Abstract
INTRODUCTION
Gamma-hydroxybutyrate (GHB) and its precursors, gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), are drugs of abuse which act primarily as central nervous system (CNS) depressants. In recent years, the rising recreational use of these drugs has led to an increasing burden upon health care providers. Understanding their toxicity is therefore essential for the successful management of intoxicated patients. We review the epidemiology, mechanisms of toxicity, toxicokinetics, clinical features, diagnosis, and management of poisoning due to GHB and its analogs and discuss the features and management of GHB withdrawal.
METHODS
OVID MEDLINE and ISI Web of Science databases were searched using the terms "GHB," "gamma-hydroxybutyrate," "gamma-hydroxybutyric acid," "4-hydroxybutanoic acid," "sodium oxybate," "gamma-butyrolactone," "GBL," "1,4-butanediol," and "1,4-BD" alone and in combination with the keywords "pharmacokinetics," "kinetics," "poisoning," "poison," "toxicity," "ingestion," "adverse effects," "overdose," and "intoxication." In addition, bibliographies of identified articles were screened for additional relevant studies including nonindexed reports. Non-peer-reviewed sources were also included: books, relevant newspaper reports, and applicable Internet resources. These searches produced 2059 nonduplicate citations of which 219 were considered relevant.
EPIDEMIOLOGY
There is limited information regarding statistical trends on world-wide use of GHB and its analogs. European data suggests that the use of GHB is generally low; however, there is some evidence of higher use among some sub-populations, settings, and geographical areas. In the United States of America, poison control center data have shown that enquiries regarding GHB have decreased between 2002 and 2010 suggesting a decline in use over this timeframe.
MECHANISMS OF ACTION
GHB is an endogenous neurotransmitter synthesized from glutamate with a high affinity for GHB-receptors, present on both on pre- and postsynaptic neurons, thereby inhibiting GABA release. In overdose, GHB acts both directly as a partial GABA(b) receptor agonist and indirectly through its metabolism to form GABA.
TOXICOKINETICS
GHB is rapidly absorbed by the oral route with peak blood concentrations typically occurring within 1 hour. It has a relatively small volume of distribution and is rapidly distributed across the blood-brain barrier. GHB is metabolized primarily in the liver and is eliminated rapidly with a reported 20-60 minute half-life. The majority of a dose is eliminated completely within 4-8 hours. The related chemicals, 1,4-butanediol and gamma butyrolactone, are metabolized endogenously to GHB. CLINICAL FEATURES OF POISONING: GHB produces CNS and respiratory depression of relatively short duration. Other commonly reported features include gastrointestinal upset, bradycardia, myoclonus, and hypothermia. Fatalities have been reported. MANAGEMENT OF POISONING: Supportive care is the mainstay of management with primary emphasis on respiratory and cardiovascular support. Airway protection, intubation, and/or assisted ventilation may be indicated for severe respiratory depression. Gastrointestinal decontamination is unlikely to be beneficial. Pharmacological intervention is rarely required for bradycardia; however, atropine administration may occasionally be warranted. WITHDRAWAL SYNDROME: Abstinence after chronic use may result in a withdrawal syndrome, which may persist for days in severe cases. Features include auditory and visual hallucinations, tremors, tachycardia, hypertension, sweating, anxiety, agitation, paranoia, insomnia, disorientation, confusion, and aggression/combativeness. Benzodiazepine administration appears to be the treatment of choice, with barbiturates, baclofen, or propofol as second line management options.
CONCLUSIONS
GHB poisoning can cause potentially life-threatening CNS and respiratory depression, requiring appropriate, symptom-directed supportive care to ensure complete recovery. Withdrawal from GHB may continue for up to 21 days and can be life-threatening, though treatment with benzodiazepines is usually effective.
Collapse