1
|
Kim KH, Lee CB. Socialized mitochondria: mitonuclear crosstalk in stress. Exp Mol Med 2024; 56:1033-1042. [PMID: 38689084 PMCID: PMC11148012 DOI: 10.1038/s12276-024-01211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Traditionally, mitochondria are considered sites of energy production. However, recent studies have suggested that mitochondria are signaling organelles that are involved in intracellular interactions with other organelles. Remarkably, stressed mitochondria appear to induce a beneficial response that restores mitochondrial function and cellular homeostasis. These mitochondrial stress-centered signaling pathways have been rapidly elucidated in multiple organisms. In this review, we examine current perspectives on how mitochondria communicate with the rest of the cell, highlighting mitochondria-to-nucleus (mitonuclear) communication under various stresses. Our understanding of mitochondria as signaling organelles may provide new insights into disease susceptibility and lifespan extension.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea.
| | - Cho Bi Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea
| |
Collapse
|
2
|
Chen H, Wu C, Lv Q, Li M, Ren L. Targeting Mitochondrial Homeostasis: The Role of Acupuncture in Depression Treatment. Neuropsychiatr Dis Treat 2023; 19:1741-1753. [PMID: 37546517 PMCID: PMC10404048 DOI: 10.2147/ndt.s421540] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Background Depression is a common mental health disorder characterized by persistent feelings of sadness, loss of interest or pleasure, and a range of physical and cognitive symptoms. It affects people of all ages and can significantly impact their daily functioning and quality of life. Mitochondrial homeostasis plays an important role in the pathogenesis of depression. Mitochondrial homeostasis includes mitophagy, mitochondrial oxidative stress, mitoptosis, mitochondrial biogenesis, and mitochondrial dynamics. The regulation of mitochondrial homeostasis is the key link in the prevention and treatment of depression. Methods In this article, we focus on the core link of depression-mitochondrial homeostasis and summarize the research progress of acupuncture targeting mitochondrial homeostasis in the treatment of depression in recent years, so as to provide ideas and experimental basis for the research and formulation of more appropriate depression treatment strategies. Results Acupuncture has been found to regulate mitochondrial homeostasis (by modulating mitochondrial autophagy, reducing mitochondrial oxidative stress, inhibiting mitochondrial fission, inducing mitochondrial biogenesis, and maintaining mitochondrial dynamics), alleviate depression-like behavior, and regulate signal pathways and key proteins. Conclusion Here, we highlight the role of acupuncture in the treatment of depression. A comprehensive exploration of the impact of acupuncture on mitochondrial homeostasis could potentially present a novel mechanism for treating depression and offer fresh perspectives for the treatment of patients with clinical depression.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Chenlin Wu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Qin Lv
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Mingjie Li
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
- Mental Disorders Research Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| |
Collapse
|
3
|
Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT. Diversity and complexity of cell death: a historical review. Exp Mol Med 2023; 55:1573-1594. [PMID: 37612413 PMCID: PMC10474147 DOI: 10.1038/s12276-023-01078-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bosung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, UNIST, Ulsan, 44919, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
4
|
Bagheri S, Samiee S, Zarif MN, Deyhim MR. The evaluation of reactive oxygen species generation and free mitochondrial DNA in platelet concentrates during 5 days of storage. Blood Coagul Fibrinolysis 2023; 34:105-110. [PMID: 36719807 DOI: 10.1097/mbc.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Oxidative stress and mitochondrial damage are causes of platelet storage lesions (PSLs). Mitochondrial damage causes mitochondrial DNA (mtDNA) to be released into the extracellular space. MtDNA in platelet concentrates is considered damage-associated molecular patterns (DAMPs) and is one of the major causes of PSLs. The mechanism of mtDNA release in platelet concentrates has not been thoroughly investigated. This study aimed to determine the effect of reactive oxygen species (ROS) on mtDNA release in platelet concentrates during storage. Ten platelet concentrates from healthy donors were obtained in this investigation. Platelet concentrates were prepared by platelet-rich plasma (PRP) and stored at 22 ± 2 C° with gentle agitation. Platelet concentrates were subjected to flow cytometry and real-time PCR to evaluate total ROS and free mtDNA on days 0, 3, and 5 of platelet concentrate storage. Total ROS detected significantly increased from day 0 to day 5 of platelet concentrate storage (P = 0.0079). The mean of copy numbers of free mtDNA on day 0 increased from 3.43 × 106 ± 1.57 × 106 to 2.85 × 107 ± 1.51 × 107 (molecules/μl) on the fifth day of platelet concentrate storage, and it was statistically significant (P = 0.0039). In addition, LDH enzyme activity significantly increased during platelet concentrate storage (P < 0.0001). Also, releasing mtDNA in platelet concentrates was directly correlated with total ROS generation (P = 0.021, r = 0.61) and LDH activity (P = 0.04, r = 0.44). The evidence from this study confirmed the increasing level mtDNA copy numbers in platelet concentrates during storage, and the amount of free mtDNA is directly correlated with ROS generation and platelet lysis during 5 days of platelet concentrate storage. Finally, these changes may be related to DAMPs in the platelet concentrates.
Collapse
Affiliation(s)
- Saeede Bagheri
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | | | | |
Collapse
|
5
|
Creation of Mitochondrial Disease Models Using Mitochondrial DNA Editing. Biomedicines 2023; 11:biomedicines11020532. [PMID: 36831068 PMCID: PMC9953118 DOI: 10.3390/biomedicines11020532] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial diseases are a large class of human hereditary diseases, accompanied by the dysfunction of mitochondria and the disruption of cellular energy synthesis, that affect various tissues and organ systems. Mitochondrial DNA mutation-caused disorders are difficult to study because of the insufficient number of clinical cases and the challenges of creating appropriate models. There are many cellular models of mitochondrial diseases, but their application has a number of limitations. The most proper and promising models of mitochondrial diseases are animal models, which, unfortunately, are quite rare and more difficult to develop. The challenges mainly arise from the structural features of mitochondria, which complicate the genetic editing of mitochondrial DNA. This review is devoted to discussing animal models of human mitochondrial diseases and recently developed approaches used to create them. Furthermore, this review discusses mitochondrial diseases and studies of metabolic disorders caused by the mitochondrial DNA mutations underlying these diseases.
Collapse
|
6
|
Guha S, Sesili S, Mir IH, Thirunavukkarasu C. Epigenetics and mitochondrial dysfunction insights into the impact of the progression of non-alcoholic fatty liver disease. Cell Biochem Funct 2023; 41:4-19. [PMID: 36330539 DOI: 10.1002/cbf.3763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
A metabolic problem occurs when regular functions of the body are disrupted due to an undesirable imbalance. Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most common in this category. NAFLD is subclassified and progresses from lipid accumulation to cirrhosis before advancing to hepatocellular cancer. In spite of being a critical concern, the standard treatment is inadequate. Metformin, silymarin, and other nonspecific medications are used in the management of NAFLD. Aside from this available medicine, maintaining a healthy lifestyle has been emphasized as a means of combating this. Epigenetics, which has been attributed to NAFLD, is another essential feature of this disease that has emerged as a result of several sorts of research. The mechanisms by which DNA methylation, noncoding RNA, and histone modification promote NAFLD have been extensively researched. Another organelle, mitochondria, which play a pivotal role in biological processes, contributes to the global threat. Individuals with NAFLD have been documented to have a multitude of alterations and malfunctioning. Mitochondria are mainly concerned with the process of energy production and regulation of the signaling pathway on which the fate of a cell relies. Modulation of mitochondria leads to elevated lipid deposition in the liver. Further, changes in oxidation states result in an impaired balance between the antioxidant system and reactive oxygen species directly linked to mitochondria. Hence mitochondria have a definite role in potentiating NAFLD. In this regard, it is essential to consider the role of epigenetics as well as mitochondrial contribution while developing a medication or therapy with the desired accuracy.
Collapse
Affiliation(s)
- Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Selvam Sesili
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
7
|
Bagheri S, Samiee S, Zarif MN, Deyhim MR. L-carnitine modulates free mitochondrial DNA DAMPs and platelet storage lesions during storage of platelet concentrates. J Thromb Thrombolysis 2023; 55:60-66. [PMID: 36380102 DOI: 10.1007/s11239-022-02725-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Platelet storage lesions may occur in Platelet concentrates (PCs) storage time, reducing PCs' quality. Mitochondrial damage causes mitochondrial DNA (mtDNA) to be released into the extracellular space. In this study, we evaluated the effect of L-carnitine (LC) as an antioxidant on free mtDNA DAMPs release in PCs during storage. Ten PCs prepared by the PRP method were studied. The copy numbers of free mtDNA, total reactive oxygen species (ROS), lactate dehydrogenase (LDH) enzyme activity, pH, and platelet counts were measured on days 0, 3, 5, and 7 of PCs storage in LC-treated and untreated platelets. LDH activity was significantly lower than the control group during 7 days of PCs storage (p = 0.041). Also, ROS production decreased in LC-treated PCs compared to the control group during storage (p = 0.026), and the difference mean of ROS between the two groups was significant on day 3, 5, and 7 (Pday3 = 0.02, Pday5 = 0.0001, Pday7 = 0.031). Moreover, LC decreased the copy numbers of free mtDNA during 7 days of storage (p = 0.021), and the difference mean of the copy numbers of free mtDNA in LC-treated PCs compared to the control group was significant on day 5 and 7 (Pday5 = 0.041، Pday7 = 0.022). It seems that LC can maintain the metabolism and antioxidant capacity of PCs and thus can reduce mitochondrial damage and mtDNA release; consequently, it can decrease DAMPs in PCs. Therefore, it may be possible to use this substance as a platelet additive solution in the future.
Collapse
Affiliation(s)
- Saeede Bagheri
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Deyhim
- Department of Clinical Chemistry, Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box: 14665-1157, Tehran, Iran.
| |
Collapse
|
8
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
9
|
Leake DW. Tracing Slow Phenoptosis to the Prenatal Stage in Social Vertebrates. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1512-1527. [PMID: 36717460 DOI: 10.1134/s0006297922120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vladimir Skulachev's coining of the term "phenoptosis" 25 years ago (Skulachev, V. P., Biochemistry (Moscow), 62, 1997) highlighted the theoretical possibility that aging is a programmed process to speed the exit of individuals posing some danger to their social group. While rapid "acute phenoptosis" might occur at any age (e.g., to prevent spread of deadly infections), "slow phenoptosis" is generally considered to occur later in life in the form of chronic age-related disorders. However, recent research indicates that risks for such chronic disorders can be greatly raised by early life adversity, especially during the prenatal stage. Much of this research uses indicators of biological aging, the speeding or slowing of natural physiological deterioration in response to environmental inputs, leading to divergence from chronological age. Studies using biological aging indicators commonly find it is accelerated not only in older individuals with chronic disorders, but also in very young individuals with health problems. This review will explain how accelerated biological aging equates to slow phenoptosis. Its occurrence even in the prenatal stage is theoretically supported by W. D. Hamilton's proposal that offsprings detecting they have dangerous mutations should then automatically speed their demise, in order to improve their inclusive fitness by giving their parents the chance to produce other fitter siblings.
Collapse
Affiliation(s)
- David W Leake
- University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
10
|
iPCD: A Comprehensive Data Resource of Regulatory Proteins in Programmed Cell Death. Cells 2022; 11:cells11132018. [PMID: 35805101 PMCID: PMC9265749 DOI: 10.3390/cells11132018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death (PCD) is an essential biological process involved in many human pathologies. According to the continuous discovery of new PCD forms, a large number of proteins have been found to regulate PCD. Notably, post-translational modifications play critical roles in PCD process and the rapid advances in proteomics have facilitated the discovery of new PCD proteins. However, an integrative resource has yet to be established for maintaining these regulatory proteins. Here, we briefly summarize the mainstream PCD forms, as well as the current progress in the development of public databases to collect, curate and annotate PCD proteins. Further, we developed a comprehensive database, with integrated annotations for programmed cell death (iPCD), which contained 1,091,014 regulatory proteins involved in 30 PCD forms across 562 eukaryotic species. From the scientific literature, we manually collected 6493 experimentally identified PCD proteins, and an orthologous search was then conducted to computationally identify more potential PCD proteins. Additionally, we provided an in-depth annotation of PCD proteins in eight model organisms, by integrating the knowledge from 102 additional resources that covered 16 aspects, including post-translational modification, protein expression/proteomics, genetic variation and mutation, functional annotation, structural annotation, physicochemical property, functional domain, disease-associated information, protein–protein interaction, drug–target relation, orthologous information, biological pathway, transcriptional regulator, mRNA expression, subcellular localization and DNA and RNA element. With a data volume of 125 GB, we anticipate that iPCD can serve as a highly useful resource for further analysis of PCD in eukaryotes.
Collapse
|
11
|
Bogorodskiy A, Okhrimenko I, Burkatovskii D, Jakobs P, Maslov I, Gordeliy V, Dencher NA, Gensch T, Voos W, Altschmied J, Haendeler J, Borshchevskiy V. Role of Mitochondrial Protein Import in Age-Related Neurodegenerative and Cardiovascular Diseases. Cells 2021; 10:3528. [PMID: 34944035 PMCID: PMC8699856 DOI: 10.3390/cells10123528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondria play a critical role in providing energy, maintaining cellular metabolism, and regulating cell survival and death. To carry out these crucial functions, mitochondria employ more than 1500 proteins, distributed between two membranes and two aqueous compartments. An extensive network of dedicated proteins is engaged in importing and sorting these nuclear-encoded proteins into their designated mitochondrial compartments. Defects in this fundamental system are related to a variety of pathologies, particularly engaging the most energy-demanding tissues. In this review, we summarize the state-of-the-art knowledge about the mitochondrial protein import machinery and describe the known interrelation of its failure with age-related neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Dmitrii Burkatovskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Philipp Jakobs
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38400 Grenoble, France
| | - Norbert A. Dencher
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Physical Biochemistry, Chemistry Department, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Wolfgang Voos
- Institute of Biochemistry and Molecular Biology (IBMB), Faculty of Medicine, University of Bonn, 53113 Bonn, Germany;
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
12
|
Wang ZJ, Yu SM, Gao JM, Zhang P, Hide G, Yamamoto M, Lai DH, Lun ZR. High resistance to Toxoplasma gondii infection in inducible nitric oxide synthase knockout rats. iScience 2021; 24:103280. [PMID: 34765911 PMCID: PMC8571494 DOI: 10.1016/j.isci.2021.103280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/08/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Nitric oxide (NO) is an important immune molecule that acts against extracellular and intracellular pathogens in most hosts. However, after the knockout of inducible nitric oxide synthase (iNOS−/−) in Sprague Dawley (SD) rats, these iNOS−/− rats were found to be completely resistant to Toxoplasma gondii infection. Once the iNOS−/− rat peritoneal macrophages (PMs) were infected with T. gondii, they produced high levels of reactive oxygen species (ROS) triggered by GRA43 secreted by T. gondii, which damaged the parasitophorous vacuole membrane and PM mitochondrial membranes within a few hours post-infection. Further evidence indicated that the high levels of ROS caused mitochondrial superoxide dismutase 2 depletion and induced PM pyroptosis and cell death. This discovery of complete resistance to T. gondii infection, in the iNOS−/−-SD rat, demonstrates a strong link between NO and ROS in immunity to T. gondii infection and showcases a potentially novel and effective backup innate immunity system. iNOS−/−-SD rats show strong resistance to Toxoplasma gondii infection iNOS−/−-SD rat PMs resist T. gondii infection through ROS upregulation The T. gondii infection results in PM pyroptosis in iNOS−/−-SD rats GRAs play a key role in the activation of resistance in iNOS−/−-SD rat PMs
Collapse
Affiliation(s)
- Zhen-Jie Wang
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Shao-Meng Yu
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Jiang-Mei Gao
- Department of Parasitology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, The People's Republic of China
| | - Peng Zhang
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Geoff Hide
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - De-Hua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Zhao-Rong Lun
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China.,Department of Parasitology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, The People's Republic of China.,Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
13
|
Mandigers L, Pooth JS, Wefers Bettink MA, den Uil CA, Damjanovic D, Mik EG, Brixius S, Gommers D, Trummer G, Dos Reis Miranda D. Monitoring Mitochondrial Partial Oxygen Pressure During Cardiac Arrest and Extracorporeal Cardiopulmonary Resuscitation. An Experimental Pilot Study in a Pig Model. Front Cardiovasc Med 2021; 8:754852. [PMID: 34760949 PMCID: PMC8572977 DOI: 10.3389/fcvm.2021.754852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: Ischemia and reperfusion are crucial in determining the outcome after cardiac arrest and can be influenced by extracorporeal cardiopulmonary resuscitation (ECPR). The effect of ECPR on the availability and level of oxygen in mitochondria remains unknown. The aim of this study was to find out if skin mitochondrial partial oxygen pressure (mitoPO2) measurements in cardiac arrest and ECPR are feasible and to investigate its course. Materials and Methods: We performed a feasibility test to determine if skin mitoPO2 measurements in a pig are possible. Next, we aimed to measure skin mitoPO2 in 10 experimental pigs. Measurements were performed using a cellular oxygen metabolism measurement monitor (COMET), at baseline, during cardiac arrest, and during ECPR using the controlled integrated resuscitation device (CIRD). Results: The feasibility test showed continuous mitoPO2 values. Nine experimental pigs could be measured. Measurements in six experimental pigs succeeded. Our results showed a delay until the initial spike of mitoPO2 after ECPR initiation in all six experimental tests. In two experiments (33%) mitoPO2 remained present after the initial spike. A correlation of mitoPO2 with mean arterial pressure (MAP) and arterial partial oxygen pressure measured by CIRD (CIRD-PaO2) seemed not present. One of the experimental pigs survived. Conclusions: This experimental pilot study shows that continuous measurements of skin mitoPO2 in pigs treated with ECPR are feasible. The delay in initial mitoPO2 and discrepancy of mitoPO2 and MAP in our small sample study could point to the possible value of additional measurements besides MAP to monitor the quality of tissue perfusion during cardiac arrest and ECPR.
Collapse
Affiliation(s)
- Loes Mandigers
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan-Steffen Pooth
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mark A Wefers Bettink
- Department of Anaesthesiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Corstiaan A den Uil
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Intensive Care, Maasstad Hospital, Rotterdam, Netherlands
| | - Domagoj Damjanovic
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Egbert G Mik
- Department of Anaesthesiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sam Brixius
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Diederik Gommers
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Georg Trummer
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
14
|
Lyamzaev KG, Knorre DA, Chernyak BV. Mitoptosis, Twenty Years After. BIOCHEMISTRY (MOSCOW) 2021; 85:1484-1498. [PMID: 33705288 DOI: 10.1134/s0006297920120020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In 1999 V. P. Skulachev proposed the term "mitoptosis" to refer to the programmed elimination of mitochondria in living cells. According to the initial thought, mitoptosis serves to protect cells from malfunctioning of the damaged mitochondria. At the same time, a new mechanism of the complete mitochondria elimination was found under the conditions of massive mitochondrial damage associated with oxidative stress. In this experimental model, mitochondrial cluster formation in the perinuclear region leads to the formation of "mitoptotic body" surrounded by a single-layer membrane and subsequent release of mitochondria from the cell. Later, it was found that mitoptosis plays an important role in various normal and pathological processes that are not necessarily associated with the mitochondrial damage. It was found that mitoptosis takes place during cell differentiation, self-maintenance of hematopoietic stem cells, metabolic remodelling, and elimination of the paternal mitochondria in organisms with the maternal inheritance of the mitochondrial DNA. Moreover, the associated with mitoptosis release of mitochondrial components into the blood may be involved in the transmission of signals between cells, but also leads to the development of inflammatory and autoimmune diseases. Mitoptosis can be attributed to the asymmetric inheritance of mitochondria in the division of yeast and some animal cells, when the defective mitochondria are transferred to one of the newly formed cells. Finally, a specific form of mitoptosis appears to be selective elimination of mitochondria with deleterious mutations in whole follicular ovarian cells in mammals. During formation of the primary follicle, the mitochondrial DNA copy number is significantly reduced. After division, the cells that receive predominantly mitochondria with deleterious mutations in their mtDNA die, thereby reducing the likelihood of transmission of these mutations to offspring. Further study of the mechanisms of mitoptosis in normal and pathological conditions is important both for understanding the processes of development and aging, and for designing therapeutic approaches for inflammatory, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
15
|
Kudryavtseva GV, Malenkov YA, Shishkin VV, Shishkin VI, Kartunen AA. Kinetic Modeling of Mitochondrial-Reticular Network Dynamics. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Bindi E, Alganabi M, Biouss G, Liu J, Li B, Miyake H, Angotti R, Pierro A. Hepatic oxidative injury: role of mitochondrial dysfunction in necrotizing enterocolitis. Pediatr Surg Int 2021; 37:325-332. [PMID: 33547933 DOI: 10.1007/s00383-020-04816-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) is a severe neonatal gastrointestinal disease that can cause damage to remote organs. Previous studies have shown that inflammatory and oxidative injury occur in the liver during NEC. Mitochondrial DNA (mtDNA) plays an important role in hepatic injuries of many other diseases. We aimed to investigate the mechanism of mitochondrial dysfunction in hepatic oxidative injury during NEC. METHODS NEC was induced in C57BL/6 mice (approval: 44032) by hypoxia, gavage feeding with hyperosmolar formula, and lipopolysaccharide administration from postnatal days 5 to 9 (n = 15). Two additional groups with hypoxia only (n = 10) and hypoxia and hyperosmolar formula (n = 13) were also examined. Breastfed pups were used as control (n = 15). Liver was harvested on postnatal day 9. Gene expressions of mtDNA markers cytochrome c oxidase subunit 3 (COX3), cytochrome b (CYTB) and NADH-ubiquinone oxidoreductase chain 1 (ND1) were measured by real-time qPCR. Mitochondrial morphology marker HSP60 and oxidative stress marker NRF2 were detected by immunofluorescence staining and compared between NEC and control. Data were presented as mean ± SD and compared using Student's t test; p < 0.05 was considered significant. RESULTS Gene expression of mtDNA markers (COX3, CYTB, and ND1) were significantly decreased in the liver of NEC mice relative to control, hypoxia alone, and hypoxia with hyperosmolar formula. Immunofluorescence showed depletion of HSP60 indicating decreased mitochondria in NEC liver relative to control. Furthermore, a higher protein expression of NRF2 was observed indicating higher oxidative stress in NEC liver relative to control. CONCLUSIONS Intestinal injury in experimental NEC leads to a systemic inflammatory response affecting the liver. Hepatic oxidative injury in NEC is characterized by decreased mitochondria and mtDNA depletion. This study provides insight into the mechanism of liver injury in NEC.
Collapse
Affiliation(s)
- Edoardo Bindi
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.,Department of Medical Sciences, Surgical Sciences and Neurosciences, Division of Pediatric Surgery, Hospital of "Santa Maria Alle Scotte", Siena, Italy
| | - Mashriq Alganabi
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - George Biouss
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Jia Liu
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Hiromu Miyake
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Rossella Angotti
- Department of Medical Sciences, Surgical Sciences and Neurosciences, Division of Pediatric Surgery, Hospital of "Santa Maria Alle Scotte", Siena, Italy
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
17
|
Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases. Int J Mol Sci 2021; 22:ijms22020764. [PMID: 33466614 PMCID: PMC7828708 DOI: 10.3390/ijms22020764] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose is an essential nutrient for every cell but its metabolic fate depends on cellular phenotype. Normally, the product of cytosolic glycolysis, pyruvate, is transported into mitochondria and irreversibly converted to acetyl coenzyme A by pyruvate dehydrogenase complex (PDC). In some pathological cells, however, pyruvate transport into the mitochondria is blocked due to the inhibition of PDC by pyruvate dehydrogenase kinase. This altered metabolism is referred to as aerobic glycolysis (Warburg effect) and is common in solid tumors and in other pathological cells. Switching from mitochondrial oxidative phosphorylation to aerobic glycolysis provides diseased cells with advantages because of the rapid production of ATP and the activation of pentose phosphate pathway (PPP) which provides nucleotides required for elevated cellular metabolism. Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin's function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin's action in switching the metabolic phenotype of cells.
Collapse
|
18
|
Swerdlow NS, Wilkins HM. Mitophagy and the Brain. Int J Mol Sci 2020; 21:ijms21249661. [PMID: 33352896 PMCID: PMC7765816 DOI: 10.3390/ijms21249661] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stress mechanisms have long been associated with neuronal loss and neurodegenerative diseases. The origin of cell stress and neuronal loss likely stems from multiple pathways. These include (but are not limited to) bioenergetic failure, neuroinflammation, and loss of proteostasis. Cells have adapted compensatory mechanisms to overcome stress and circumvent death. One mechanism is mitophagy. Mitophagy is a form of macroautophagy, were mitochondria and their contents are ubiquitinated, engulfed, and removed through lysosome degradation. Recent studies have implicated mitophagy dysregulation in several neurodegenerative diseases and clinical trials are underway which target mitophagy pathways. Here we review mitophagy pathways, the role of mitophagy in neurodegeneration, potential therapeutics, and the need for further study.
Collapse
Affiliation(s)
- Natalie S. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
19
|
Zhang Q, Hu C, Huang J, Liu W, Lai W, Leng F, Tang Q, Liu Y, Wang Q, Zhou M, Sheng F, Li G, Zhang R. ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson's disease. Exp Mol Med 2019; 51:1-13. [PMID: 31578315 PMCID: PMC6802738 DOI: 10.1038/s12276-019-0318-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Dopamine deficiency is mainly caused by apoptosis of dopaminergic nerve cells in the substantia nigra of the midbrain and the striatum and is an important pathologic basis of Parkinson’s disease (PD). Recent research has shown that dynamin-related protein 1 (Drp1)-mediated aberrant mitochondrial fission plays a crucial role in dopaminergic nerve cell apoptosis. However, the upstream regulatory mechanism remains unclear. Our study showed that Drp1 knockdown inhibited aberrant mitochondrial fission and apoptosis. Importantly, we found that ROCK1 was activated in an MPP+-induced PD cell model and that ROCK1 knockdown and the specific ROCK1 activation inhibitor Y-27632 blocked Drp1-mediated aberrant mitochondrial fission and apoptosis of dopaminergic nerve cells by suppressing Drp1 dephosphorylation/activation. Our in vivo study confirmed that Y-27632 significantly improved symptoms in a PD mouse model by inhibiting Drp1-mediated aberrant mitochondrial fission and apoptosis. Collectively, our findings suggest an important molecular mechanism of PD pathogenesis involving ROCK1-regulated dopaminergic nerve cell apoptosis via the activation of Drp1-induced aberrant mitochondrial fission. Researchers in China have revealed how a protein molecule plays an early part in the molecular steps that can lead to Parkinson’s disease, which is caused by the death of nerve cells that make the neurotransmitter dopamine. Disruption of mitochondria, the energy-generating bodies inside cells, was already known to lead to the death of dopamine-producing cells. Rong Zhang, Guobing Li and colleagues at The Second Affiliated Hospital of Army Medical University in Chongqing, China traced the chain of cause and effect back to a protein called ROCK-1. Using a mouse model of Parkinson’s disease, they found that ROCK-1 activates another protein previously shown to trigger the disruption of mitochondria. ROCK-1’s early role in the sequence might make it a suitable target for treatment using drugs that inhibit its activity.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Faning Leng
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Qing Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China.
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
20
|
Bretin L, Pinon A, Bouramtane S, Ouk C, Richard L, Perrin ML, Chaunavel A, Carrion C, Bregier F, Sol V, Chaleix V, Leger DY, Liagre B. Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11101474. [PMID: 31575052 PMCID: PMC6826978 DOI: 10.3390/cancers11101474] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) using porphyrins has been approved for treatment of several solid tumors due to the generation of cytotoxic reactive oxygen species (ROS). However, low physiological solubility and lack of selectivity towards tumor sites are the main limitations of their clinical use. Nanoparticles are able to spontaneously accumulate in solid tumors through an enhanced permeability and retention (EPR) effect due to leaky vasculature, poor lymphatic drainage, and increased vessel permeability. Herein, we proved the added value of nanoparticle vectorization on anticancer efficacy and tumor-targeting by 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (TPPOH). Using 80 nm silica nanoparticles (SNPs) coated with xylan-TPPOH conjugate (TPPOH-X), we first showed very significant phototoxic effects of TPPOH-X SNPs mediated by post-PDT ROS generation and stronger cell uptake in human colorectal cancer cell lines compared to free TPPOH. Additionally, we demonstrated apoptotic cell death induced by TPPOH-X SNPs-PDT and the interest of autophagy inhibition to increase anticancer efficacy. Finally, we highlighted in vivo, without toxicity, elevated anticancer efficacy of TPPOH-X SNPs through improvement of tumor-targeting compared to a free TPPOH protocol. Our work demonstrated for the first time the strong anticancer efficacy of TPPOH in vitro and in vivo and the merit of SNPs vectorization.
Collapse
Affiliation(s)
- Ludovic Bretin
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Aline Pinon
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Soukaina Bouramtane
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Catherine Ouk
- BISCEm Pôle Cytométrie en flux/Microscopie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Laurence Richard
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire de Limoges 2, Avenue Martin Luther King, 87042 Limoges Cedex, France.
| | - Marie-Laure Perrin
- Laboratoire Bio EM XLIM UMR CNRS 7252, Faculté de Médecine, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Alain Chaunavel
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire de Limoges 2, Avenue Martin Luther King, 87042 Limoges Cedex, France.
| | - Claire Carrion
- BISCEm Pôle Cytométrie en flux/Microscopie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Frédérique Bregier
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Vincent Sol
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Vincent Chaleix
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - David Yannick Leger
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Bertrand Liagre
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| |
Collapse
|
21
|
Liu WY, Tang Q, Zhang Q, Hu CP, Huang JB, Sheng FF, Liu YL, Zhou M, Lai WJ, Li GB, Zhang R. Lycorine Induces Mitochondria-Dependent Apoptosis in Hepatoblastoma HepG2 Cells Through ROCK1 Activation. Front Pharmacol 2019; 10:651. [PMID: 31263414 PMCID: PMC6589644 DOI: 10.3389/fphar.2019.00651] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/20/2019] [Indexed: 01/13/2023] Open
Abstract
Lycorine, a naturally occurring compound extracted from the Amaryllidaceae plant family, has been reported to exhibit antitumor activity in various cancer cell types. In the present study, we investigated the molecular mechanisms underlying lycorine-induced apoptosis in hepatoblastoma HepG2 cells. We found that lycorine induced mitochondria-dependent apoptosis in HepG2 cells accompanied by mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP) loss, adenosine triphosphate (ATP) depletion, Ca2+ and cytochrome c (Cyto C) release, as well as caspase activation. Furthermore, we found Rho associated coiled-coil containing protein kinase 1 (ROCK1) cleavage/activation played a critical role in lycorine-induced mitochondrial apoptosis. In addition, the ROCK inhibitor Y-27632 was employed, and we found that co-treatment with Y-27632 attenuated lycorine-induced mitochondrial injury and cell apoptosis. Meanwhile, an in vivo study revealed that lycorine inhibited tumor growth and induced apoptosis in a HepG2 xenograft mouse model in association with ROCK1 activation. Taken together, all these findings suggested that lycorine induced mitochondria-dependent apoptosis through ROCK1 activation in HepG2 cells, and this may be a theoretical basis for lycorine's anticancer effects.
Collapse
Affiliation(s)
- Wu-Yi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chang-Peng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jing-Bin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fang-Fang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Ya-Li Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wen-Jing Lai
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guo-Bing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Zorov DB, Vorobjev IA, Popkov VA, Babenko VA, Zorova LD, Pevzner IB, Silachev DN, Zorov SD, Andrianova NV, Plotnikov EY. Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells 2019; 8:E175. [PMID: 30791381 PMCID: PMC6406845 DOI: 10.3390/cells8020175] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/12/2023] Open
Abstract
Thirty-five years ago, we described fragmentation of the mitochondrial population in a living cell into small vesicles (mitochondrial fission). Subsequently, this phenomenon has become an object of general interest due to its involvement in the process of oxidative stress-related cell death and having high relevance to the incidence of a pathological phenotype. Tentatively, the key component of mitochondrial fission process is segregation and further asymmetric separation of a mitochondrial body yielding healthy (normally functioning) and impaired (incapable to function in a normal way) organelles with subsequent decomposition and removal of impaired elements through autophagy (mitophagy). We speculate that mitochondria contain cytoskeletal elements, which maintain the mitochondrial shape, and also are involved in the process of intramitochondrial segregation of waste products. We suggest that perturbation of the mitochondrial fission/fusion machinery and slowdown of the removal process of nonfunctional mitochondrial structures led to the increase of the proportion of impaired mitochondrial elements. When the concentration of malfunctioning mitochondria reaches a certain threshold, this can lead to various pathologies, including aging. Overall, we suggest a process of mitochondrial fission to be an essential component of a complex system controlling a healthy cell phenotype. The role of reactive oxygen species in mitochondrial fission is discussed.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ivan A Vorobjev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Vasily A Popkov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Valentina A Babenko
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ljubava D Zorova
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Irina B Pevzner
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Denis N Silachev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Savva D Zorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Egor Y Plotnikov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119146, Russia.
| |
Collapse
|
23
|
Vekshin NL, Frolova MS. A Multiparametric Equation for Calculation of the Animal Lifespan. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
24
|
Cell free mitochondrial DNA in serum and milk associated with bovine mastitis: a pilot study. Vet Res Commun 2018; 42:275-282. [DOI: 10.1007/s11259-018-9735-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 01/23/2023]
|
25
|
Chen J, Ni P, Tran Thi TN, Kamaldinov EV, Petukhov VL, Han J, Liu X, Šprem N, Zhao S. Selective constraints in cold-region wild boars may defuse the effects of small effective population size on molecular evolution of mitogenomes. Ecol Evol 2018; 8:8102-8114. [PMID: 30250687 PMCID: PMC6144961 DOI: 10.1002/ece3.4221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Spatial range expansion during population colonization is characterized by demographic events that may have significant effects on the efficiency of natural selection. Population genetics suggests that genetic drift brought by small effective population size (Ne) may undermine the efficiency of selection, leading to a faster accumulation of nonsynonymous mutations. However, it is still unknown whether this effect might be balanced or even reversed by strong selective constraints. Here, we used wild boars and local domestic pigs from tropical (Vietnam) and subarctic region (Siberia) as animal model to evaluate the effects of functional constraints and genetic drift on shaping molecular evolution. The likelihood-ratio test revealed that Siberian clade evolved significantly different from Vietnamese clades. Different datasets consistently showed that Siberian wild boars had lower Ka/Ks ratios than Vietnamese samples. The potential role of positive selection for branches with higher Ka/Ks was evaluated using branch-site model comparison. No signal of positive selection was found for the higher Ka/Ks in Vietnamese clades, suggesting the interclade difference was mainly due to the reduction in Ka/Ks for Siberian samples. This conclusion was further confirmed by the result from a larger sample size, among which wild boars from northern Asia (subarctic and nearby region) had lower Ka/Ks than those from southern Asia (temperate and tropical region). The lower Ka/Ks might be due to either stronger functional constraints, which prevent nonsynonymous mutations from accumulating in subarctic wild boars, or larger Ne in Siberian wild boars, which can boost the efficacy of purifying selection to remove functional mutations. The latter possibility was further ruled out by the Bayesian skyline plot analysis, which revealed that historical Ne of Siberian wild boars was smaller than that of Vietnamese wild boars. Altogether, these results suggest stronger functional constraints acting on mitogenomes of subarctic wild boars, which may provide new insights into their local adaptation of cold resistance.
Collapse
Affiliation(s)
- Jianhai Chen
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| | - Pan Ni
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| | - Thuy Nhien Tran Thi
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
- National Institute of Animal SciencesHanoiVietnam
| | - Evgeniy Varisovich Kamaldinov
- Federal State Budgetary Educational Institution of Higher EducationNovosibirsk State Agrarian UniversityNovosibirskRussia
| | - Valeriy Lavrentyevich Petukhov
- Federal State Budgetary Educational Institution of Higher EducationNovosibirsk State Agrarian UniversityNovosibirskRussia
| | - Jianlin Han
- International Livestock Research Institute (ILRI)NairobiKenya
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiangdong Liu
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| | - Nikica Šprem
- Department of Fisheries, Beekeeping, Game Management and Special ZoologyFaculty of AgricultureUniversity of ZagrebZagrebCroatia
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
26
|
Zhang R, Li G, Zhang Q, Tang Q, Huang J, Hu C, Liu Y, Wang Q, Liu W, Gao N, Zhou S. Hirsutine induces mPTP-dependent apoptosis through ROCK1/PTEN/PI3K/GSK3β pathway in human lung cancer cells. Cell Death Dis 2018; 9:598. [PMID: 29789524 PMCID: PMC5964100 DOI: 10.1038/s41419-018-0641-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
Hirsutine extracted from Uncaria rhynchophylla has been shown to exhibit anti-cancer activity. However, the molecular mechanism by which hirsutine exhibits anti-lung cancer activity remains unclear. In the present study, we showed that hirsutine induces apoptosis in human lung cancer cells via loss of mitochondrial membrane potential (∆ψm), adenosine triphosphate (ATP) depletion, ROS production, as well as cytochrome c release. Dephosphorylation of GSK3β is involved in hirsutine-mediated mitochondrial permeability transition pore (mPTP) opening through ANT1/CypD interaction. Mechanistic study revealed that interruption of ROCK1/PTEN/PI3K/Akt signaling pathway plays a critical role in hirsutine-mediated GSK3β dephosphorylation and mitochondrial apoptosis. Our in vivo study also showed that hirsutine effectively inhibits tumor growth in a A549 xenograft mouse model through ROCK1/PTEN/PI3K/Akt signaling-mediated GSK3β dephosphorylation and apoptosis. Collectively, these findings suggest a hierarchical model in which induction of apoptosis by hirsutine stems primarily from activation of ROCK1 and PTEN, inactivation of PI3K/Akt, leading in turn to GSK3β dephosphorylation and mPTP opening, and culminating in caspase-3 activation and apoptosis. These findings could provide a novel mechanistic basis for the application of hirsutine in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Qing Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Ning Gao
- College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| | - Shiwen Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
27
|
Thurairajah K, Briggs GD, Balogh ZJ. The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies. Eur J Trauma Emerg Surg 2018; 44:325-334. [PMID: 29633007 PMCID: PMC6002458 DOI: 10.1007/s00068-018-0954-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/04/2023]
Abstract
Mitochondria play a key role in the pathophysiology of post-injury inflammation. Cell-free mitochondrial DNA (cf-mtDNA) is now understood to catalyse sterile inflammation after trauma. Observations in trauma cohorts have identified high cf-mtDNA in patients with systemic inflammatory response syndrome and multiple organ failure as well as following major surgery. The source of cf-mtDNA can be various cells affected by mechanical and hypoxic injury (passive mechanism) or induced by inflammatory mechanisms (active mechanism). Multiple forms of cf-mtDNA exist; mtDNA fragments, mtDNA in microparticles/vesicles and cell-free mitochondria. Trauma to cells that are rich in mitochondria are believed to release more cf-mtDNA. This review describes the current understanding of the mechanisms of cf-mtDNA release, its systemic effects and the potential therapeutic implications related to its modification. Although current understanding is insufficient to change trauma management, focussed research goals have been identified to pave the way for monitoring and manipulation of cf-mtDNA release and effects in trauma.
Collapse
Affiliation(s)
- Kabilan Thurairajah
- Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW, Australia
| | - Gabrielle Daisy Briggs
- Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW, Australia
| | - Zsolt Janos Balogh
- Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
28
|
Libertini G. Sex and Aging: A Comparison between Two Phenoptotic Phenomena. BIOCHEMISTRY (MOSCOW) 2018; 82:1435-1455. [PMID: 29486695 DOI: 10.1134/s0006297917120045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenoptosis is a phenomenon that is genetically programmed and favored by natural selection, and that determines death or increased risk of death (fitness reduction) for the individual that manifests it. Aging, here defined as age-related progressive mortality increase in the wild, if programmed and favored by natural selection, falls within the definition of phenoptosis. Sexual reproduction (sex), as for the involved individuals determines fitness reduction and, in some species, even certain death, also falls within the definition of phenoptosis. In this review, sex and aging are analyzed as phenoptotic phenomena, and the similarities between them are investigated. In particular, from a theoretical standpoint, the genes that cause and regulate these phenomena: (i) require analyses that consider both individual and supra-individual selection because they are harmful in terms of individual selection, but advantageous (that is, favored by natural selection) in particular conditions of supra-individual selection; (ii) determine a higher velocity of and greater opportunities for evolution and, therefore, greater evolutionary potential (evolvability); (iii) are advantageous under ecological conditions of K-selection and with finite populations; (iv) are disadvantageous (that is, not favored by natural selection) under ecological conditions of r-selection and with unlimited populations; (v) are not advantageous in all ecological conditions and, so, species that reproduce asexually or species that do not age are predicted and exist.
Collapse
Affiliation(s)
- Giacinto Libertini
- Independent researcher, member of the Italian Society for Evolutionary Biology, Italy.
| |
Collapse
|
29
|
Empirical verification of evolutionary theories of aging. Aging (Albany NY) 2017; 8:2568-2589. [PMID: 27783562 PMCID: PMC5115907 DOI: 10.18632/aging.101090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023]
Abstract
We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.
Collapse
|
30
|
Zorov DB, Popkov VA, Zorova LD, Vorobjev IA, Pevzner IB, Silachev DN, Zorov SD, Jankauskas SS, Babenko VA, Plotnikov EY. Mitochondrial Aging: Is There a Mitochondrial Clock? J Gerontol A Biol Sci Med Sci 2017; 72:1171-1179. [PMID: 27927758 DOI: 10.1093/gerona/glw184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/16/2023] Open
Abstract
Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail.
Collapse
Affiliation(s)
| | | | | | - Ivan A Vorobjev
- Biological Faculty, Lomonosov Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
31
|
Brusentsev EY, Tikhonova MA, Herbeck YE, Ragaeva DS, Rozhkova IN, Amstislavsky SY. Developmental aspects of senescence. Russ J Dev Biol 2017; 48:93-105. [DOI: 10.1134/s1062360417020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
32
|
Gomez-Perez A, Kyryakov P, Burstein MT, Asbah N, Noohi F, Iouk T, Titorenko VI. Empirical Validation of a Hypothesis of the Hormetic Selective Forces Driving the Evolution of Longevity Regulation Mechanisms. Front Genet 2016; 7:216. [PMID: 27999589 PMCID: PMC5138192 DOI: 10.3389/fgene.2016.00216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 12/27/2022] Open
Abstract
Exogenously added lithocholic bile acid and some other bile acids slow down yeast chronological aging by eliciting a hormetic stress response and altering mitochondrial functionality. Unlike animals, yeast cells do not synthesize bile acids. We therefore hypothesized that bile acids released into an ecosystem by animals may act as interspecies chemical signals that generate selective pressure for the evolution of longevity regulation mechanisms in yeast within this ecosystem. To empirically verify our hypothesis, in this study we carried out a three-step process for the selection of long-lived yeast species by a long-term exposure to exogenous lithocholic bile acid. Such experimental evolution yielded 20 long-lived mutants, three of which were capable of sustaining their considerably prolonged chronological lifespans after numerous passages in medium without lithocholic acid. The extended longevity of each of the three long-lived yeast species was a dominant polygenic trait caused by mutations in more than two nuclear genes. Each of the three mutants displayed considerable alterations to the age-related chronology of mitochondrial respiration and showed enhanced resistance to chronic oxidative, thermal, and osmotic stresses. Our findings empirically validate the hypothesis suggesting that hormetic selective forces can drive the evolution of longevity regulation mechanisms within an ecosystem.
Collapse
Affiliation(s)
| | - Pavlo Kyryakov
- Department of Biology, Concordia University Montreal, QC, Canada
| | | | - Nimara Asbah
- Department of Biology, Concordia University Montreal, QC, Canada
| | - Forough Noohi
- Department of Biology, Concordia University Montreal, QC, Canada
| | - Tania Iouk
- Department of Biology, Concordia University Montreal, QC, Canada
| | | |
Collapse
|
33
|
Libertini G. Phylogeny of aging and related phenoptotic phenomena. BIOCHEMISTRY (MOSCOW) 2015; 80:1529-46. [DOI: 10.1134/s0006297915120019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Borkum JM. Migraine Triggers and Oxidative Stress: A Narrative Review and Synthesis. Headache 2015; 56:12-35. [PMID: 26639834 DOI: 10.1111/head.12725] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Blau theorized that migraine triggers are exposures that in higher amounts would damage the brain. The recent discovery that the TRPA1 ion channel transduces oxidative stress and triggers neurogenic inflammation suggests that oxidative stress may be the common denominator underlying migraine triggers. OBJECTIVE The aim of this review is to present and discuss the available literature on the capacity of common migraine triggers to generate oxidative stress in the brain. METHODS A Medline search was conducted crossing the terms "oxidative stress" and "brain" with "alcohol," "dehydration," "water deprivation," "monosodium glutamate," "aspartame," "tyramine," "phenylethylamine," "dietary nitrates," "nitrosamines," "noise," "weather," "air pollutants," "hypoglycemia," "hypoxia," "infection," "estrogen," "circadian," "sleep deprivation," "information processing," "psychosocial stress," or "nitroglycerin and tolerance." "Flavonoids" was crossed with "prooxidant." The reference lists of the resulting articles were examined for further relevant studies. The focus was on empirical studies, in vitro and of animals, of individual triggers, indicating whether and/or by what mechanism they can generate oxidative stress. RESULTS In all cases except pericranial pain, common migraine triggers are capable of generating oxidative stress. Depending on the trigger, mechanisms include a high rate of energy production by the mitochondria, toxicity or altered membrane properties of the mitochondria, calcium overload and excitotoxicity, neuroinflammation and activation of microglia, and activation of neuronal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. For some triggers, oxidants also arise as a byproduct of monoamine oxidase or cytochrome P450 processing, or from uncoupling of nitric oxide synthase. CONCLUSIONS Oxidative stress is a plausible unifying principle behind the types of migraine triggers encountered in clinical practice. The possible implications for prevention and for understanding the nature of the migraine attack are discussed.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, Orono, ME, USA.,Health Psych Maine, Waterville, ME, USA
| |
Collapse
|
35
|
Lyu J, Zheng G, Chen Z, Wang B, Tao S, Xiang D, Xie M, Huang J, Liu C, Zeng Q. Sepsis-induced brain mitochondrial dysfunction is associated with altered mitochondrial Src and PTP1B levels. Brain Res 2015; 1620:130-8. [PMID: 25998537 DOI: 10.1016/j.brainres.2015.04.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Sepsis-induced brain dysfunction (SIBD) is often the first manifestation of sepsis, and its pathogenesis is associated with mitochondrial dysfunction. In this study, we investigated the roles of the tyrosine kinase Src and protein tyrosine phosphatase 1B (PTP1B) in brain mitochondrial dysfunction using a rat model of lipopolysaccharide (LPS)-induced sepsis. We found that there was a gradual and significant increase of PTP1B levels in the rat brain after sepsis induction. In contrast, brain Src levels were reduced in parallel with the PTP1B increase. Sepsis led to significantly reduced tyrosine phosphorylation of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, II and III. Pretreatment of mitochondrial proteins with active PTP1B significantly inhibited complexes I and III activities in vitro, whereas Src enhanced complexes I, II, and III activities. PTP1B and Src were each co-immunoprecipitated with OXPHOS complexes I and III, suggesting direct interactions between both proteins and complexes I and III. Src also directly interacted with complex II. Furthermore, pretreatment of mitochondrial proteins with active PTP1B resulted in overproduction of reactive oxygen species and decreased mitochondrial membrane potential. Pretreatment with active Src produced the opposite effect. These results suggest that brain mitochondrial dysfunction following LPS-induced sepsis in rats is partly attributed to PTP1B and Src mediated decrease in mitochondrial protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Juanjuan Lyu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Guilang Zheng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Zhijiang Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Shaohua Tao
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Dan Xiang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Meiyan Xie
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Jinda Huang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Cui Liu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China.
| |
Collapse
|
36
|
Erokhina MV, Kurynina AV, Onishchenko GE. Mitochondria are targets for the antituberculosis drug rifampicin in cultured epithelial cells. BIOCHEMISTRY (MOSCOW) 2015; 78:1155-63. [PMID: 24237150 DOI: 10.1134/s0006297913100106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rifampicin is a widely used drug for antituberculosis therapy. Its target is the bacterial RNA polymerase. After entry into the human or mammalian organism, rifampicin is accumulated in cells of epithelial origin (kidneys, liver, lungs) where it induces apoptosis, necrosis, and fibrosis. The purpose of this study was to determine the intracellular mechanisms leading to rifampicin-induced pathological changes and cell death. We analyzed the survival and state of the chondriome of cultured epithelial cells of the SPEV line under the influence of rifampicin. Our data show that the drug induces pronounced pathological changes in the network and ultrastructure of mitochondria, and their dysfunction results in excessive production of reactive oxygen species and release of cytochrome c. These data suggest the initiation of the mitochondrial pathway of apoptosis. Simultaneously, we observed inhibition of cell proliferation and changes in morphology of the epithelial cells toward fibroblast-like appearance, which could indicate induction of epithelial-mesenchymal transition. Thus, mitochondria are the main potential target for rifampicin in cells of epithelial origin. We suggest that similar mechanisms of pathological changes can be induced in vivo in organs and tissues accumulating rifampicin during chemotherapy of bacterial infectious diseases.
Collapse
Affiliation(s)
- M V Erokhina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
37
|
Pierdominici M, Maselli A, Cecchetti S, Tinari A, Mastrofrancesco A, Alfè M, Gargiulo V, Beatrice C, Di Blasio G, Carpinelli G, Ortona E, Giovannetti A, Fiorito S. Diesel exhaust particle exposure in vitro impacts T lymphocyte phenotype and function. Part Fibre Toxicol 2014; 11:74. [PMID: 25498254 PMCID: PMC4271360 DOI: 10.1186/s12989-014-0074-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
Background Diesel exhaust particles (DEP) are major constituents of ambient air pollution and their adverse health effect is an area of intensive investigations. With respect to the immune system, DEP have attracted significant research attention as a factor that could influence allergic diseases interfering with cytokine production and chemokine expression. With this exception, scant data are available on the impact of DEP on lymphocyte homeostasis. Here, the effects of nanoparticles from Euro 4 (E4) and Euro 5 (E5) light duty diesel engines on the phenotype and function of T lymphocytes from healthy donors were evaluated. Methods T lymphocytes were isolated from peripheral blood obtained from healthy volunteers and subsequently stimulated with different concentration (from 0.15 to 60 μg/ml) and at different time points (from 24 h to 9 days) of either E4 or E5 particles. Immunological parameters, including apoptosis, autophagy, proliferation levels, mitochondrial function, expression of activation markers and cytokine production were evaluated by cellular and molecular analyses. Results DEP exposure caused a pronounced autophagic-lysosomal blockade, thus interfering with a key mechanism involved in the maintaining of T cell homeostasis. Moreover, DEP decreased mitochondrial membrane potential but, unexpectedly, this effect did not result in changes of the apoptosis and/or necrosis levels, as well as of intracellular content of adenosine triphosphate (ATP). Finally, a down-regulation of the expression of the alpha chain of the interleukin (IL)-2 receptor (i.e., the CD25 molecule) as well as an abnormal Th1 cytokine expression profile (i.e., a decrease of IL-2 and interferon (IFN)-γ production) were observed after DEP exposure. No differences between the two compounds were detected in all studied parameters. Conclusions Overall, our data identify functional and phenotypic T lymphocyte parameters as relevant targets for DEP cytotoxicity, whose impairment could be detrimental, at least in the long run, for human health, favouring the development or the progression of diseases such as autoimmunity and cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0074-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Pierdominici
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Angela Maselli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Antonella Tinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Arianna Mastrofrancesco
- San Gallicano Dermatologic Institute, IRCCS-IFO, Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, Rome, Italy.
| | - Michela Alfè
- Istituto di Ricerche sulla Combustione (IRC), CNR- Naples, Italy.
| | | | | | | | - Giulia Carpinelli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Elena Ortona
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy. .,Istituto San Raffaele Sulmona, Sulmona, Italy.
| | - Antonello Giovannetti
- Department of Clinical Medicine, Division of Clinical Immunology, Sapienza University of Rome, Rome, Italy.
| | - Silvana Fiorito
- Department of Clinical Medicine, Division of Clinical Immunology, Sapienza University of Rome, Rome, Italy. .,Institute of Translational Pharmacology, CNR-Rome, Italy. .,Research Center for Nanotechnologies applied to Engineering-CNIS, Rome, Italy.
| |
Collapse
|
38
|
Akopova OV, Kolchinskaya LI, Nosar VI, Bouryi VA, Mankovska IN, Sagach VF. Effect of potential-dependent potassium uptake on production of reactive oxygen species in rat brain mitochondria. BIOCHEMISTRY (MOSCOW) 2014; 79:44-53. [PMID: 24512663 DOI: 10.1134/s0006297914010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of potential-dependent potassium uptake on reactive oxygen species (ROS) generation in mitochondria of rat brain was studied. It was found that the effect of K+ uptake on ROS production in the brain mitochondria under steady-state conditions (state 4) was determined by potassium-dependent changes in the membrane potential of the mitochondria (ΔΨm). At K+ concentrations within the range of 0-120 mM, an increase in the initial rate of K(+)-uptake into the matrix resulted in a decrease in the steady-state rate of ROS generation due to the K(+)-induced depolarization of the mitochondrial membrane. The selective blockage of the ATP-dependent potassium channel (K(ATP)(+)-channel) by glibenclamide and 5-hydroxydecanoate resulted in an increase in ROS production due to the membrane repolarization caused by partial inhibition of the potential-dependent K+ uptake. The ATP-dependent transport of K+ was shown to be ~40% of the potential-dependent K+ uptake in the brain mitochondria. Based on the findings of the experiments, the potential-dependent transport of K+ was concluded to be a physiologically important regulator of ROS generation in the brain mitochondria and that the functional activity of the native K(ATP)(+)-channel in these organelles under physiological conditions can be an effective tool for preventing ROS overproduction in brain neurons.
Collapse
Affiliation(s)
- O V Akopova
- Bogomolets Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, 01601, Ukraine.
| | | | | | | | | | | |
Collapse
|
39
|
Brailovskaya IV, Sokolova TV, Kobylyanskii AG, Avrova NF. Effect of ganglioside GM1 on mitochondrial respiration and viability of PC12 cells under oxidative stress. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014020100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Kumar RN, Kumar KN, Salini K, Devaraj SN. Morin accelerates proliferative inhibition via NF-κB mediated transcriptional regulation of apoptotic events during chemical carcinogen induced mammary cancer in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Magalhães J, Gonçalves IO, Lumini-Oliveira J, Marques-Aleixo I, Passos E, Rocha-Rodrigues S, Machado NG, Moreira AC, Rizo D, Viscor G, Oliveira PJ, Torrella JR, Ascensão A. Modulation of cardiac mitochondrial permeability transition and apoptotic signaling by endurance training and intermittent hypobaric hypoxia. Int J Cardiol 2014; 173:40-5. [PMID: 24602319 DOI: 10.1016/j.ijcard.2014.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/23/2014] [Accepted: 02/08/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Modulation of the mitochondrial permeability transition pore (MPTP) and inhibition of the apoptotic signaling are critically associated with the cardioprotective phenotypes afforded by both intermittent hypobaric-hypoxia (IHH) and endurance-training (ET). We recently proposed that IHH and ET improve cardiac function and basic mitochondrial capacity, although without showing addictive effects. Here we investigate whether a combination of IHH and ET alters cardiac mitochondrial vulnerability to MPTP and related apoptotic signaling. METHODS Male Wistar rats were divided into normoxic-sedentary (NS), normoxic-exercised (NE, 1h/day/5 week treadmill-running), hypoxic-sedentary (HS, 6000 m, 5h/day/5 weeks) and hypoxic-exercised (HE) to study susceptibility to calcium-induced cardiac MPTP opening. Mitochondrial cyclophilin D (CypD), adenine nucleotide translocator (ANT), Bax and Bcl-2 protein contents were semi-quantified by Western blotting. Cardiac caspase 3-, 8- and 9-like activities were measured. Mitochondrial aconitase and superoxide dismutase (MnSOD) activity and malondialdehyde (MDA) and sulphydryl group (-SH) content were determined. RESULTS Susceptibility to MPTP decreased in NE and HS vs. NS and even further in HE. The ANT content increased in HE vs. NS. Bcl-2/Bax ratio increased in NE and HS compared to NS. Decreased activities in tissue caspase 3-like (HE vs. NS) and caspase 9-like (HS and HE vs. NS) were observed. Mitochondrial aconitase increased in NE and HS vs. NS. No alterations between groups were observed for caspase 8-like activity, MnSOD, CypD, MDA and -SH. CONCLUSIONS Data confirm that IHH and ET modulate cardiac mitochondria to a protective phenotype characterized by decreased MPTP induction and apoptotic signaling, although without visible addictive effects as initially hypothesized.
Collapse
Affiliation(s)
- J Magalhães
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | - I O Gonçalves
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - J Lumini-Oliveira
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal; Faculty of Health Sciences, University of Fernando Pessoa, Portugal
| | - I Marques-Aleixo
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - E Passos
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - S Rocha-Rodrigues
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - N G Machado
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - A C Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - D Rizo
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - G Viscor
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - P J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - J R Torrella
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - A Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
42
|
Akopova OV, Nosar' VI, Man'kovskaia IN, Sagach VF. [The effect of Ca(2+)-induced opening of cyclosporine-sensitive pore on the oxygen consumption and functional state of rat liver mitochondria]. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 85:37-49. [PMID: 24479321 DOI: 10.15407/ubj85.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of Ca(2+)-induced opening of cyclosporine-sensitive pore (mitochondrial permeability transition pore, MPTP) on the oxygen consumption and mitochondrial functional state was studied in the rat liver mitochondria. It was shown that, with the use of glutamate as oxidation substrate, in the absence of depolarization MPTP opening results in the increase of steady state respiration rate because of the activation of cyclosporine-sensitive Ca2+/H(+)-exchange and Ca2+ cycling, which was supported by the simultaneous work of MPTP and Ca(2+)-uniporter. With the aid of selective blockers, cyclosporine A and ruthenium red, it was shown that MPTP and Ca(2+)-uniporter contribute equally to the Ca(2+)-cycling and mitochondrial respiration. It was shown that bioenergetic effects of MPTP opening under steady state conditions (increase in the oxygen consumption rate under substrate oxidation without ADP, decrease in respiratory control ratio as well as the effectiveness of ATP synthesis, P/O) are close to the functional alterations, which result from the increase of endogenous proton conductance of mitochondrial membrane. Uncoupling effect of MPTP opening, by itself, had no effect on phosphorylation rate, which remains relatively stable because the fall of P/O is compensated by the activation of respiratory chain and the increase in the rate of state 3 respiration. It was concluded that under physiologically normal conditions MPTP might function as the endogenous mechanism of mild uncoupling of respiratory chain.
Collapse
|
43
|
Bahnemann J, Kayo S, Wahrheit J, Heinzle E, Pörtner R, Zeng AP. In search of an effective cell disruption method to isolate intact mitochondria from Chinese hamster ovary cells. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Janina Bahnemann
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - Sabrina Kayo
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - Judith Wahrheit
- Biochemical Engineering Institute; Saarland University; Saarland Germany
| | - Elmar Heinzle
- Biochemical Engineering Institute; Saarland University; Saarland Germany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| |
Collapse
|
44
|
Abstract
Oxidative stress is increased in systemic lupus erythematosus (SLE), and it contributes to immune system dysregulation, abnormal activation and processing of cell-death signals, autoantibody production and fatal comorbidities. Mitochondrial dysfunction in T cells promotes the release of highly diffusible inflammatory lipid hydroperoxides, which spread oxidative stress to other intracellular organelles and through the bloodstream. Oxidative modification of self antigens triggers autoimmunity, and the degree of such modification of serum proteins shows striking correlation with disease activity and organ damage in SLE. In T cells from patients with SLE and animal models of the disease, glutathione, the main intracellular antioxidant, is depleted and serine/threonine-protein kinase mTOR undergoes redox-dependent activation. In turn, reversal of glutathione depletion by application of its amino acid precursor, N-acetylcysteine, improves disease activity in lupus-prone mice; pilot studies in patients with SLE have yielded positive results that warrant further research. Blocking mTOR activation in T cells could conceivably provide a well-tolerated and inexpensive alternative approach to B-cell blockade and traditional immunosuppressive treatments. Nevertheless, compartmentalized oxidative stress in self-reactive T cells, B cells and phagocytic cells might serve to limit autoimmunity and its inhibition could be detrimental. Antioxidant therapy might also be useful in ameliorating damage caused by other treatments. This Review thus seeks to critically evaluate the complexity of oxidative stress and its relevance to the pathogenesis and treatment of SLE.
Collapse
|
45
|
Weidinger A, Dungel P, Perlinger M, Singer K, Ghebes C, Duvigneau JC, Müllebner A, Schäfer U, Redl H, Kozlov AV. Experimental data suggesting that inflammation mediated rat liver mitochondrial dysfunction results from secondary hypoxia rather than from direct effects of inflammatory mediators. Front Physiol 2013; 4:138. [PMID: 23760194 PMCID: PMC3675332 DOI: 10.3389/fphys.2013.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/22/2013] [Indexed: 01/01/2023] Open
Abstract
Systemic inflammatory response (SIR) comprises both direct effects of inflammatory mediators (IM) and indirect effects, such as secondary circulatory failure which results in tissue hypoxia (HOX). These two key components, SIR and HOX, cause multiple organ failure (MOF). Since HOX and IM occur and interact simultaneously in vivo, it is difficult to clarify their individual pathological impact. To eliminate this interaction, precision cut liver slices (PCLS) were used in this study aiming to dissect the effects of HOX and IM on mitochondrial function, integrity of cellular membrane, and the expression of genes associated with inflammation. HOX was induced by incubating PCLS or rat liver mitochondria at pO2 < 1% followed by reoxygenation (HOX/ROX model). Inflammatory injury was stimulated by incubating PCLS with IM (IM model). We found upregulation of inducible nitric oxide synthase (iNOS) expression only in the IM model, while heme oxygenase 1 (HO-1) expression was upregulated only in the HOX/ROX model. Elevated expression of interleukin 6 (IL-6) was found in both models reflecting converging pathways regulating the expression of this gene. Both models caused damage to hepatocytes resulting in the release of alanine aminotransferase (ALT). The leakage of aspartate aminotransferase (AST) was observed only during the hypoxic phase in the HOX/ROX model. The ROX phase of HOX, but not IM, drastically impaired mitochondrial electron supply via complex I and II. Additional experiments performed with isolated mitochondria showed that free iron, released during HOX, is likely a key prerequisite of mitochondrial dysfunction induced during the ROX phase. Our data suggests that mitochondrial dysfunction, previously observed in in vivo SIR-models, is the result of secondary circulatory failure inducing HOX rather than the result of a direct interaction of IM with liver cells.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
α-Lipoic acid ameliorates mitochondrial impairment and reverses apoptosis in FABP3-overexpressing embryonic cancer cells. J Bioenerg Biomembr 2013; 45:459-66. [DOI: 10.1007/s10863-013-9506-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
|
47
|
Song GX, Shen YH, Liu YQ, Sun W, Miao LP, Zhou LJ, Liu HL, Yang R, Kong XQ, Cao KJ, Qian LM, Sheng YH. Overexpression of FABP3 promotes apoptosis through inducing mitochondrial impairment in embryonic cancer cells. J Cell Biochem 2013; 113:3701-8. [PMID: 22753283 DOI: 10.1002/jcb.24243] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fatty acid-binding protein 3 (FABP3) is a low-molecular-weight protein with a distinct tissue distribution that may play an important role in fatty acid transport, cell growth, cellular signaling, and gene transcription. Previously, we have found that FABP3 was involved in apoptosis-associated congenital cardiac malformations, but the underlying mechanisms have not yet been described. In the present study, we investigated the characteristics of mitochondrial dysfunction in embryonic cancer cells (P19 cells) that overexpressed FABP3. We demonstrated that in FABP3-overexpressing P19 cells a lower cellular ATP production was accompanied by a dramatic decrease in mitochondrial membrane potential (MMP), despite the lack of a substantial decrease in the mtDNA copy number. In addition, FABP3 overexpression also led to an imbalance in mitochondrial dynamics and to excess intracellular reactive oxygen species production. Collectively, our results indicated that overexpression of FABP3 in P19 cells caused mitochondrion dysfunction that might be responsible for the development of FABP3-induced apoptosis.
Collapse
Affiliation(s)
- Gui Xian Song
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Akopova OV, Kolchinskaya LI, Nosar VI, Bouryi VA, Mankovskaya IN, Sagach VF. Effect of potential-dependent potassium uptake on calcium accumulation in rat brain mitochondria. BIOCHEMISTRY (MOSCOW) 2013; 78:80-90. [PMID: 23379563 DOI: 10.1134/s0006297913010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of potential-dependent potassium uptake at 0-120 mM K+ on matrix Ca2+ accumulation in rat brain mitochondria was studied. An increase in oxygen consumption and proton extrusion rates as well as increase in matrix pH with increase in K+ content in the medium was observed due to K+ uptake into the mitochondria. The accumulation of Ca2+ was shown to depend on K+ concentration in the medium. At K+ concentration ≤30 mM, Ca2+ uptake is decreased due to K+-induced membrane depolarization, whereas at higher K+ concentrations, up to 120 mM K+, Ca2+ uptake is increased in spite of membrane depolarization caused by matrix alkalization due to K+ uptake. Mitochondrial K+(ATP)-channel blockers (glibenclamide and 5-hydroxydecanoic acid) diminish K+ uptake as well as K+-induced depolarization and matrix alkalization, which results in attenuation of the potassium-induced effects on matrix Ca2+ uptake, i.e. increase in Ca2+ uptake at low K+ content in the medium due to the smaller membrane depolarization and decrease in Ca2+ uptake at high potassium concentrations because of restricted rise in matrix pH. The results show the importance of potential-dependent potassium uptake, and especially the K+(ATP) channel, in the regulation of calcium accumulation in rat brain mitochondria.
Collapse
Affiliation(s)
- O V Akopova
- Bogomolets Institute of Physiology, National Academy of Sciences of Ukraine, Kiev-24, Ukraine.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, which is characterized by progressive death of dopaminergic neurons in the substantia nigra pars compacta. Although mitochondrial dysfunction and oxidative stress are linked to PD pathogenesis, its etiology and pathology remain to be elucidated. Metabolomics investigates metabolite changes in biofluids, cell lysates, tissues and tumors in order to correlate these metabolomic changes to a disease state. Thus, the application of metabolomics to investigate PD provides a systematic approach to understand the pathology of PD, to identify disease biomarkers, and to complement genomics, transcriptomics and proteomics studies. This review will examine current research into PD mechanisms with a focus on mitochondrial dysfunction and oxidative stress. Neurotoxin-based PD animal models and the rationale for metabolomics studies in PD will also be discussed. The review will also explore the potential of NMR metabolomics to address important issues related to PD treatment and diagnosis.
Collapse
Affiliation(s)
- Shulei Lei
- University of Nebraska-Lincoln, Department of Chemistry, 722
Hamilton Hall, Lincoln, NE 68588-0304
| | - Robert Powers
- University of Nebraska-Lincoln, Department of Chemistry, 722
Hamilton Hall, Lincoln, NE 68588-0304
| |
Collapse
|
50
|
Yusuf M, Khan M, Khan RA, Ahmed B. Preparation, characterization,in vivoand biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 2012; 21:300-311. [DOI: 10.3109/1061186x.2012.747529] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|