3(Lys) is modified to remove Watson-Crick pairing. Motivated to test the role of the modification in terminating the primer-binding sequence and thus limiting run-on transcription, we asked how the modification of RNA could be accomplished. tRNA m(1)A58 methyltransferase (m(1)A58 MTase) methylates N1 of A58, which is buried in the TΨC-loop of tRNA, from cofactor S-adenosyl-L-methionine. This conserved tRNA modification is essential for stability of initiator tRNA in Saccharomyces cerevisiae. Reported here, three structures of human tRNA m(1)A58 MTase in complex with human tRNA3(Lys) and the product S-adenosyl-L-homocysteine show a dimer of heterodimers in which each heterodimer comprises a catalytic chain, Trm61, and a homologous but noncatalytic chain, Trm6, repurposed as a tRNA-binding subunit that acts in trans; tRNAs bind across the dimer interface such that Trm6 from the opposing heterodimer brings A58 into the active site of Trm61. T-loop and D-loop are splayed apart showing how A58, normally buried in tRNA, becomes accessible for modification. This result has broad impact on our understanding of the mechanisms of modifying internal sites in folded tRNA. The structures serve as templates for design of inhibitors that could be used to test tRNA m(1)A58 MTase's impact on retroviral priming and transcription.
Collapse
|
43
|
Byrne RT, Jenkins HT, Peters DT, Whelan F, Stowell J, Aziz N, Kasatsky P, Rodnina MV, Koonin EV, Konevega AL, Antson AA. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proc Natl Acad Sci U S A 2015; 112:6033-7. [PMID: 25902496 PMCID: PMC4434734 DOI: 10.1073/pnas.1500161112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reduction of specific uridines to dihydrouridine is one of the most common modifications in tRNA. Increased levels of the dihydrouridine modification are associated with cancer. Dihydrouridine synthases (Dus) from different subfamilies selectively reduce distinct uridines, located at spatially unique positions of folded tRNA, into dihydrouridine. Because the catalytic center of all Dus enzymes is conserved, it is unclear how the same protein fold can be reprogrammed to ensure that nucleotides exposed at spatially distinct faces of tRNA can be accommodated in the same active site. We show that the Escherichia coli DusC is specific toward U16 of tRNA. Unexpectedly, crystal structures of DusC complexes with tRNA(Phe) and tRNA(Trp) show that Dus subfamilies that selectively modify U16 or U20 in tRNA adopt identical folds but bind their respective tRNA substrates in an almost reverse orientation that differs by a 160° rotation. The tRNA docking orientation appears to be guided by subfamily-specific clusters of amino acids ("binding signatures") together with differences in the shape of the positively charged tRNA-binding surfaces. tRNA orientations are further constrained by positional differences between the C-terminal "recognition" domains. The exquisite substrate specificity of Dus enzymes is therefore controlled by a relatively simple mechanism involving major reorientation of the whole tRNA molecule. Such reprogramming of the enzymatic specificity appears to be a unique evolutionary solution for altering tRNA recognition by the same protein fold.
Collapse
Affiliation(s)
- Robert T Byrne
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Daniel T Peters
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Fiona Whelan
- York Structural Biology Laboratory, Department of Chemistry, and
| | - James Stowell
- York Structural Biology Laboratory, Department of Chemistry, and Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Naveed Aziz
- Department of Biology, University of York, York, YO10 5DD, United Kingdom; Genome Canada, Ottawa, ON K2P 1P1, Canada
| | - Pavel Kasatsky
- Molecular and Radiation Biophysics Department, B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute," 188300 Gatchina, Russia; St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Andrey L Konevega
- Molecular and Radiation Biophysics Department, B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute," 188300 Gatchina, Russia; St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia; Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, and
| |
Collapse
|
44
|
Fergus C, Barnes D, Alqasem MA, Kelly VP. The queuine micronutrient: charting a course from microbe to man. Nutrients 2015; 7:2897-929. [PMID: 25884661 PMCID: PMC4425180 DOI: 10.3390/nu7042897] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022] Open
Abstract
Micronutrients from the diet and gut microbiota are essential to human health and wellbeing. Arguably, among the most intriguing and enigmatic of these micronutrients is queuine, an elaborate 7-deazaguanine derivative made exclusively by eubacteria and salvaged by animal, plant and fungal species. In eubacteria and eukaryotes, queuine is found as the sugar nucleotide queuosine within the anticodon loop of transfer RNA isoacceptors for the amino acids tyrosine, asparagine, aspartic acid and histidine. The physiological requirement for the ancient queuine molecule and queuosine modified transfer RNA has been the subject of varied scientific interrogations for over four decades, establishing relationships to development, proliferation, metabolism, cancer, and tyrosine biosynthesis in eukaryotes and to invasion and proliferation in pathogenic bacteria, in addition to ribosomal frameshifting in viruses. These varied effects may be rationalized by an important, if ill-defined, contribution to protein translation or may manifest from other presently unidentified mechanisms. This article will examine the current understanding of queuine uptake, tRNA incorporation and salvage by eukaryotic organisms and consider some of the physiological consequence arising from deficiency in this elusive and lesser-recognized micronutrient.
Collapse
Affiliation(s)
- Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Dominic Barnes
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Mashael A Alqasem
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
45
|
Spenkuch F, Hinze G, Kellner S, Kreutz C, Micura R, Basché T, Helm M. Dye label interference with RNA modification reveals 5-fluorouridine as non-covalent inhibitor. Nucleic Acids Res 2014; 42:12735-45. [PMID: 25300485 PMCID: PMC4227767 DOI: 10.1093/nar/gku908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The interest in RNA modification enzymes surges due to their involvement in epigenetic phenomena. Here we present a particularly informative approach to investigate the interaction of dye-labeled RNA with modification enzymes. We investigated pseudouridine (Ψ) synthase TruB interacting with an alleged suicide substrate RNA containing 5-fluorouridine (5FU). A longstanding dogma, stipulating formation of a stable covalent complex was challenged by discrepancies between the time scale of complex formation and enzymatic turnover. Instead of classic mutagenesis, we used differentially positioned fluorescent labels to modulate substrate properties in a range of enzymatic conversion between 6% and 99%. Despite this variegation, formation of SDS-stable complexes occurred instantaneously for all 5FU-substrates. Protein binding was investigated by advanced fluorescence spectroscopy allowing unprecedented simultaneous detection of change in fluorescence lifetime, anisotropy decay, as well as emission and excitation maxima. Determination of Kd values showed that introduction of 5FU into the RNA substrate increased protein affinity by 14× at most. Finally, competition experiments demonstrated reversibility of complex formation for 5FU-RNA. Our results lead us to conclude that the hitherto postulated long-term covalent interaction of TruB with 5FU tRNA is based on the interpretation of artifacts. This is likely true for the entire class of pseudouridine synthases.
Collapse
Affiliation(s)
- Felix Spenkuch
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Gerald Hinze
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Stefanie Kellner
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52A, A-60230 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Chemistry and Biomedicine - CCB, University of Innsbruck, Innrain 80/82, A-60230 Innsbruck, Austria
| | - Thomas Basché
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| |
Collapse
|
46
|
Neumann P, Lakomek K, Naumann PT, Erwin WM, Lauhon CT, Ficner R. Crystal structure of a 4-thiouridine synthetase-RNA complex reveals specificity of tRNA U8 modification. Nucleic Acids Res 2014; 42:6673-85. [PMID: 24705700 PMCID: PMC4041423 DOI: 10.1093/nar/gku249] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In prokaryotes and archaea transfer ribonucleic acid (tRNA) stability as well as cellular UV protection relies on the post-transcriptional modification of uracil at position 8 (U8) of tRNAs by the 4-thiouridine synthetase ThiI. Here, we report three crystal structures of ThiI from Thermotoga maritima in complex with a truncated tRNA. The RNA is mainly bound by the N-terminal ferredoxin-like domain (NFLD) and the THUMP domain of one subunit within the ThiI homo-dimer thereby positioning the U8 close to the catalytic center in the pyrophosphatase domain of the other subunit. The recognition of the 3’-CCA end by the THUMP domain yields a molecular ruler defining the specificity for U8 thiolation. This first structure of a THUMP/NFLD-RNA complex might serve as paradigm for the RNA recognition by THUMP domains of other proteins. The ternary ThiI–RNA–ATP complex shows no significant structural changes due to adenosine triphosphate (ATP) binding, but two different states of active site loops are observed independent of the nucleotide loading state. Thereby conformational changes of the active site are coupled with conformational changes of the bound RNA. The ThiI–RNA complex structures indicate that full-length tRNA has to adopt a non-canonical conformation upon binding to ThiI.
Collapse
Affiliation(s)
- Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Kristina Lakomek
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Peter-Thomas Naumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Whitney M Erwin
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Charles T Lauhon
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
47
|
Bhaskaran H, Taniguchi T, Suzuki T, Suzuki T, Perona JJ. Structural dynamics of a mitochondrial tRNA possessing weak thermodynamic stability. Biochemistry 2014; 53:1456-65. [PMID: 24520994 PMCID: PMC3985750 DOI: 10.1021/bi401449z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Folding
dynamics are ubiquitously involved in controlling the multivariate
functions of RNAs. While the high thermodynamic stabilities of some
RNAs favor purely native states at equilibrium, it is unclear whether
weakly stable RNAs exist in random, partially folded states or sample
well-defined, globally folded conformations. Using a folding assay
that precisely tracks the formation of native aminoacylable tRNA,
we show that the folding of a weakly stable human mitochondrial (hmt)
leucine tRNA is hierarchical with a distinct kinetic folding intermediate.
The stabilities of the native and intermediate conformers are separated
by only about 1.2 kcal/mol, and the species are readily interconvertible.
Comparison of folding dynamics between unmodified and fully modified
tRNAs reveals that post-transcriptional modifications produce a more
constrained native structure that does not sample intermediate conformations.
These structural dynamics may thus be crucial for recognition by some
modifying enzymes in vivo, especially those targeting
the globular core region, by allowing access to pretransition state
conformers. Reduced conformational sampling of the native, modified
tRNAs could then permit improved performance in downstream processes
of translation. More generally, weak stabilities of small RNAs that
fold in the absence of chaperone proteins may facilitate conformational
switching that is central to biological function.
Collapse
Affiliation(s)
- Hari Bhaskaran
- Department of Chemistry, Portland State University , 1825 SW Broadway, Portland Oregon 97209, United States
| | | | | | | | | |
Collapse
|
48
|
Ochi A, Makabe K, Yamagami R, Hirata A, Sakaguchi R, Hou YM, Watanabe K, Nureki O, Kuwajima K, Hori H. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process. J Biol Chem 2013; 288:25562-25574. [PMID: 23867454 DOI: 10.1074/jbc.m113.485128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2'-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination.
Collapse
Affiliation(s)
- Anna Ochi
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Koki Makabe
- the Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ryota Yamagami
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Reiko Sakaguchi
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ya-Ming Hou
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kazunori Watanabe
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Osamu Nureki
- the Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and
| | - Kunihiro Kuwajima
- the Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Hori
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan,; the Venture Business Laboratory, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
49
|
Iyer LM, Zhang D, Burroughs AM, Aravind L. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res 2013; 41:7635-55. [PMID: 23814188 PMCID: PMC3763556 DOI: 10.1093/nar/gkt573] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
50
|
Czudnochowski N, Wang AL, Finer-Moore J, Stroud RM. In human pseudouridine synthase 1 (hPus1), a C-terminal helical insert blocks tRNA from binding in the same orientation as in the Pus1 bacterial homologue TruA, consistent with their different target selectivities. J Mol Biol 2013; 425:3875-87. [PMID: 23707380 DOI: 10.1016/j.jmb.2013.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/11/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
Human pseudouridine (Ψ) synthase Pus1 (hPus1) modifies specific uridine residues in several non-coding RNAs: tRNA, U2 spliceosomal RNA, and steroid receptor activator RNA. We report three structures of the catalytic core domain of hPus1 from two crystal forms, at 1.8Å resolution. The structures are the first of a mammalian Ψ synthase from the set of five Ψ synthase families common to all kingdoms of life. hPus1 adopts a fold similar to bacterial Ψ synthases, with a central antiparallel β-sheet flanked by helices and loops. A flexible hinge at the base of the sheet allows the enzyme to open and close around an electropositive active-site cleft. In one crystal form, a molecule of Mes [2-(N-morpholino)ethane sulfonic acid] mimics the target uridine of an RNA substrate. A positively charged electrostatic surface extends from the active site towards the N-terminus of the catalytic domain, suggesting an extensive binding site specific for target RNAs. Two α-helices C-terminal to the core domain, but unique to hPus1, extend along the back and top of the central β-sheet and form the walls of the RNA binding surface. Docking of tRNA to hPus1 in a productive orientation requires only minor conformational changes to enzyme and tRNA. The docked tRNA is bound by the electropositive surface of the protein employing a completely different binding mode than that seen for the tRNA complex of the Escherichia coli homologue TruA.
Collapse
Affiliation(s)
- Nadine Czudnochowski
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|