1
|
Glucose in a maturation medium with reduced NaCl improves oocyte maturation and embryonic development after somatic cell nuclear transfer and in vitro fertilization in pigs. ZYGOTE 2021; 29:293-300. [PMID: 33653431 DOI: 10.1017/s0967199420000891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was conducted to examine whether glucose in maturation medium containing reduced NaCl could improve oocyte maturation and embryonic development in pigs. The base medium was bovine serum albumin-free porcine zygote medium (PZM)-3 containing 10% (v/v) pig follicular fluid (FPZM) or 0.1% (w/v) polyvinyl alcohol (PPZM). Using each medium, the effects of NaCl concentrations (108 and 61.6 mM) and 5.56 mM glucose supplementation (designated as PZM108N, PZM108G, PZM61N, and PZM61G, respectively) were examined using a 2 × 2 factorial arrangement. When oocytes were matured in FPZM, glucose supplementation improved nuclear maturation compared with no supplementation, regardless of the NaCl concentrations. FPZM61G showed a higher blastocyst formation compared with FPZM108N and FPZM108G after parthenogenesis (PA). Blastocyst formations of somatic cell nuclear transfer (SCNT) embryos derived from FPZM61N and FPZM61G were higher compared with those of oocytes from FPZM108N. When oocytes were matured in PPZM, glucose added to PPZM108 and PPZM61 increased nuclear maturation compared with no supplementation. However, glucose added to PPZM108 did not alter embryonic development after PA. Additionally, oocytes matured in PPZM61G showed a higher blastocyst formation compared with those from PPZM61N. In SCNT, blastocyst formation was not influenced by glucose supplementation of PPZM108, but was increased by maturation in glucose-supplemented PPZM61. In embryonic development of in vitro fertilization (IVF), oocytes matured in medium with reduced NaCl and glucose showed significantly higher blastocyst formation compared with those matured in PPZM108G. Our results demonstrated that glucose in maturation medium containing 61.6 mM NaCl increased oocyte maturation and embryonic development after PA, SCNT, and IVF.
Collapse
|
2
|
In vitro growth culture in a medium with reduced sodium chloride improves maturation and developmental competence of pig oocytes derived from small antral follicles. Theriogenology 2021; 165:37-43. [PMID: 33639366 DOI: 10.1016/j.theriogenology.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate the effects of reducing the sodium chloride content in in vitro growth (IVG) medium to 61.6 mM on in vitro maturation (IVM) and embryonic development of pig oocytes derived from small antral follicles (SAF) less than 3 mm in diameter. SAF oocytes were cultured for 2 days to induce IVG in alpha-minimal essential medium with 108 mM NaCl (αMEM-108) or porcine zygote medium (PZM) containing 61.6 mM (PZM-61.6) or 108 mM (PZM-108) NaCl. These media were further supplemented with 1 mM dibutyryl cyclic adenosine monophosphate (dbcAMP) and 10% (v/v) fetal bovine serum. After IVG culture, oocytes were matured for 44 h in our standard IVM medium. The IVG culture in PZM-61.6 significantly increased nuclear maturation (88.0 ± 2.2%) of SAF oocytes compared to that in PZM-108 (77.3 ± 3.9%) or αMEM-108 (75.9 ± 3.8%). After parthenogenesis (PA), the proportions of blastocysts, based on the number of metaphase II (MII) oocytes, induced for PA were not different among IVG oocytes cultured in PZM-61.6 (50.2 ± 3.0%), PZM-108 (46.8 ± 2.9%), or αMEM-108 (45.6 ± 2.9%). The IVM oocytes derived from IVG in PZM-61.6 showed increased perivitelline space (PVS) (12.1 ± 0.6 μm) and intra-oocyte glutathione (GSH) content (1.19 ± 0.04 pixels/oocyte) compared to PVS (8.0 ± 0.5 and 7.4 ± 0.4 μm) and GSH (1.03 ± 0.04 and 1.00 ± 0.04 pixels/oocyte) of oocytes derived from PZM-108 and αMEM-108, respectively. The IVG culture in PZM-61.6 stimulated meiotic resumption after IVG and faster nuclear progression after IVM than that in αMEM-108. After somatic cell nuclear transfer (SCNT), the blastocyst formation of SAF oocytes grown in PZM-61.6 (17.8 ± 3.3%) was higher than that of oocytes grown in PZM-108 (7.5 ± 2.7%) but not different from that of oocytes in αMEM-108 (11.4 ± 3.4%). Regardless of the different osmotic pressures, nuclear maturation was significantly increased by IVG culture in PZM with reduced NaCl (86.8 ± 2.3 and 84.9 ± 4.2% in PZM-61.6 and PZM-61.6 with sorbitol, respectively) than in PZM-108 (70.5 ± 3.4%). Blastocyst formation was not affected by the differences in NaCl content and osmotic pressure of the IVG medium, whereas the mean number of cells in blastocysts was significantly higher following IVG culture in PZM-61.6 than in the other groups. In conclusion, the results demonstrate that, following SCNT in pigs, IVG culture of SAF oocytes in a medium with a reduced NaCl concentration stimulates oocyte maturation and improves subsequent embryonic development.
Collapse
|
3
|
Cai L, Jeong YW, Hyun SH, Yu IJ, Hwang WS, Jeon Y. Trehalose supplementation during porcine oocytes in vitro maturation improves the developmental capacity of parthenotes. Theriogenology 2019; 141:91-97. [PMID: 31521883 DOI: 10.1016/j.theriogenology.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/29/2023]
Abstract
Autophagy is a critical process in early mammalian embryogenesis. Mammalian target of rapamycin (mTOR) inhibitors are major regulators of autophagy. However, mTOR plays a vital role in major signaling pathways controlling cell growth and metabolism; thus, more secure autophagy activation methods should be considered. The present study investigated the effects of supplementary trehalose, a novel mTOR-independent autophagy enhancer, on oocyte maturation and embryonic development after parthenogenetic activation (PA). Trehalose treatment during in vitro maturation (IVM) did not affect the nuclear maturation rates of oocytes. Oocytes treated with 25 mM trehalose during IVM had a significantly higher (P < 0.05) blastocyst formation rate (64.2%) after PA compared to that in control oocytes (52.0%). Blastocyst quality was also improved in the trehalose-treated group. The total cell numbers for blastocyst formation and expanded blastocyst formation were significantly increased in the trehalose-treated group (52.2% and 27.7%, respectively) compared to those in the control group (36.9% and 11.0%, respectively). Trehalose treatment led to the increased expression of LC3, an autophagy marker, in metaphase II oocytes and 4-cell stage embryos. Gene expression analysis revealed that the expression of several autophagy related genes (LAMP2, pATG5, and LC3) increased, while the Bax/Bcl2 ratio and pro-apoptotic Bak transcript levels were decreased in the trehalose-treated group. In conclusion, these results indicate that treatment with trehalose during IVM improved the developmental potential of porcine embryos by down-regulation of pro-apoptotic genes and up-regulation of autophagy-related genes and marker. Trehalose may be useful for the large-scale production of high-quality porcine blastocysts in vitro.
Collapse
Affiliation(s)
- Lian Cai
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeon-Woo Jeong
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Woo-Suk Hwang
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Yubyeol Jeon
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
4
|
Lee J, Lee H, Lee Y, Park B, Elahi F, Lee ST, Park CK, Hyun SH, Lee E. In vitro oocyte maturation in a medium containing reduced sodium chloride improves the developmental competence of pig oocytes after parthenogenesis and somatic cell nuclear transfer. Reprod Fertil Dev 2018; 29:1625-1634. [PMID: 27592715 DOI: 10.1071/rd15488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/03/2016] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the effects of IVM in hypotonic medium containing reduced (61.6mM) NaCl compared with isotonic medium containing 108.0mM NaCl (designated L and N respectively) on oocyte maturation and embryonic development in pigs. IVM culture was divided into four periods at 11-h intervals. Oocytes cultured in N for 33h and then in L for 11h of IVM (N-N-N-L) showed significantly improved (P<0.05) nuclear maturation of oocytes (75.4-79.0% vs 60.2-85.8%) and blastocyst formation (61.5-66.1% vs 45.2-67.5%) after parthenogenesis (PA) compared with other treatments (L-L-L-L, L-L-L-N, L-L-N-L, N-N-L-L, N-N-L-N, L-L-N-L, L-N-N-L and N-L-N-L). Oocytes matured in L-L-L-L and N-N-N-L had an increased (P<0.05) perivitelline space (11.0-12.5 vs 5.5µm) and intraoocyte reduced glutathione (GSH) content (1.39-1.41 vs 1.00 pixels per oocyte) relative to oocytes matured in N-N-N-N. Somatic cell nuclear transfer (SCNT) embryos derived from the N-N-N-L treatment had significantly (P<0.05) higher blastocyst formation (53.5%) than embryos derived from Medium-199 (37.4%) and N-N-N-N (41.8%) treatments. Overall, the results demonstrate that maturation of pig oocytes in hypotonic medium with reduced NaCl during the last 11h of IVM increases the developmental competence of oocytes after PA and SCNT by improving the cytoplasmic microenvironment, including an increased GSH content in IVM oocytes.
Collapse
Affiliation(s)
- Joohyeong Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea
| | - Hanna Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea
| | - Yongjin Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea
| | - Bola Park
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea
| | - Fazle Elahi
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea
| | - Seung Tae Lee
- Division of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea
| | - Choon-Keun Park
- Division of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Eunsong Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea
| |
Collapse
|
5
|
Abstract
In the present study, a porcine system was supplemented with sorbitol during in vitro maturation (IVM) or in vitro culture (IVC), and the effects of sorbitol on oocyte maturation and embryonic development following parthenogenetic activation were assessed. Porcine immature oocytes were treated with different concentrations of sorbitol during IVM, and the resultant metaphase II stage oocytes were activated and cultured in porcine zygote medium-3 (PZM-3) for 7 days. No significant difference was observed in cumulus expansion and the nuclear maturation between the control and sorbitol-treated groups, with the exception of the 100 mM group, which showed significantly decreased nuclear maturation and cumulus expansion. There was no significant difference in the intracellular reactive oxygen species (ROS) levels between oocytes matured with 10 or 20 mM sorbitol and control groups, but 50 and 100 mM groups had significantly higher ROS levels than other groups. The 20 mM group showed significant increases in intracellular glutathione and subsequent blastocyst formation rates following parthenogenetic activation compared with the other groups. During IVC, supplementation with sorbitol significantly reduced blastocyst formation and increased the apoptotic index compared with the control. The apoptotic index of blastocysts from the sorbitol-treated group for entire culture period was significantly higher than those of the partially sorbitol-exposed groups. Based on these findings, it can be concluded that the addition of a low concentration of sorbitol (20 mM) during IVM of porcine oocytes benefits subsequent blastocyst development and improves embryo quality, whereas sorbitol supplement during IVC has a negative effect on blastocyst formation.
Collapse
|
6
|
Malekinejad H, Schoevers EJ, Daemen IJJM, Zijlstra C, Colenbrander B, Fink-Gremmels J, Roelen BAJ. Exposure of Oocytes to the Fusarium Toxins Zearalenone and Deoxynivalenol Causes Aneuploidy and Abnormal Embryo Development in Pigs1. Biol Reprod 2007; 77:840-7. [PMID: 17652666 DOI: 10.1095/biolreprod.107.062711] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fungi of the Fusarium species can infect food and feed commodities and produce the mycotoxins zearalenone (ZEA) and deoxynivalenol (DON). Since both toxins have been reported to reduce fertility, the mechanisms of ZEA and DON on inhibition of oocyte maturation were examined. Pig oocytes were matured in the presence of ZEA (a mycotoxin with estrogenlike activity), 17beta-estradiol, and DON (all 3.12 micromol/L). Zearalenone, 17beta-estradiol, and DON inhibited oocyte maturation and caused approximately 34% of the oocytes to form an aberrant spindle. Different ratios of ZEA:DON did not lead to a more severe inhibition of oocyte maturation. Both mycotoxins caused abnormal formation of the meiotic spindle. The developmental competence of oocytes matured in the presence of mycotoxins was further investigated after in vitro fertilization. Presence of ZEA (3.12 micromol/L) during maturation reduced the percentages of oocytes that cleaved and formed a blastocyst to about 12%, compared with 25% of control oocytes. Maturation in the presence of equimolar concentrations of DON was not compatible with development. The ploidy of blastomeres from blastocysts derived from mycotoxin-exposed oocytes was analyzed with fluorescent in situ hybridization. All blastocysts, even those from the control group, contained at least one blastomere with abnormal ploidy, but the variation in the percentages of aneuploid blastomeres was significantly larger in embryos from oocytes exposed to mycotoxins. It is concluded that ZEA and DON can lead to abnormal spindle formation, leading to less fertile oocytes and embryos with abnormal ploidy, and that the effects of ZEA and DON are not synergistic.
Collapse
Affiliation(s)
- Hassan Malekinejad
- Department of Veterinary Pharmacology, Utrecht University, 3584 CM Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Miki H, Ogonuki N, Inoue K, Baba T, Ogura A. Improvement of Cumulus-free Oocyte Maturation In Vitro and Its Application to Microinsemination with Primary Spermatocytes in Mice. J Reprod Dev 2006; 52:239-48. [PMID: 16415523 DOI: 10.1262/jrd.17078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In micromanipulation experiments using immature oocytes, final ooplasmic maturation is often compromised because the oocytes are usually first freed from their nurturing cumulus cells. This study was undertaken to determine whether cumulus-free in vitro maturation (IVM) in mice could be improved by modifying IVM medium having defined components. Cumulus-free germinal vesicle (GV) stage oocytes were subjected to IVM in either alphaMEM medium, TYH medium, or a 1:1 mixture of the two (termed TaM). TYH medium produced a better maturation rate (181/196; 92.3%) than alphaMEM (184/257; 71.6%). However, alphaMEM supported better embryo development to the morula/blastocyst stage than TYH following in vitro fertilization (93.3% vs. 76.5%) or parthenogenetic activation (82.4% vs. 60.4%). Mitochondrial distribution in MII oocytes was diffuse following IVM in alphaMEM, but was aggregated with TYH. The maturation promoting factor (MPF) activity in MII oocytes was significantly higher in TYH than in alphaMEM (P<0.05). Oocytes cultured in TaM had intermediate characteristics and essentially resembled in vivo matured oocytes, with the mitochondrial distribution pattern being most typical of that condition. The highest rate of development from GV oocytes to full-term fetuses following in vitro fertilization and embryo transfer to foster mothers (23.8%) was obtained using TaM. When this IVM system was applied to MI oocytes injected with spermatocytes, offspring were first obtained without cytoplasmic replacement at MII. Thus, optimization of the culture medium can considerably improve the quality of cumulus-free oocyte IVM in mice.
Collapse
Affiliation(s)
- Hiromi Miki
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
8
|
LaRosa C, Downs SM. Stress stimulates AMP-activated protein kinase and meiotic resumption in mouse oocytes. Biol Reprod 2005; 74:585-92. [PMID: 16280415 DOI: 10.1095/biolreprod.105.046524] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study examined the effects of three different cellular stresses on oocyte maturation in meiotically arrested mouse oocytes. Cumulus-cell enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured for 17-18 h in dbcAMP-containing medium plus increasing concentrations of the metabolic poison, sodium arsenite, or the free radical-generating agent, menadione. Alternatively, oocytes were exposed to osmotic stress by pulsing with sorbitol and returned to control inhibitory conditions for the duration of culture. Arsenite and menadione each dose-dependently induced germinal vesicle breakdown (GVB) in both DO and CEO. DO, but not CEO, pulsed for 60 min with 500 mM sorbitol were stimulated to resume maturation. The lack of effect in CEO suggests that the cumulus cells may be playing a protective role in osmotic stress-induced GVB. The AMP-activated protein kinase (PRKA; formerly known as AMPK) inhibitors, compound C and araA, completely blocked the meiosis-stimulating effects of all the tested stresses. Western blots showed that acetyl-CoA carboxylase, an important substrate of PRKA, was phosphorylated before GVB, supporting a role for PRKA in stress-induced maturation. Together, these data show that a variety of stresses stimulate GVB in meiotically arrested mouse oocytes in vitro and suggest that this effect is mediated through activation of PRKA.
Collapse
Affiliation(s)
- Cean LaRosa
- Biology Department, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | |
Collapse
|
9
|
Sosnowski J, Waroczyk M, Switonski M. Chromosome abnormalities in secondary pig oocytes matured in vitro. Theriogenology 2003; 60:571-81. [PMID: 12763170 DOI: 10.1016/s0093-691x(03)00044-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Abnormalities of chromosome segregation during in vitro maturation of oocytes cause failure of in vitro fertilization. Oocytes collected from pig ovaries after slaughter were matured in vitro (IVM) for 30-48 h. In total, 1144 secondary oocytes were studied cytogenetically. An unreduced (diploid) chromosome set was identified in 146 spreads (12.8 %). A higher proportion of diploidy was noticed in secondary oocytes matured for 40 h and longer (15.0 %) than in the groups matured for 30 and 36 h (9.0 %). Among 998 secondary oocytes with the reduced chromosome number, 612 could be analyzed in detail. Hypohaploidy (n=19-1) was identified in 22 cells (3.59 %) and a hyperhaploid (n=19+1) set of chromosomes was identified in 15 cells (2.45 %). The rate of aneuploidy, estimated by doubling the rate of hyperhaploidy was 4.9 %. It was also found that aneuploid spreads occurred more frequently in the group of oocytes matured for 40 h and longer. Small acrocentrics were mostly found as an extra chromosome in the hyperhaploid spreads. Our study indicates that to avoid an excess of chromosomally abnormal secondary oocytes, IVM duration of pig oocytes should not exceed 40 h.
Collapse
Affiliation(s)
- Jaroslaw Sosnowski
- Department of Genetics and Animal Breeding, August Cieszkowski Agricultural University of Poznań, Wołyńska 33, 60-637 Poznań, Poland
| | | | | |
Collapse
|
10
|
Abstract
Recent advances in biotechnology have enabled us to produce cloned and genetically modified cattle and pigs by manipulating in vitro-produced embryos. However, the efficiency is still extremely low, mainly because of the low developmental competence of manipulated embryos. To improve this situation, IVM systems for bovine and porcine oocytes in in vitro embryo production systems must be improved. This paper addresses the selection of ovaries with competent follicles at a slaughterhouse and looking attached sight of oocytes at a lab, and the IVM of oocytes under redox state to enhance the developmental competence of IVM oocytes in cattle and pigs.
Collapse
Affiliation(s)
- T Nagai
- Department of Animal Reproduction, National Institute of Animal Industry, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Bing YZ, Naga T, Rodriguez-Martinez H. Effects of cysteamine, fsh and estradiol-17beta on in vitro maturation of porcine oocytes. Theriogenology 2001; 55:867-76. [PMID: 11291910 DOI: 10.1016/s0093-691x(01)00449-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porcine cumulus-oocyte complexes (COCs) were cultured for 48 h with addition or absence of exogenous estradiol-17beta (E2; 1 microg/mL) in the maturation medium (mM199). The medium was supplemented with sodium pyruvate (0.1 mg/mL), 10% (v/v) FCS, various concentrations of FSH (0, 1 and 10 microg/mL) and with or without cysteamine (150 microM). When supplemented with E2, cysteamine enhanced the rates of germinal vesicle breakdown (GVBD) and maturation to metaphase-II (M-II) in COCs cultured in the medium with 0 and 1 microg/mL FSH (P<0.05). Among COCs cultured with FSH, oocytes cultured with 1 microg/mL FSH and E2 but without cysteamine showed the lowest rates of GVBD and M-II. The rates were, however, significantly increased when cysteamine was added to the same medium or by increasing FSH concentration to 10 microg/mL in the maturation medium. E2 significantly inhibited the rates of GVBD and M-II in COCs cultured without FSH and cysteamine (a group of oocytes with spontaneous maturation). When COCs were cultured in TCM 199 with 1 or 10 microg/mL FSH, with or without E2 (1 microg/mL) and fertilized in vitro, the rates of male pronucleus formation were not increased by increasing FSH concentration, but the addition of cysteamine to the maturation medium significantly enhanced the rates in the same FSH treatment. The results indicate that E2 inhibits spontaneous GVBD and maturation to M-II of porcine oocytes and that a low concentration of FSH (1 microg/mL) is not sufficient to induce full nuclear maturation, compared with 10 microg/mL FSH, but that it can complete nuclear maturation with cysteamine and E2. However, the cytoplasmic maturation is promoted only by the addition of cysteamine in the medium.
Collapse
Affiliation(s)
- Y Z Bing
- Tohoku National Agricultural Experiment Station, Morioka, Iwate, Japan
| | | | | |
Collapse
|