1
|
James S, Christoffersen AD, David JP, Hacker M, Jensen MDRJ, Mellbin L, Pieber TR, Ripa RS, Rossing P, Svehlikova E, Kjaer A. Effect of Once-Weekly Subcutaneous Semaglutide on Arterial Inflammation in People with Type 2 Diabetes and Cardiovascular Disease Using PET-MRI: Primary Results of a Randomized, Double-Blind, Placebo-Controlled Trial. Am Heart J 2025:S0002-8703(25)00156-5. [PMID: 40345413 DOI: 10.1016/j.ahj.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Semaglutide has demonstrated cardiovascular benefits in people with type 2 diabetes (T2D) with cardiovascular disease (CVD). Inflammation plays a well-documented role in atherosclerosis and glucagon-like peptide-1 receptor agonists, like semaglutide, have shown anti-inflammatory effects in animal and clinical studies. This trial investigated the effect of semaglutide on atherosclerotic inflammation in the carotid arteries using positron emission tomography (PET)-magnetic resonance imaging (MRI). METHODS Patients with T2D and CVD were randomized to double-blinded once-weekly subcutaneous semaglutide 1.0 mg or placebo. The primary and key secondary endpoints used PET-MRI with [18F]FDG and [68Ga]DOTATATE tracers to assess change from baseline to week 26 in plaque inflammation in the segments of the carotid arteries that were determined to be the most diseased and where plaque inflammation was quantified by the maximum target-to-background ratio (TBRmax) of the tracers. Additional secondary endpoints assessed plaque morphology and burden using MRI at week 52, including total wall volume, lipid-rich necrotic core volume, and fibrous cap thickness. RESULTS Of 101 patients, 87.1% were male, mean age was 66 years and they were well-treated according to guidelines. No significant treatment differences were observed between semaglutide and placebo for change in plaque inflammation at week 26 with either tracer; TBRmax of FDG (estimated treatment difference [ETD]: 0.033, 95% confidence interval [CI]: -0.118;0.184) and [68Ga]DOTATATE (ETD: 0.045, 95% CI: -0.314;0.404). CONCLUSIONS This trial explored the feasibility of following plaque inflammation with PET-MRI using [18F]FDG and [68Ga]DOTATATE. A significant effect of semaglutide versus placebo on carotid plaque inflammation could not be detected through the methodology used in this trial, likely due to minimal baseline inflammation. However, this does not exclude an effect of semaglutide on inflammation seen in previous preclinical and clinical studies. TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04032197.
Collapse
Affiliation(s)
- Stefan James
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Linda Mellbin
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas R Pieber
- Division for Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen Denmark
| | - Peter Rossing
- Department of Clinical Medicine, University of Copenhagen, Copenhagen Denmark; Complications Research, Steno Diabetes Center, Copenhagen, Denmark
| | - Eva Svehlikova
- Division for Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Bordat C, Nader E, Connes P, Joly P, Poutrel S, Perez A, Niesor E. Effect of dalcetrapib, voxelotor and their combination on red blood cell deformability and sickling in sickle cell disease. Clin Hemorheol Microcirc 2025:13860291251320332. [PMID: 40255066 DOI: 10.1177/13860291251320332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The aim of the present study was to test the effects of dalcetrapib and voxelotor on red blood cells (RBC) of sickle cell patients. Oxygen gradient ektacytometry was performed to measure RBC deformability in normoxia and hypoxia, as well as the propensity of RBC to sickle. Voxelotor and dalcetrapib reduced the propensity of RBC to sickle under deoxygenation and increased RBC deformability in hypoxia. Dalcetrapib did not affect the affinity of hemoglobin S (HbS) to oxygen. Combining the two molecules caused greater RBC rheological improvement. Our findings suggest that dalcetrapib could block HbS polymerization without affecting HbS oxygen affinity.
Collapse
Affiliation(s)
- Claire Bordat
- Hartis Pharma SA Nyon, Nyon, Switzerland
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Elie Nader
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Philippe Connes
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Philippe Joly
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-Site, Hospices Civils de Lyon, Lyon, France
| | - Solene Poutrel
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Anne Perez
- Hartis Pharma SA Nyon, Nyon, Switzerland
| | | |
Collapse
|
3
|
Georgakis MK, Malik R, Bounkari OE, Hasbani NR, Li J, Huffman JE, Shakt G, Tack RWP, Kimball TN, Asare Y, Morrison AC, Tsao NL, Judy R, Mitchell BD, Xu H, Montasser ME, Do R, Kenny EE, Loos RJF, Terry JG, Carr JJ, Bis JC, Psaty BM, Longstreth WT, Young KA, Lutz SM, Cho MH, Broome J, Khan AT, Wang FF, Heard-Costa N, Seshadri S, Vasan RS, Palmer ND, Freedman BI, Bowden DW, Yanek LR, Kral BG, Becker LC, Peyser PA, Bielak LF, Ammous F, Carson AP, Hall ME, Raffield LM, Rich SS, Post WS, Tracy RP, Taylor KD, Guo X, Mahaney MC, Curran JE, Blangero J, Clarke SL, Haessler JW, Hu Y, Assimes TL, Kooperberg C, Bernhagen J, Anderson CD, Damrauer SM, Zand R, Rotter JI, de Vries PS, Dichgans M. Rare damaging CCR2 variants are associated with lower lifetime cardiovascular risk. Genome Med 2025; 17:27. [PMID: 40119478 PMCID: PMC11929344 DOI: 10.1186/s13073-025-01456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Previous work has shown a role of CCL2, a key chemokine governing monocyte trafficking, in atherosclerosis. However, it remains unknown whether targeting CCR2, the cognate receptor of CCL2, provides protection against human atherosclerotic cardiovascular disease. METHODS Computationally predicted damaging or loss-of-function (REVEL > 0.5) variants within CCR2 were detected in whole-exome-sequencing data from 454,775 UK Biobank participants and tested for association with cardiovascular endpoints in gene-burden tests. Given the key role of CCR2 in monocyte mobilization, variants associated with lower monocyte count were prioritized for experimental validation. The response to CCL2 of human cells transfected with these variants was tested in migration and cAMP assays. Validated damaging variants were tested for association with cardiovascular endpoints, atherosclerosis burden, and vascular risk factors. Significant associations were replicated in six independent datasets (n = 1,062,595). RESULTS Carriers of 45 predicted damaging or loss-of-function CCR2 variants (n = 787 individuals) were at lower risk of myocardial infarction and coronary artery disease. One of these variants (M249K, n = 585, 0.15% of European ancestry individuals) was associated with lower monocyte count and with both decreased downstream signaling and chemoattraction in response to CCL2. While M249K showed no association with conventional vascular risk factors, it was consistently associated with a lower risk of myocardial infarction (odds ratio [OR]: 0.66, 95% confidence interval [CI]: 0.54-0.81, p = 6.1 × 10-5) and coronary artery disease (OR: 0.74, 95%CI: 0.63-0.87, p = 2.9 × 10-4) in the UK Biobank and in six replication cohorts. In a phenome-wide association study, there was no evidence of a higher risk of infections among M249K carriers. CONCLUSIONS Carriers of an experimentally confirmed damaging CCR2 variant are at a lower lifetime risk of myocardial infarction and coronary artery disease without carrying a higher risk of infections. Our findings provide genetic support for the translational potential of CCR2-targeting as an atheroprotective approach.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Omar El Bounkari
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
| | | | - Gabrielle Shakt
- Department of Surgery, Perelman School of Medicineat Theaq , University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Reinier W P Tack
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tamara N Kimball
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yaw Asare
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Noah L Tsao
- Department of Surgery, Perelman School of Medicineat Theaq , University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Renae Judy
- Department of Surgery, Perelman School of Medicineat Theaq , University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - May E Montasser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Jeffrey Carr
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - W T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon M Lutz
- Department of Population Medicine, PRecisiOn Medicine Translational Research (PROMoTeR) Center, Harvard Pilgrim Health Careand, Harvard Medical School , Boston, MA, USA
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Alyna T Khan
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nancy Heard-Costa
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Boston University and National Heart, Blood Institute'S Framingham Heart Study, Lung, and Framingham, MA, USA
| | - Sudha Seshadri
- Bigg'S Institute for Alzheimer'S Disease and Neurodegenerative Disorders, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ramachandran S Vasan
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Boston University and National Heart, Blood Institute'S Framingham Heart Study, Lung, and Framingham, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian G Kral
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Wendy S Post
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Russel P Tracy
- Departments of Pathology & Laboratory Medicine, and Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael C Mahaney
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Shoa L Clarke
- Department of Medicine (Division of Cardiovascular Medicine), Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jeffrey W Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Themistocles L Assimes
- Department of Medicine (Division of Cardiovascular Medicine), Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHK, Munich), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christopher D Anderson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicineat Theaq , University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicineat the , University of Pennsylvania, Philadelphia, PA, USA
| | - Ramin Zand
- Department of Neurology, Pennsylvania State University, Hershey, PA, USA
- Department of Neurology, Neuroscience Institute, Geisinger Health System, Danville, PA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany.
- German Centre for Cardiovascular Research (DZHK, Munich), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
4
|
Bacmeister L, Hempfling N, Maier A, Weber S, Buellesbach A, Heidenreich A, Bojti I, Gissler MC, Hilgendorf I, von Zur Muehlen C, Westermann D, Meyer PT, Goetz C, Wolf D. Longitudinal Assessment of Subclinical Arterial Inflammation in Patients Receiving Immune Checkpoint Inhibitors by Sequential [ 18F]FDG PET Scans. Circ Cardiovasc Imaging 2025; 18:e016851. [PMID: 39902567 DOI: 10.1161/circimaging.124.016851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), though revolutionary in cancer treatment, may accelerate atherosclerosis by inducing arterial inflammation. Due to a lack of controlled studies, the capacity of arterial 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake in patients with cancer to detect this arterial inflammation remains unclear. METHODS Arterial [18F]FDG uptake at 6 anatomic landmarks was assessed on serial positron emission tomography scans in patients with cancer treated at a German University Hospital between January 2010 and May 2023. Patients aged ≥65 years with at least 4 sequential scans within 30 months were included. Linear mixed regression analyses were used to evaluate the change in arterial tracer uptake in patients who received ICI or not. RESULTS Of the 156 patients included, 50 (30.1%) received ICIs after the baseline scan. Baseline arterial [18F]FDG uptake correlated with traditional cardiovascular risk factors, such as body mass index and male sex. Cross-sectional analyses suggested a negative effect of cholesterol-lowering medication on arterial [18F]FDG uptake at follow-up. In a time-dependent interaction analysis, arterial [18F]FDG uptake increased by 0.8% annually in patients without ICIs (95% CI, 0.2%-1.4%), potentially reflecting the background progression of arterial inflammation in patients with cancer. In ICI users, [18F]FDG uptake increased by 2.5% annually (95% CI, 1.7%-3.3%; P=0.001 for interaction with no ICI). Higher annual increase rates in ICI users were consistent across several anatomic landmarks, preexisting cardiovascular disease status, arterial calcification status, and concomitant chemotherapy or steroid use. However, this effect did not reach statistical significance in patients with melanoma and those with prior irradiation therapy. CONCLUSIONS This is the first controlled clinical study supporting the role of ICIs in accelerating atherosclerosis through low-grade arterial inflammation. However, although detectable by repeated [18F]FDG scans, the increase in tracer uptake associated with ICI use was modest compared with individual variability, questioning whether [18F]FDG captures the full pathophysiological process of ICI-induced, lymphocyte-driven inflammation.
Collapse
Affiliation(s)
- Lucas Bacmeister
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Niklas Hempfling
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Alexander Maier
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Susanne Weber
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
- Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Germany (S.W.)
| | - Annette Buellesbach
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Adrian Heidenreich
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Istvan Bojti
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Mark Colin Gissler
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Ingo Hilgendorf
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Constantin von Zur Muehlen
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Dirk Westermann
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| | - Philipp Tobias Meyer
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Germany (P.T.M., C.G.)
| | - Christian Goetz
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Germany (P.T.M., C.G.)
| | - Dennis Wolf
- Clinic for Cardiology and Angiology, Medical Center - University of Freiburg, University Heart Center Freiburg Bad Krozingen, University Medical Center, Germany (L.B., N.H., A.M., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, D. Wolf)
- Faculty of Medicine, University of Freiburg, Germany (L.B., N.H., A.M., S.W., A.B., A.H., I.B., M.C.G., I.H., C.v.z.M., D. Westermann, P.T.M., C.G., D. Wolf)
| |
Collapse
|
5
|
Miller RJH, Patel KK, Kwiecinski J, Slipczuk L, Dweck M, Newby DE, Chareonthaitawee P, Slomka P. Nuclear Cardiology Surrogate Biomarkers in Clinical Trials. J Nucl Med 2025; 66:4-11. [PMID: 39753367 DOI: 10.2967/jnumed.124.267869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 02/20/2025] Open
Abstract
Nuclear cardiology offers a diverse range of imaging tools that provide valuable insights into myocardial perfusion, inflammation, metabolism, neuroregulation, thrombosis, and microcalcification. These techniques are crucial not only for diagnosing and managing cardiovascular conditions but also for gaining pathophysiologic insights. Surrogate biomarkers in nuclear cardiology, represented by detectable imaging changes, correlate with disease processes or therapeutic responses and can serve as endpoints in clinical trials when they demonstrate a clear link with these processes. By providing early indicators of therapeutic efficacy-often before clinical outcomes manifest-surrogate biomarkers can accelerate treatment development. This disease-focused review will highlight key nuclear cardiology surrogate biomarkers, emphasizing the importance of standardized imaging protocols and robust quantitative techniques to ensure accuracy and reproducibility. We will also explore the challenges to the broader adoption of imaging biomarkers, including the need for well-defined pathophysiologic correlations, greater data diversity in clinical research, and overcoming regulatory barriers. Addressing these challenges will improve the utility of imaging biomarkers in clinical trials, enabling more precise cardiovascular care through early diagnosis and therapeutic monitoring, ultimately accelerating the development of novel cardiovascular therapies.
Collapse
Affiliation(s)
- Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Krishna K Patel
- Department of Medicine (Cardiology) and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | | | - Marc Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; and
| | | | - Piotr Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California;
| |
Collapse
|
6
|
Lindner JR, Morello M. In Vivo Cardiovascular Molecular Imaging: Contributions to Precision Medicine and Drug Development. Circulation 2024; 150:1885-1897. [PMID: 39621762 DOI: 10.1161/circulationaha.124.066522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Conventional forms of noninvasive cardiovascular imaging that evaluate morphology, function, flow, and metabolism play a vital role in individual treatment decisions, often based on guidelines. Innovations in molecular imaging have enhanced our ability to spatially quantify the expression of a wider array of disease-related proteins, genes, or cell types, or the activity of specific pathogenic pathways. These techniques, which usually rely on design of targeted imaging probes, have already been used extensively in cancer medicine and have now become part of cardiovascular care in conditions such as amyloidosis and sarcoidosis. The recognition that common cardiovascular conditions are caused by a substantial diversity of pathobiologic pathways and the diversity of therapies available for use have rekindled interest in expanding the role of molecular imaging of tissue phenotype to improve precision in diagnosis and therapeutic decision-making. The intent of this article is to raise awareness and understanding of approaches to molecular or cellular imaging of phenotype with targeted probes, and their potential to promote the principles of precision medicine. Also addressed are the diverse roles of molecular imaging to improve precision and efficiency of new drug development at the stages of candidate identification, preclinical testing, and clinical trials.
Collapse
Affiliation(s)
- Jonathan R Lindner
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville
| | - Matteo Morello
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville
| |
Collapse
|
7
|
Papafaklis MI, Koros R, Tsigkas G, Karanasos A, Moulias A, Davlouros P. Reversal of Atherosclerotic Plaque Growth and Vulnerability: Effects of Lipid-Modifying and Anti-Inflammatory Therapeutic Agents. Biomedicines 2024; 12:2435. [PMID: 39595002 PMCID: PMC11591594 DOI: 10.3390/biomedicines12112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Atherosclerotic plaque development constitutes the primary substrate of coronary artery disease (CAD) and is the outcome of an intricate process involving endothelial damage, inflammation, and lipid retention. The clinical efficacy of many lipid-lowering therapies in patients with CAD has been well established. Over the past few decades, a substantial and significant advance regarding the use of invasive and non-invasive imaging modalities has been observed. Numerous studies have been conducted using these imaging techniques and have investigated the changes in morphology (e.g., atheroma volume) and composition (e.g., lipid burden, fibrous cap thickness, macrophage accumulation) at the plaque level that explain the improved clinical outcomes by various pharmacological interventions. Lipid-lowering agents, such as statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, demonstrate direct effects on plaque volume and composition that enhance plaque stabilization and/or regression beyond the reduction of low-density lipoproteins. An increasing amount of clinical research is also focused on the role of inflammation in plaque vulnerability and future adverse cardiac events. Consequently, there is a pressing need to explore therapeutic strategies that are capable of disrupting the inflammatory response as well as reducing atheroma burden and modifying high-risk plaque characteristics. This review provides a comprehensive analysis of the current evidence regarding the effects of traditional and novel therapeutic strategies targeting modification of the lipid profile and inflammatory processes on reversing plaque growth and attenuating vulnerable features, thereby promoting plaque stabilization and passivation.
Collapse
Affiliation(s)
- Michail I. Papafaklis
- Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| | - Rafail Koros
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| | - Grigorios Tsigkas
- Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| | - Antonios Karanasos
- Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| | | | - Periklis Davlouros
- Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
8
|
Nicholls SJ, Tan S, Butters J, Nelson AJ. Evaluating obicetrapib as an emerging treatment for patients with dyslipidemia: a game changer? Expert Opin Pharmacother 2024; 25:1879-1885. [PMID: 39323412 DOI: 10.1080/14656566.2024.2409324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Cholesteryl ester transfer protein (CETP) plays an important role in lipid metabolism. Early interest in the development of CETP inhibitors proved to be disappointing. Recent interest has focused on the potential for CETP inhibition to reduce cardiovascular risk by lowering levels of low-density lipoprotein cholesterol (LDL-C). AREAS COVERED The data suggesting that low CETP activity may associate with lower levels of cardiovascular risk and early experience with CETP inhibitors focused on raising HDL-C levels. More recent data that suggests that any potential to reduce cardiovascular risk by inhibition of CETP is more likely to result from lowering levels of atherogenic lipid parameters. The development of obicetrapib, a potent CETP inhibitor, with robust lowering of apoB and LDL-C, will be summarized as a potential approach to the prevention of cardiovascular disease. EXPERT OPINION Obicetrapib is a potent CETP inhibitor, with a demonstrated ability to lower levels of apoB and LDL-C as monotherapy and in addition to high intensity statin therapy. The ultimate impact of obicetrapib on cardiovascular events will be evaluated by ongoing clinical trials.
Collapse
Affiliation(s)
| | - Sean Tan
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Julie Butters
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Maier A, Teunissen AJP, Nauta SA, Lutgens E, Fayad ZA, van Leent MMT. Uncovering atherosclerotic cardiovascular disease by PET imaging. Nat Rev Cardiol 2024; 21:632-651. [PMID: 38575752 PMCID: PMC11324396 DOI: 10.1038/s41569-024-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Rajagopalan S, Dobre M, Dazard JE, Vergara-Martel A, Connelly K, Farkouh ME, Gaztanaga J, Conger H, Dever A, Razavi-Nematollahi L, Fares A, Pereira G, Edwards-Glenn J, Cameron M, Cameron C, Al-Kindi S, Brook RD, Pitt B, Weir M. Mineralocorticoid Receptor Antagonism Prevents Aortic Plaque Progression and Reduces Left Ventricular Mass and Fibrosis in Patients With Type 2 Diabetes and Chronic Kidney Disease: The MAGMA Trial. Circulation 2024; 150:663-676. [PMID: 39129649 PMCID: PMC11503525 DOI: 10.1161/circulationaha.123.067620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/12/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Persistent mineralocorticoid receptor activation is a pathologic response in type 2 diabetes and chronic kidney disease. Whereas mineralocorticoid receptor antagonists are beneficial in reducing cardiovascular complications, direct mechanistic pathways for these effects in humans are lacking. METHODS The MAGMA trial (Mineralocorticoid Receptor Antagonism Clinical Evaluation in Atherosclerosis) was a randomized, double-blind, placebo-controlled trial in patients with high-risk type 2 diabetes with chronic kidney disease (not receiving dialysis) on maximum tolerated renin-angiotensin system blockade. The primary end point was change in thoracic aortic wall volume, expressed as absolute or percent value (ΔTWV or ΔPWV), using 3T magnetic resonance imaging at 12 months. Secondary end points were changes in left ventricle (LV) mass; LV fibrosis, measured as a change in myocardial native T1; and 24-hour ambulatory and central aortic blood pressures. Tertiary end points included plasma proteomic changes in 7596 plasma proteins using an aptamer-based assay. RESULTS A total of 79 patients were randomized to placebo (n=42) or 25 mg of spironolactone daily (n=37). After a modified intent-to-treat, including available baseline data of study end points, patients who completed the trial protocol were included in the final analyses. At the 12-month follow-up, the average change in PWV was 7.1±10.7% in the placebo group and 0.87±10.0% in the spironolactone group (P=0.028), and ΔTWV was 1.2±1.7 cm3 in the placebo group and 0.037±1.9 cm3 in the spironolactone group (P=0.022). Change in LV mass was 3.1±8.4 g in the placebo group and -5.8±8.4 g in the spironolactone group (P=0.001). Changes in LV T1 values were significantly different between the placebo and spironolactone groups (26.0±41.9 ms in the placebo group versus a decrease of -10.1±36.3 ms in the spironolactone group; P=6.33×10-4). Mediation analysis revealed that the spironolactone effect on thoracic aortic wall volume and myocardial mass remained significant after adjustment for ambulatory and central blood pressures. Proteomic analysis revealed a dominant effect of spironolactone on pathways involving oxidative stress, inflammation, and leukocyte activation. CONCLUSIONS Among patients with diabetes with moderate to severe chronic kidney disease at elevated cardiovascular risk, treatment with spironolactone prevented progression of aortic wall volume and resulted in regression of LV mass and favorable alterations in native T1, suggesting amelioration of left-ventricular fibrosis. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT02169089.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Mirela Dobre
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Jean-Eudes Dazard
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Armando Vergara-Martel
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Kim Connelly
- St. Michael’s Hospital, University of Toronto, Toronto, CA
| | | | - Juan Gaztanaga
- New York University Langone Health School of Medicine, Winthrop, Mineola, NY
| | | | - Ann Dever
- University Hospitals, Cleveland, OH, USA
| | | | - Anas Fares
- University Hospitals, Cleveland, OH, USA
| | | | | | - Mark Cameron
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Sadeer Al-Kindi
- Debakey Heart and Vascular Center Houston Methodist Hospital, Houston TX
| | - Robert D. Brook
- University of Michigan Frankel Cardiovascular Center, Detroit, MI
| | | | - Matthew Weir
- Division of Nephrology, University of Maryland Medical Center, Baltimore, MD
| |
Collapse
|
11
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
12
|
Sarraju A, Nissen SE. Atherosclerotic plaque stabilization and regression: a review of clinical evidence. Nat Rev Cardiol 2024; 21:487-497. [PMID: 38177454 DOI: 10.1038/s41569-023-00979-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Atherosclerotic plaque results from a complex interplay between lipid deposition, inflammatory changes, cell migration and arterial wall injury. Over the past two decades, clinical trials utilizing invasive arterial imaging modalities, such as intravascular ultrasonography, have shown that reducing levels of atherogenic lipoproteins, mainly serum LDL-cholesterol (LDL-C), to very low levels can safely reduce overall atherosclerotic plaque burden and favourably modify plaque composition. Classically, this outcome has been achieved with intensive statin therapy. Since 2016, newer and potent lipid-lowering strategies, such as proprotein convertase subtilisin-kexin type 9 inhibition, have shown incremental effects on plaque regression and risk of clinical events. Despite maximal reduction in plasma LDL-C levels, considerable residual cardiovascular risk remains in some patients. Therefore, there is a need to study therapeutic approaches that address residual risk beyond LDL-C reduction to promote plaque stabilization or regression. Contemporary imaging modalities, such as coronary computed tomography angiography, enable non-invasive assessment of the overall atherosclerotic plaque burden as well as of certain local plaque characteristics. This technology could allow further study of plaque stabilization and regression using novel therapeutic approaches. Non-invasive plaque assessment might also offer the potential to guide personalized management strategies if validated for this purpose.
Collapse
Affiliation(s)
- Ashish Sarraju
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Steven E Nissen
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
13
|
Gharios C, van Leent MMT, Chang HL, Abohashem S, O’Connor D, Osborne MT, Tang CY, Kaufman AE, Robson PM, Ramachandran S, Calcagno C, Mani V, Trivieri MG, Seligowski AV, Dekel S, Mulder WJM, Murrough JW, Shin LM, Tawakol A, Fayad ZA. Cortico-limbic interactions and carotid atherosclerotic burden during chronic stress exposure. Eur Heart J 2024; 45:1753-1764. [PMID: 38753456 PMCID: PMC11107120 DOI: 10.1093/eurheartj/ehae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND AND AIMS Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.
Collapse
Affiliation(s)
- Charbel Gharios
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helena L Chang
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 10029-6574, USA
| | - David O’Connor
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 10029-6574, USA
| | - Cheuk Y Tang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Audrey E Kaufman
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Philip M Robson
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Sarayu Ramachandran
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Venkatesh Mani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonia V Seligowski
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
| | - Sharon Dekel
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - James W Murrough
- Depression and Anxiety Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Shin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychology, Tufts University, Medford, MA, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| |
Collapse
|
14
|
Rehman WU, Yarkoni M, Ilyas MA, Athar F, Javaid M, Ehsan M, Khalid MT, Pasha A, Selma AB, Yarkoni A, Patel K, Sabouni MA, Rehman AU. Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis 2024; 11:152. [PMID: 38786974 PMCID: PMC11122262 DOI: 10.3390/jcdd11050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Atherosclerosis is a multi-factorial disease, and low-density lipoprotein cholesterol (LDL-C) is a critical risk factor in developing atherosclerotic cardiovascular disease (ASCVD). Cholesteryl-ester transfer-protein (CETP), synthesized by the liver, regulates LDL-C and high-density lipoprotein cholesterol (HDL-C) through the bidirectional transfer of lipids. The novelty of CETP inhibitors (CETPis) has granted new focus towards increasing HDL-C, besides lowering LDL-C strategies. To date, five CETPis that are projected to improve lipid profiles, torcetrapib, dalcetrapib, evacetrapib, anacetrapib, and obicetrapib, have reached late-stage clinical development for ASCVD risk reduction. Early trials failed to reduce atherosclerotic cardiovascular occurrences. Given the advent of some recent large-scale clinical trials (ACCELERATE, HPS3/TIMI55-REVEAL Collaborative Group), conducting a meta-analysis is essential to investigate CETPis' efficacy. METHODS We conducted a thorough search of randomized controlled trials (RCTs) that commenced between 2003 and 2023; CETPi versus placebo studies with a ≥6-month follow-up and defined outcomes were eligible. PRIMARY OUTCOMES major adverse cardiovascular events (MACEs), cardiovascular disease (CVD)-related mortality, all-cause mortality. SECONDARY OUTCOMES stroke, revascularization, hospitalization due to acute coronary syndrome, myocardial infarction (MI). RESULTS Nine RCTs revealed that the use of a CETPi significantly reduced CVD-related mortality (RR = 0.89; 95% CI: 0.81-0.98; p = 0.02; I2 = 0%); the same studies also reduced the risk of MI (RR = 0.92; 95% CI: 0.86-0.98; p = 0.01; I2 = 0%), which was primarily attributed to anacetrapib. The use of a CETPi did not reduce the likelihood any other outcomes. CONCLUSIONS Our meta-analysis shows, for the first time, that CETPis are associated with reduced CVD-related mortality and MI.
Collapse
Affiliation(s)
- Wajeeh ur Rehman
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Merav Yarkoni
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Muhammad Abdullah Ilyas
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Farwa Athar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Mahnoor Javaid
- School of Medicine, CMH Lahore Medical College, Lahore 54000, Pakistan;
| | - Muhammad Ehsan
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Muhammad Talha Khalid
- Department of Medicine, United Health Services, Johnson City, NY 13790, USA; (M.T.K.); (A.B.S.)
| | - Ahmed Pasha
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Abdelhamid Ben Selma
- Department of Medicine, United Health Services, Johnson City, NY 13790, USA; (M.T.K.); (A.B.S.)
| | - Alon Yarkoni
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Keyoor Patel
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Mouhamed Amr Sabouni
- Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Afzal ur Rehman
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| |
Collapse
|
15
|
Omari M, Alkhalil M. Atherosclerosis Residual Lipid Risk-Overview of Existing and Future Pharmacotherapies. J Cardiovasc Dev Dis 2024; 11:126. [PMID: 38667744 PMCID: PMC11050263 DOI: 10.3390/jcdd11040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Patients with atherosclerotic disease remain at increased risk of future events despite receiving optimal medical treatment. This residual risk is widely heterogeneous, but lipoprotein particles and their content play a major role in determining future cardiovascular events. Beyond low-density lipoprotein cholesterol (LDL-c), other lipoprotein particles have not demonstrated similar contribution to the progression of atherosclerosis. Statins, ezetimibe, and more recently, proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors and bempedoic acid have confirmed the causal role of LDL-c in the development of atherosclerosis. Data on high-density lipoprotein cholesterol (HDL-c) suggested a possible causal role for atherosclerosis; nonetheless, HDL-c-raising treatments, including cholesteryl-ester transfer protein (CETP) inhibitors and niacin, failed to confirm this relationship. On the other hand, mendelian randomisation revealed that triglycerides are more implicated in the development of atherosclerosis. Although the use of highly purified eicosapentaenoic acid (EPA) was associated with a reduction in the risk of adverse cardiovascular events, this beneficial effect did not correlate with the reduction in triglycerides level and has not been consistent across large phase 3 trials. Moreover, other triglyceride-lowering treatments, such as fibrates, were not associated with a reduction in future cardiovascular risk. Studies assessing agents targeting angiopoietin-like 3 (lipoprotein lipase inhibitor) and apolipoprotein C3 antisense will add further insights into the role of triglycerides in atherosclerosis. Emerging lipid markers such as lipoprotein (a) and cholesterol efflux capacity may have a direct role in the progression of atherosclerosis. Targeting these biomarkers may provide incremental benefits in reducing cardiovascular risk when added to optimal medical treatment. This Review aims to assess available therapies for current lipid biomarkers and provide mechanistic insight into their potential role in reducing future cardiovascular risk.
Collapse
Affiliation(s)
- Muntaser Omari
- Cardiothoracic Centre, Freeman Hospital, Newcastle-upon-Tyne NE7 7DN, UK;
| | - Mohammad Alkhalil
- Cardiothoracic Centre, Freeman Hospital, Newcastle-upon-Tyne NE7 7DN, UK;
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| |
Collapse
|
16
|
Solomon DH, Demler O, Rist PM, Santacroce L, Tawakol A, Giles JT, Liao KP, Bathon JM. Biomarkers of Cardiovascular Risk in Patients With Rheumatoid Arthritis: Results From the TARGET Trial. J Am Heart Assoc 2024; 13:e032095. [PMID: 38416140 PMCID: PMC10944054 DOI: 10.1161/jaha.123.032095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Cardiovascular disease remains an important comorbidity in patients with rheumatoid arthritis (RA), but traditional models do not accurately predict cardiovascular risk in patients with RA. The addition of biomarkers could improve prediction. METHODS AND RESULTS The TARGET (Treatments Against RA and Effect on FDG PET/CT) trial assessed whether different treatment strategies in RA differentially impact cardiovascular risk as measured by the change in arterial inflammation on arterial target to background ratio on fluorodeoxyglucose positron emission tomography/computed tomography scans conducted 24 weeks apart. A group of 24 candidate biomarkers supported by prior literature was assessed at baseline and 24 weeks later. Longitudinal analyses examined the association between baseline biomarker values, measured in plasma EDTA, and the change in arterial inflammation target to background ratio. Model fit was assessed for the candidate biomarkers only, clinical variables only, and models combining both. One hundred nine patients with median (interquartile range) age 58 years (53-65 years), RA duration 1.4 years (0.5-6.6 years), and 82% women had biomarkers assessed at baseline and follow-up. Because the main trial analyses demonstrated significant target to background ratio decreases with both treatment strategies but no difference across treatment groups, we analyzed all patients together. Baseline values of serum amyloid A, C-reactive protein, soluble tumor necrosis factor receptor 1, adiponectin, YKL-40, and osteoprotegerin were associated with significant change in target to background ratio. When selected candidate biomarkers were added to the clinical variables, the adjusted R2 improved from 0.20 to 0.33 (likelihood ratio P=0.0005). CONCLUSIONS A candidate biomarker approach identified several promising biomarkers that associate with baseline and treatment-associated changes in arterial inflammation in patients with RA. These will now be tested in an external validation cohort.
Collapse
Affiliation(s)
- Daniel H. Solomon
- Division of RheumatologyBrigham and Women’s HospitalBostonMA
- Harvard Medical SchoolBrigham and Women’s HospitalBostonMA
| | - Olga Demler
- Harvard Medical SchoolBrigham and Women’s HospitalBostonMA
- Division of Preventive MedicineBrigham and Women’s HospitalBostonMA
- ETHZurichSwitzerland
| | - Pamela M. Rist
- Harvard Medical SchoolBrigham and Women’s HospitalBostonMA
- Division of Preventive MedicineBrigham and Women’s HospitalBostonMA
| | - Leah Santacroce
- Division of RheumatologyBrigham and Women’s HospitalBostonMA
| | - Ahmed Tawakol
- Department of Medicine (Cardiac Unit)Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | | | - Katherine P. Liao
- Division of RheumatologyBrigham and Women’s HospitalBostonMA
- Harvard Medical SchoolBrigham and Women’s HospitalBostonMA
| | | |
Collapse
|
17
|
Devesa A, Fuster V, Vazirani R, García-Lunar I, Oliva B, España S, Moreno-Arciniegas A, Sanz J, Perez-Herreras C, Bueno H, Lara-Pezzi E, García-Alvarez A, de Vega VM, Fernández-Friera L, Trivieri MG, Fernández-Ortiz A, Rossello X, Sanchez-Gonzalez J, Ibanez B. Cardiac Insulin Resistance in Subjects With Metabolic Syndrome Traits and Early Subclinical Atherosclerosis. Diabetes Care 2023; 46:2050-2057. [PMID: 37713581 PMCID: PMC10632182 DOI: 10.2337/dc23-0871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE Experimental evidence suggests that metabolic syndrome (MetS) is associated with changes in cardiac metabolism. Whether this association occurs in humans is unknown. RESEARCH DESIGN AND METHODS 821 asymptomatic individuals from the Progression of Early Subclinical Atherosclerosis (PESA) study (50.6 [46.9-53.6] years, 83.7% male) underwent two whole-body 18F-fluorodeoxyglucose positron emission tomography-magnetic resonance (18F-FDG PET-MR) 4.8 ± 0.6 years apart. Presence of myocardial 18F-FDG uptake was evaluated qualitatively and quantitatively. No myocardial uptake was grade 0, while positive uptake was classified in grades 1-3 according to target-to-background ratio tertiles. RESULTS One hundred fifty-six participants (19.0%) showed no myocardial 18F-FDG uptake, and this was significantly associated with higher prevalence of MetS (29.0% vs. 13.9%, P < 0.001), hypertension (29.0% vs. 18.0%, P = 0.002), and diabetes (11.0% vs. 3.2%, P < 0.001), and with higher insulin resistance index (HOMA-IR, 1.64% vs. 1.23%, P < 0.001). Absence of myocardial uptake was associated with higher prevalence of early atherosclerosis (i.e., arterial 18F-FDG uptake, P = 0.004). On follow-up, the associations between myocardial 18F-FDG uptake and risk factors were replicated, and MetS was more frequent in the group without myocardial uptake. The increase in HOMA-IR was associated with a progressive decrease in myocardial uptake (P < 0.001). In 82% of subjects, the categorization according to presence/absence of myocardial 18F-FDG uptake did not change between baseline and follow-up. MetS regression on follow-up was associated with a significant (P < 0.001) increase in myocardial uptake. CONCLUSIONS Apparently healthy individuals without cardiac 18F-FDG uptake have higher HOMA-IR and higher prevalence of MetS traits, cardiovascular risk factors, and early atherosclerosis. An improvement in cardiometabolic profile is associated with the recovery of myocardial 18F-FDG uptake at follow-up.
Collapse
Affiliation(s)
- Ana Devesa
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ravi Vazirani
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- University Hospital La Moraleja, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Belén Oliva
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | - Javier Sanz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Héctor Bueno
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, Hospital Universitario 12 de Octubre and i+12 Research Institute, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ana García-Alvarez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Cardiology Department, Hospital Clinic-Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Vicente Martínez de Vega
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Hospital Universitario Quirón, Madrid, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Universitario HM Montepríncipe-Centro Integral de Enfermedades Cardiovasculares (CIEC), Madrid, Spain
| | - Maria G. Trivieri
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- University Hospital La Moraleja, Madrid, Spain
- Cardiology Department, Hospital Universitari Son Espases- Institut d'Investigacio Sanitaria Illes Balears (IDISBA), Palma de Mallorca, Spain
| | | | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz University Hospital, Madrid, Spain
| |
Collapse
|
18
|
Hupe J, Worthmann H, Ravenberg KK, Grosse GM, Ernst J, Haverich A, Bengel FM, Weissenborn K, Schmitto JD, Hanke JS, Derlin T, Gabriel MM. Interplay between driveline infection, vessel wall inflammation, cerebrovascular events and mortality in patients with left ventricular assist device. Sci Rep 2023; 13:18552. [PMID: 37899422 PMCID: PMC10613624 DOI: 10.1038/s41598-023-45110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023] Open
Abstract
In patients with left ventricular assist device (LVAD), infections and thrombotic events represent severe complications. We investigated device-specific local and systemic inflammation and its impact on cerebrovascular events (CVE) and mortality. In 118 LVAD patients referred for 18F-FDG-PET/CT, metabolic activity of LVAD components, thoracic aortic wall, lymphoid and hematopoietic organs, was quantified and correlated with clinical characteristics, laboratory findings, and outcome. Driveline infection was detected in 92/118 (78%) patients by 18F-FDG-PET/CT. Activity at the driveline entry site was associated with increased signals in aortic wall (r = 0.32, p < 0.001), spleen (r = 0.20, p = 0.03) and bone marrow (r = 0.20, p = 0.03), indicating systemic interactions. Multivariable analysis revealed independent associations of aortic wall activity with activity of spleen (β = 0.43, 95% CI 0.18-0.68, p < 0.001) and driveline entry site (β = 0.04, 95% CI 0.01-0.06, p = 0.001). Twenty-two (19%) patients suffered CVE after PET/CT. In a binary logistic regression analysis metabolic activity at the driveline entry site missed the level of significance as an influencing factor for CVE after adjusting for anticoagulation (OR = 1.16, 95% CI 1-1.33, p = 0.05). Metabolic activity of the subcutaneous driveline (OR = 1.13, 95% CI 1.02-1.24, p = 0.016) emerged as independent risk factor for mortality. Molecular imaging revealed systemic inflammatory interplay between thoracic aorta, hematopoietic organs, and infected device components in LVAD patients, the latter predicting CVE and mortality.
Collapse
Affiliation(s)
- Juliane Hupe
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kim K Ravenberg
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Gerrit M Grosse
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Ernst
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Axel Haverich
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jan D Schmitto
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasmin S Hanke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Maria M Gabriel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
19
|
Mézquita AJV, Biavati F, Falk V, Alkadhi H, Hajhosseiny R, Maurovich-Horvat P, Manka R, Kozerke S, Stuber M, Derlin T, Channon KM, Išgum I, Coenen A, Foellmer B, Dey D, Volleberg RHJA, Meinel FG, Dweck MR, Piek JJ, van de Hoef T, Landmesser U, Guagliumi G, Giannopoulos AA, Botnar RM, Khamis R, Williams MC, Newby DE, Dewey M. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat Rev Cardiol 2023; 20:696-714. [PMID: 37277608 DOI: 10.1038/s41569-023-00880-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
The detection and characterization of coronary artery stenosis and atherosclerosis using imaging tools are key for clinical decision-making in patients with known or suspected coronary artery disease. In this regard, imaging-based quantification can be improved by choosing the most appropriate imaging modality for diagnosis, treatment and procedural planning. In this Consensus Statement, we provide clinical consensus recommendations on the optimal use of different imaging techniques in various patient populations and describe the advances in imaging technology. Clinical consensus recommendations on the appropriateness of each imaging technique for direct coronary artery visualization were derived through a three-step, real-time Delphi process that took place before, during and after the Second International Quantitative Cardiovascular Imaging Meeting in September 2022. According to the Delphi survey answers, CT is the method of choice to rule out obstructive stenosis in patients with an intermediate pre-test probability of coronary artery disease and enables quantitative assessment of coronary plaque with respect to dimensions, composition, location and related risk of future cardiovascular events, whereas MRI facilitates the visualization of coronary plaque and can be used in experienced centres as a radiation-free, second-line option for non-invasive coronary angiography. PET has the greatest potential for quantifying inflammation in coronary plaque but SPECT currently has a limited role in clinical coronary artery stenosis and atherosclerosis imaging. Invasive coronary angiography is the reference standard for stenosis assessment but cannot characterize coronary plaques. Finally, intravascular ultrasonography and optical coherence tomography are the most important invasive imaging modalities for the identification of plaques at high risk of rupture. The recommendations made in this Consensus Statement will help clinicians to choose the most appropriate imaging modality on the basis of the specific clinical scenario, individual patient characteristics and the availability of each imaging modality.
Collapse
Affiliation(s)
| | - Federico Biavati
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary
| | - Robert Manka
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Stuber
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Keith M Channon
- Radcliffe Department of Medicine, University of Oxford and Oxford University Hospitals, Oxford, UK
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan Coenen
- Department of Radiology, Erasmus University, Rotterdam, Netherlands
| | - Bernhard Foellmer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Damini Dey
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rick H J A Volleberg
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix G Meinel
- Department of Radiology, University Medical Centre Rostock, Rostock, Germany
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology and Cardiovascular Sciences, Amsterdam UMC, Heart Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tim van de Hoef
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ulf Landmesser
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany
- Department of Cardiology, Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giulio Guagliumi
- Division of Cardiology, IRCCS Galeazzi Sant'Ambrogio Hospital, Milan, Italy
| | - Andreas A Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Ramzi Khamis
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc Dewey
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany.
- Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
20
|
Clezar CN, Flumignan CD, Cassola N, Nakano LC, Trevisani VF, Flumignan RL. Pharmacological interventions for asymptomatic carotid stenosis. Cochrane Database Syst Rev 2023; 8:CD013573. [PMID: 37565307 PMCID: PMC10401652 DOI: 10.1002/14651858.cd013573.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
BACKGROUND Carotid artery stenosis is narrowing of the carotid arteries. Asymptomatic carotid stenosis is when this narrowing occurs in people without a history or symptoms of this disease. It is caused by atherosclerosis; that is, the build-up of fats, cholesterol, and other substances in and on the artery walls. Atherosclerosis is more likely to occur in people with several risk factors, such as diabetes, hypertension, hyperlipidaemia, and smoking. As this damage can develop without symptoms, the first symptom can be a fatal or disabling stroke, known as ischaemic stroke. Carotid stenosis leading to ischaemic stroke is most common in men older than 70 years. Ischaemic stroke is a worldwide public health problem. OBJECTIVES To assess the effects of pharmacological interventions for the treatment of asymptomatic carotid stenosis in preventing neurological impairment, ipsilateral major or disabling stroke, death, major bleeding, and other outcomes. SEARCH METHODS We searched the Cochrane Stroke Group trials register, CENTRAL, MEDLINE, Embase, two other databases, and three trials registers from their inception to 9 August 2022. We also checked the reference lists of any relevant systematic reviews identified and contacted specialists in the field for additional references to trials. SELECTION CRITERIA We included all randomised controlled trials (RCTs), irrespective of publication status and language, comparing a pharmacological intervention to placebo, no treatment, or another pharmacological intervention for asymptomatic carotid stenosis. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. Two review authors independently extracted the data and assessed the risk of bias of the trials. A third author resolved disagreements when necessary. We assessed the evidence certainty for key outcomes using GRADE. MAIN RESULTS We included 34 RCTs with 11,571 participants. Data for meta-analysis were available from only 22 studies with 6887 participants. The mean follow-up period was 2.5 years. None of the 34 included studies assessed neurological impairment and quality of life. Antiplatelet agent (acetylsalicylic acid) versus placebo Acetylsalicylic acid (1 study, 372 participants) may result in little to no difference in ipsilateral major or disabling stroke (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.47 to 2.47), stroke-related mortality (RR 1.40, 95% CI 0.54 to 3.59), progression of carotid stenosis (RR 1.16, 95% CI 0.79 to 1.71), and adverse events (RR 0.81, 95% CI 0.41 to 1.59), compared to placebo (all low-certainty evidence). The effect of acetylsalicylic acid on major bleeding is very uncertain (RR 0.98, 95% CI 0.06 to 15.53; very low-certainty evidence). The study did not measure neurological impairment or quality of life. Antihypertensive agents (metoprolol and chlorthalidone) versus placebo The antihypertensive agent, metoprolol, may result in no difference in ipsilateral major or disabling stroke (RR 0.14, 95% CI 0.02 to1.16; 1 study, 793 participants) and stroke-related mortality (RR 0.57, 95% CI 0.17 to 1.94; 1 study, 793 participants) compared to placebo (both low-certainty evidence). However, chlorthalidone may slow the progression of carotid stenosis (RR 0.45, 95% CI 0.23 to 0.91; 1 study, 129 participants; low-certainty evidence) compared to placebo. Neither study measured neurological impairment, major bleeding, adverse events, or quality of life. Anticoagulant agent (warfarin) versus placebo The evidence is very uncertain about the effects of warfarin (1 study, 919 participants) on major bleeding (RR 1.19, 95% CI 0.97 to 1.46; very low-certainty evidence), but it may reduce adverse events (RR 0.89, 95% CI 0.81 to 0.99; low-certainty evidence) compared to placebo. The study did not measure neurological impairment, ipsilateral major or disabling stroke, stroke-related mortality, progression of carotid stenosis, or quality of life. Lipid-lowering agents (atorvastatin, fluvastatin, lovastatin, pravastatin, probucol, and rosuvastatin) versus placebo or no treatment Lipid-lowering agents may result in little to no difference in ipsilateral major or disabling stroke (atorvastatin, lovastatin, pravastatin, and rosuvastatin; RR 0.36, 95% CI 0.09 to 1.53; 5 studies, 2235 participants) stroke-related mortality (lovastatin and pravastatin; RR 0.25, 95% CI 0.03 to 2.29; 2 studies, 1366 participants), and adverse events (fluvastatin, lovastatin, pravastatin, probucol, and rosuvastatin; RR 0.76, 95% CI 0.53 to1.10; 7 studies, 3726 participants) compared to placebo or no treatment (all low-certainty evidence). The studies did not measure neurological impairment, major bleeding, progression of carotid stenosis, or quality of life. AUTHORS' CONCLUSIONS Although there is no high-certainty evidence to support pharmacological intervention, this does not mean that pharmacological treatments are ineffective in preventing ischaemic cerebral events, morbidity, and mortality. High-quality RCTs are needed to better inform the best medical treatment that may reduce the burden of carotid stenosis. In the interim, clinicians will have to use other sources of information.
Collapse
Affiliation(s)
- Caroline Nb Clezar
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina Dq Flumignan
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nicolle Cassola
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis Cu Nakano
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Virginia Fm Trevisani
- Medicina de Urgência and Rheumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo and Universidade de Santo Amaro, São Paulo, Brazil
| | - Ronald Lg Flumignan
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Sword J, Lee JH, Castro MA, Solomon J, Aiosa N, Reza SMS, Chu WT, Johnson JC, Bartos C, Cooper K, Jahrling PB, Johnson RF, Calcagno C, Crozier I, Kuhn JH, Hensley LE, Feuerstein IM, Mani V. Computed Tomography Imaging for Monitoring of Marburg Virus Disease: a Nonhuman Primate Proof-Of-Concept Study. Microbiol Spectr 2023; 11:e0349422. [PMID: 37036346 PMCID: PMC10269526 DOI: 10.1128/spectrum.03494-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/01/2023] [Indexed: 04/11/2023] Open
Abstract
Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. The pathogenesis of MVD remains poorly understood, partially due to the low number of cases that can be studied, the absence of state-of-the-art medical equipment in areas where cases are reported, and limitations on the number of animals that can be safely used in experimental studies under maximum containment animal biosafety level 4 conditions. Medical imaging modalities, such as whole-body computed tomography (CT), may help to describe disease progression in vivo, potentially replacing ethically contentious and logistically challenging serial euthanasia studies. Towards this vision, we performed a pilot study, during which we acquired whole-body CT images of 6 rhesus monkeys before and 7 to 9 days after intramuscular MARV exposure. We identified imaging abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to clinical, virological, and gross pathological hallmarks of MVD in this animal model. Quantitative image analysis indicated hepatomegaly with a significant reduction in organ density (indicating fatty infiltration of the liver), splenomegaly, and edema that corresponded with gross pathological and histopathological findings. Our results indicated that CT imaging could be used to verify and quantify typical MVD pathogenesis versus altered, diminished, or absent disease severity or progression in the presence of candidate medical countermeasures, thus possibly reducing the number of animals needed and eliminating serial euthanasia. IMPORTANCE Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. Much is unknown about disease progression and, thus, prevention and treatment options are limited. Medical imaging modalities, such as whole-body computed tomography (CT), have the potential to improve understanding of MVD pathogenesis. Our study used CT to identify abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to known clinical signs of MVD in this animal model. Our results indicated that CT imaging and analyses could be used to elucidate pathogenesis and possibly assess the efficacy of candidate treatments.
Collapse
Affiliation(s)
- Jennifer Sword
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Ji Hyun Lee
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Marcelo A. Castro
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nina Aiosa
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Syed M. S. Reza
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Winston T. Chu
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua C. Johnson
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Christopher Bartos
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Reed F. Johnson
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Claudia Calcagno
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Lisa E. Hensley
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Irwin M. Feuerstein
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| | - Venkatesh Mani
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Fort Detrick, National Institutes of Health, Fort Detrick Frederick, Maryland, USA
| |
Collapse
|
22
|
Jensen JK, Madsen JS, Jensen MEK, Kjaer A, Ripa RS. [ 64Cu]Cu-DOTATATE PET metrics in the investigation of atherosclerotic inflammation in humans. J Nucl Cardiol 2023; 30:986-1000. [PMID: 36045250 PMCID: PMC10261263 DOI: 10.1007/s12350-022-03084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to assess and compare the arterial uptake of the inflammatory macrophage targeting PET tracer [64Cu]Cu-DOTATATE in patients with no or known cardiovascular disease (CVD) to investigate potential differences in uptake. METHODS Seventy-nine patients who had undergone [64Cu]Cu-DOTATATE PET/CT imaging for neuroendocrine neoplasm disease were retrospectively allocated to three groups: controls with no known CVD risk factors (n = 22), patients with CVD risk factors (n = 24), or patients with known ischemic CVD (n = 33). Both maximum, mean of max and most-diseased segment (mds) standardized uptake value (SUV) and target-to-background ratio (TBR) uptake metrics were measured and reported for the carotid arteries and the aorta. To assess reproducibility between different reviewers, Bland-Altman plots were made. RESULTS For the carotid arteries, SUVmax (P = .03), SUVmds (0.05), TBRmax (P < .01), TBRmds (P < .01), and mean-of-max TBR (P = .01) were overall shown to provide a group-wise difference in uptake. When measuring uptake values in the aorta, a group-wise difference was only observed with TBRmds (P = .04). Overall, reproducibility of the reported uptake metrics was excellent for SUVs and good to excellent for TBRs for both the carotid arteries and the aorta. CONCLUSION Using [64Cu]Cu-DOTATATE PET imaging as a marker of atherosclerotic inflammation, we were able to demonstrate differences in some of the most frequently reported uptake metrics in patients with different degrees of CVD. Measurements of the carotid artery as either maximum uptake values or most-diseased segment analysis showed the best ability to discriminate between the groups.
Collapse
Affiliation(s)
- Jacob K. Jensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital – Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne S. Madsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital – Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte E. K. Jensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital – Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital – Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus S. Ripa
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital – Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Omari M, Alkhalil M. Advances in Cardiovascular Pharmacology in Atherosclerotic-Related Therapeutic Areas: Addressing Patients' Clinical Needs. J Clin Med 2023; 12:jcm12113665. [PMID: 37297860 DOI: 10.3390/jcm12113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Over the last three decades, a significant improvement has been achieved in reducing cardiovascular morbidity and mortality [...].
Collapse
Affiliation(s)
- Muntaser Omari
- Cardiothoracic Centre, Freeman Hospital, Newcastle-upon-Tyne NE7 7DN, UK
| | - Mohammad Alkhalil
- Cardiothoracic Centre, Freeman Hospital, Newcastle-upon-Tyne NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
24
|
Derlin T, Spencer BA, Mamach M, Abdelhafez Y, Nardo L, Badawi RD, Cherry SR, Bengel FM. Exploring Vessel Wall Biology In Vivo by Ultrasensitive Total-Body PET. J Nucl Med 2023; 64:416-422. [PMID: 36175139 PMCID: PMC10071799 DOI: 10.2967/jnumed.122.264550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ultrasensitive, high-resolution, extended-field-of-view total-body (TB) PET using the first-of-its-kind 194-cm axial-field-of-view uEXPLORER may facilitate the interrogation of biologic hallmarks of hitherto difficult-to-evaluate low-signal vessel wall pathology in cardiovascular disease. Methods: Healthy volunteers were imaged serially for up to 12 h after a standard dose of 18F-FDG (n = 15) or for up to 3 h after injection of a very low dose (about 5% of a standard dose; n = 15). A cohort undergoing standard 18F-FDG PET (n = 15) on a conventional scanner with a 22-cm axial field of view served as a comparison group. Arterial wall signal, crosstalk with hematopoietic and lymphoid organs, and image quality were analyzed using standardized techniques. Results: TB PET depicted the large vessel walls with excellent quality. The arterial wall could be imaged with high contrast up to 12 h after tracer injection. Ultralow-dose TB 18F-FDG images yielded a vessel wall signal and target-to-background ratio comparable to those of conventional-dose, short-axial-field-of-view PET. Crosstalk between vessel wall and lymphoid organs was identified with better accuracy in both TB PET cohorts than in conventional PET. Conclusion: TB PET enables detailed assessment of in vivo vessel wall biology and its crosstalk with other organs over an extended time window after tracer injection or at an ultralow tracer dose. These initial observations support the feasibility of serial imaging in low-risk populations and will stimulate future mechanistic studies or therapy monitoring in atherosclerosis and other vessel wall pathologies.
Collapse
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany;
| | - Benjamin A Spencer
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Martin Mamach
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hannover, Germany; and
| | - Yasser Abdelhafez
- Department of Radiology, University of California, Davis, Davis, California
| | - Lorenzo Nardo
- Department of Radiology, University of California, Davis, Davis, California
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department of Radiology, University of California, Davis, Davis, California
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department of Radiology, University of California, Davis, Davis, California
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Shah N, Reid M, Mani V, Kundel V, Kaplan RC, Kizer JR, Fayad ZA, Shea S, Redline S. Sleep apnea and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA): leveraging state-of-the-art vascular imaging. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:621-630. [PMID: 36316593 DOI: 10.1007/s10554-022-02743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE To further characterize the relationship between obstructive sleep apnea (OSA) and carotid atherosclerosis, we examined the structural and metabolic features of carotid plaque using hybrid 18-F-fluorodeoxyglucose (FDG) Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) in the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS We studied 46 individuals from the MESA-PET and MESA-Sleep ancillary studies. OSA was defined as an apnea hypopnea index [AHI] ≥ 15 events per hour (4% desaturation). PET/MRI was used to measure carotid plaque inflammation (using target-to-background-ratios [TBR]) and carotid wall thickness (CWT). Linear regression was used to assess the associations between OSA, CWT and TBR. RESULTS The mean age was 67.9 years (SD 8.53) and the mean BMI was 28.9 kg/m2 (SD 4.47). There was a trend toward a higher mean CWT in the OSA (n = 11) vs. non-OSA group (n = 35), 1.51 vs. 1.41 (p = 0.098). TBR did not differ by OSA groups, and there was no significant association between OSA and carotid plaque inflammation (TBR) in adjusted analyses. Although there was a significant interaction between OSA and obesity, there were no statistically significant associations between OSA and vascular inflammation in stratified analysis by obesity. CONCLUSION Despite a trend toward a higher carotid wall thickness in OSA vs. non-OSA participants, we did not find an independent association between OSA and carotid plaque inflammation using PET/MRI in MESA. Our findings suggest that simultaneous assessments of structural and metabolic features of atherosclerosis may fill current knowledge gaps pertaining to the influence of OSA on atherosclerosis prevalence and progression.
Collapse
Affiliation(s)
- Neomi Shah
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Michelle Reid
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Venkatesh Mani
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vaishnavi Kundel
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jorge R Kizer
- Departments of Medicine, Epidemiology and Biostatistics, San Francisco Veterans Affairs Health Care System and University of California San Francisco, San Francisco, CA, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Shea
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, New York, NY, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Senders ML, Calcagno C, Tawakol A, Nahrendorf M, Mulder WJM, Fayad ZA. PET/MR imaging of inflammation in atherosclerosis. Nat Biomed Eng 2023; 7:202-220. [PMID: 36522465 DOI: 10.1038/s41551-022-00970-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Myocardial infarction, stroke, mental disorders, neurodegenerative processes, autoimmune diseases, cancer and the human immunodeficiency virus impact the haematopoietic system, which through immunity and inflammation may aggravate pre-existing atherosclerosis. The interplay between the haematopoietic system and its modulation of atherosclerosis has been studied by imaging the cardiovascular system and the activation of haematopoietic organs via scanners integrating positron emission tomography and resonance imaging (PET/MRI). In this Perspective, we review the applicability of integrated whole-body PET/MRI for the study of immune-mediated phenomena associated with haematopoietic activity and cardiovascular disease, and discuss the translational opportunities and challenges of the technology.
Collapse
Affiliation(s)
- Max L Senders
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division and Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Jain R, Subramanian J, Rathore AS. A review of therapeutic failures in late-stage clinical trials. Expert Opin Pharmacother 2023; 24:389-399. [PMID: 36542800 DOI: 10.1080/14656566.2022.2161366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The process of drug approval involves extensive and expensive preclinical and clinical examination. Most drugs entering late-stage clinical trials get terminated for a variety of reasons including inability to achieve the primary endpoints or intolerable adverse effects. Only one-tenth of the drugs that enter clinical trials progress to Food and Drug Administration (FDA) regulatory submission. AREAS COVERED This review offers insight into some of the attributes that may be responsible for a drug's failure in late-stage trials. Information from multiple open sources including PubMed articles published between 1989 and 2019, recent articles from authentic websites like www.ClinicalTrials.gov, www.fda.gov, and pharmaceutical news articles for the years between 2017 and 2021 were accumulated and summarized. Further, a few drug candidates that reached the phase III clinical trials but were discontinued at later stages have been presented as case studies. EXPERT OPINION Ineluctable failures were observed due to insufficient knowledge about the mechanism of action where the disease progression stages are unclear. Other reasons were choice of patient population, late-stage treatment, and dosage. Adhering to the guidelines and recommendations provided by the regulatory authorities and learning from past failures, considerably reduce failure rates.
Collapse
Affiliation(s)
- Ritu Jain
- Department of Chemical Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India
| | - Janakiraman Subramanian
- Division of Oncology, Saint Luke's Cancer Institute/University of Missouri, 64111, Kansas City, MO, USA
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India
| |
Collapse
|
28
|
Zheng Y, Lim MJR, Tan BYQ, Chan BPL, Paliwal P, Jonathan OJY, Bharatendu C, Chan ACY, Yeo LLL, Vijayan J, Hong CS, Chee YH, Wong LYH, Chen J, Chong VYF, Dong Y, Tan CH, Sunny S, Teoh HL, Sinha AK, Sharma VK. Role of plaque inflammation in symptomatic carotid stenosis. Front Neurol 2023; 14:1086465. [PMID: 36761341 PMCID: PMC9902904 DOI: 10.3389/fneur.2023.1086465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Objective Prior studies have shown that plaque inflammation on FDG-PET and the symptomatic carotid atheroma inflammation lumen-stenosis (SCAIL) score were associated with recurrent ischemic events, but the findings have thus far not been widely validated. Therefore, we aimed to validate the findings of prior studies. Methods A single-center prospective cohort study that recruited patients with (1) recent TIA or ischemic stroke within the past 30 days, (2) ipsilateral carotid artery stenosis of ≥50%, and (3) were not considered for early carotid revascularization. The (1) maximum standardized uptake value (SUVmax) of the symptomatic carotid plaque, (2) the SCAIL score, and (3) stenosis severity of the symptomatic carotid artery were measured for all patients. The outcomes were (1) a 90-day ipsilateral ischemic stroke and (2) a 90-day ipsilateral symptomatic TIA or major adverse cardiovascular event (MACE). Results Among the 131 patients included in the study, the commonest cardiovascular risk factor was hypertension (95 patients, 72.5%), followed by diabetes mellitus (77 patients, 58.8%) and being a current smoker (64 patients, 48.9%). The median (IQR) duration between the index cerebral ischemic event and recruitment to the study was 1 (0, 2.5) days. The median (IQR) duration between the index cerebral ischemic event and FDG-PET was 5 (4, 7) days. A total of 14 (10.7%) patients had a 90-day stroke, and 41 (31.3%) patients had a 90-day TIA or MACE. On comparison of the predictive performances of the SCAIL score and SUVmax, SUVmax was found to be superior to the SCAIL score for predicting both 90-day ipsilateral ischemic stroke (AUC: SCAIL = 0.79, SUVmax = 0.92; p < 0.001; 95% CI = 0.072, 0.229) and 90-day TIA or MACE (AUC: SCAIL = 0.76, SUVmax = 0.84; p = 0.009; 95% CI = 0.020, 0.143). Conclusion Plaque inflammation as quantified on FDG-PET may serve as a reliable biomarker for risk stratification among patients with ECAD and recent TIA or ischemic stroke. Future studies should evaluate whether patients with significant plaque inflammation as quantified on FDG-PET benefit from carotid revascularization and/or anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yilong Zheng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mervyn Jun Rui Lim
- Division of Neurosurgery, National University Health System, Singapore, Singapore
| | - Benjamin Yong-Qiang Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Division of Neurology, National University Health System, Singapore, Singapore
| | | | | | | | - Chandra Bharatendu
- Division of Neurology, National University Health System, Singapore, Singapore
| | | | | | - Joy Vijayan
- Division of Neurology, National University Health System, Singapore, Singapore
| | - Chiew S. Hong
- Division of Neurology, National University Health System, Singapore, Singapore
| | - Young Heng Chee
- Division of Neurology, National University Health System, Singapore, Singapore
| | - Lily Y. H. Wong
- Division of Neurology, National University Health System, Singapore, Singapore
| | - Jintao Chen
- Division of Neurology, National University Health System, Singapore, Singapore
| | | | - Yanhong Dong
- Alice Lee Centre for Nursing Studies, Singapore, Singapore
| | - Chi Hsien Tan
- Division of Neurology, National University Health System, Singapore, Singapore
| | - Sibi Sunny
- Division of Neurology, National University Health System, Singapore, Singapore
| | - Hock Luen Teoh
- Division of Neurology, National University Health System, Singapore, Singapore
| | - Arvind Kumar Sinha
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | - Vijay Kumar Sharma
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Division of Neurology, National University Health System, Singapore, Singapore,*Correspondence: Vijay Kumar Sharma ✉
| |
Collapse
|
29
|
Nicholls SJ, Nelson AJ. CETP Inhibitors: Should We Continue to Pursue This Pathway? Curr Atheroscler Rep 2022; 24:915-923. [PMID: 36409446 DOI: 10.1007/s11883-022-01070-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE OF REVIEW For more than 20 years there has been considerable interest in the development of pharmacological inhibitors of cholesteryl ester transfer protein (CETP) by virtue of their ability to raise levels of high-density lipoprotein cholesterol. This review endeavors to integrate existing data from prior clinical trials with emerging data to understand whether there is a pathway forward to develop CETP inhibitors to prevent cardiovascular disease. RECENT FINDINGS Large clinical trials have proved disappointing with successive reports of a failure to reduce cardiovascular events. The one clinical development program that did demonstrate a reduction in cardiovascular risk found adipose tissue accumulation and did not proceed for regulatory approval. More recent observations suggest that less CETP activity may prevent cardiovascular events, but due to lipid lowering rather than raising high-density lipoprotein cholesterol. In addition, treatment with CETP inhibitors appears to have a beneficial impact on glycemic control in the setting of diabetes. Advances in the field of CETP inhibition suggest a potentially protective effect on the risk of both cardiovascular disease and diabetes. This has implications for how to best design future clinical development programs and leaves the door open to potentially bring CETP inhibitors to the preventive cardiology clinic.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia.
| | - Adam J Nelson
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia
| |
Collapse
|
30
|
Nicholls SJ, Ray KK, Nelson AJ, Kastelein JJP. Can we revive CETP-inhibitors for the prevention of cardiovascular disease? Curr Opin Lipidol 2022; 33:319-325. [PMID: 36345867 DOI: 10.1097/mol.0000000000000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW To review recent developments in the field of cholesteryl ester transfer protein (CETP) inhibition from clinical trials and genomic analyses which have the potential to impact future clinical programs. RECENT FINDINGS CETP plays an important role in remodelling of lipoproteins. A large body of evidence suggests that the presence of low CETP activity should have favourable effects on lipid profiles and cardiovascular risk. However, a number of clinical development programs of pharmacological CETP inhibitors have been disappointing with reports of toxicity and clinical futility. These findings have led many to consider abandoning CETP inhibition as a potential strategy for cardiovascular prevention. However, recent observations from genomic analyses and post hoc observations of prior clinical trials have given greater insights into the potential relationship between CETP inhibition and cardiovascular risk. This has highlighted the importance of lowering levels of atherogenic lipoproteins. SUMMARY These findings provide a pathway for ongoing clinical development of CETP inhibitors, where the potential to play an important role in the prevention of cardiovascular disease may still be possible. The lessons learned and pathway forward for new CETP inhibitors will be reviewed.
Collapse
Affiliation(s)
| | | | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - John J P Kastelein
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Parametric Imaging of Biologic Activity of Atherosclerosis Using Dynamic Whole-Body Positron Emission Tomography. JACC. CARDIOVASCULAR IMAGING 2022; 15:2098-2108. [PMID: 36481078 DOI: 10.1016/j.jcmg.2022.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND For molecular imaging of atherosclerotic vessel wall activity, tracer kinetic analysis may yield improved contrast versus blood, more robust quantitative parameters, and more reliable characterization of systems biology. OBJECTIVES The authors introduce a novel dynamic whole-body positron emission tomography (PET) protocol that is enabled by rapid continuous camera table motion, followed by reconstruction of parametric data sets using voxel-based Patlak graphical analysis. METHODS Twenty-five subjects were prospectively enrolled and underwent dynamic PET up to 90 minutes after injection of 2-[18F]fluoro-2-deoxy-D-glucose (FDG). Two sets of images were generated: 1) the established standard of static standardized uptake value (SUV) images; and 2) parametric images of the metabolic rate of FDG (MRFDG) using the Patlak plot-derived influx rate. Arterial wall signal was measured and compared using the volume-of-interest technique, and its association with hematopoietic and lymphoid organ signal and atherosclerotic risk factors was explored. RESULTS Parametric MRFDG images provided excellent arterial wall visualization, with elimination of blood-pool activity, and enhanced focus detectability and reader confidence. Target-to-background ratio (TBR) from MRFDG images was significantly higher compared with SUV images (2.6 ± 0.8 vs 1.4 ± 0.2; P < 0.0001), confirming improved arterial wall contrast. On MRFDG images, arterial wall signal showed improved correlation with hematopoietic and lymphoid organ activity (spleen P = 0.0009; lymph nodes P = 0.0055; and bone marrow P = 0.0202) and increased with the number of atherosclerotic risk factors (r = 0.49; P = 0.0138), where signal from SUV images (SUVmaxP = 0.9754; TBRmaxP = 0.8760) did not. CONCLUSIONS Absolute quantification of MRFDG is feasible for arterial wall using dynamic whole-body PET imaging. Parametric images provide superior arterial wall contrast, and they might be better suited to explore the relationship between arterial wall activity, systemic organ networks, and cardiovascular risk. This novel methodology may serve as a platform for future diagnostic and therapeutic clinical studies targeting the biology of arterial wall disease.
Collapse
|
32
|
Figtree GA, Adamson PD, Antoniades C, Blumenthal RS, Blaha M, Budoff M, Celermajer DS, Chan MY, Chow CK, Dey D, Dwivedi G, Giannotti N, Grieve SM, Hamilton-Craig C, Kingwell BA, Kovacic JC, Min JK, Newby DE, Patel S, Peter K, Psaltis PJ, Vernon ST, Wong DT, Nicholls SJ. Noninvasive Plaque Imaging to Accelerate Coronary Artery Disease Drug Development. Circulation 2022; 146:1712-1727. [PMID: 36441819 DOI: 10.1161/circulationaha.122.060308] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Coronary artery disease (CAD) remains the leading cause of adult mortality globally. Targeting known modifiable risk factors has had substantial benefit, but there remains a need for new approaches. Improvements in invasive and noninvasive imaging techniques have enabled an increasing recognition of distinct quantitative phenotypes of coronary atherosclerosis that are prognostically relevant. There are marked differences in plaque phenotype, from the high-risk, lipid-rich, thin-capped atheroma to the low-risk, quiescent, eccentric, nonobstructive calcified plaque. Such distinct phenotypes reflect different pathophysiologic pathways and are associated with different risks for acute ischemic events. Noninvasive coronary imaging techniques, such as computed tomography, positron emission tomography, and coronary magnetic resonance imaging, have major potential to accelerate cardiovascular drug development, which has been affected by the high costs and protracted timelines of cardiovascular outcome trials. This may be achieved through enrichment of high-risk phenotypes with higher event rates or as primary end points of drug efficacy, at least in phase 2 trials, in a manner historically performed through intravascular coronary imaging studies. Herein, we provide a comprehensive review of the current technology available and its application in clinical trials, including implications for sample size requirements, as well as potential limitations. In its effort to accelerate drug development, the US Food and Drug Administration has approved surrogate end points for 120 conditions, but not for CAD. There are robust data showing the beneficial effects of drugs, including statins, on CAD progression and plaque stabilization in a manner that correlates with established clinical end points of mortality and major adverse cardiovascular events. This, together with a clear mechanistic rationale for using imaging as a surrogate CAD end point, makes it timely for CAD imaging end points to be considered. We discuss the importance of global consensus on these imaging end points and protocols and partnership with regulatory bodies to build a more informed, sustainable staged pathway for novel therapies.
Collapse
Affiliation(s)
- Gemma A Figtree
- Kolling Institute of Medical Research, Sydney, Australia (G.A.F., S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia (G.A.F., S.T.V.)
- Charles Perkins Centre (G.A.F., C.K.C.), University of Sydney, Australia
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Philip D Adamson
- Christchurch Heart Institute, University of Otago Christchurch, New Zealand (P.D.A.)
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (P.D.A., D.E.N.)
| | - Charalambos Antoniades
- Acute Vascular Imaging Centre (C.A.), Radcliffe Department of Medicine, University of Oxford, UK
- Division of Cardiovascular Medicine (C.A.), Radcliffe Department of Medicine, University of Oxford, UK
| | - Roger S Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD (R.S.B., M. Blaha)
| | - Michael Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD (R.S.B., M. Blaha)
| | | | - David S Celermajer
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
- Departments of Cardiology (D.S.C., S.P.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Mark Y Chan
- Department of Cardiology, National University Heart Centre, Singapore (M.Y.C.)
| | - Clara K Chow
- Westmead Applied Research Centre (C.K.C.), University of Sydney, Australia
- Charles Perkins Centre (G.A.F., C.K.C.), University of Sydney, Australia
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.D.)
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research, University of Western Australia (G.D.)
- Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (G.D.)
| | - Nicola Giannotti
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory (S.M.G.), University of Sydney, Australia
- Radiology (S.M.G.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Christian Hamilton-Craig
- Faculty of Medicine and Centre for Advanced Imaging, University of Queensland and School of Medicine, Griffith University Sunshine Coast, Australia (C.H.-C.)
| | | | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (J.C.K.)
- St Vincent's Clinical School, University of NSW, Australia (J.C.K.)
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (J.C.K.)
| | | | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (P.D.A., D.E.N.)
| | - Sanjay Patel
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
- Departments of Cardiology (D.S.C., S.P.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia (K.P.)
- Department of Cardiology, The Alfred Hospital, Melbourne, Australia (K.P.)
| | - Peter J Psaltis
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide (P.J.P.)
- Department of Cardiology, Royal Adelaide Hospital, Australia (P.J.P.)
| | - Stephen T Vernon
- Kolling Institute of Medical Research, Sydney, Australia (G.A.F., S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia (G.A.F., S.T.V.)
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Dennis T Wong
- Monash Heart, Clayton, Australia (D.T.W., S.J.N.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (D.T.W., S.J.N.)
| | - Stephen J Nicholls
- Monash Heart, Clayton, Australia (D.T.W., S.J.N.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (D.T.W., S.J.N.)
| |
Collapse
|
33
|
Parry R, Majeed K, Pixley F, Hillis GS, Francis RJ, Schultz CJ. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2022; 23:e504-e525. [PMID: 35993316 PMCID: PMC9671294 DOI: 10.1093/ehjci/jeac167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death and disability for patients across the world. Our understanding of atherosclerosis as a primary cholesterol issue has diversified, with a significant dysregulated inflammatory component that largely remains untreated and continues to drive persistent cardiovascular risk. Macrophages are central to atherosclerotic inflammation, and they exist along a functional spectrum between pro-inflammatory and anti-inflammatory extremes. Recent clinical trials have demonstrated a reduction in major cardiovascular events with some, but not all, anti-inflammatory therapies. The recent addition of colchicine to societal guidelines for the prevention of recurrent cardiovascular events in high-risk patients with chronic coronary syndromes highlights the real-world utility of this class of therapies. A highly targeted approach to modification of interleukin-1-dependent pathways shows promise with several novel agents in development, although excessive immunosuppression and resulting serious infection have proven a barrier to implementation into clinical practice. Current risk stratification tools to identify high-risk patients for secondary prevention are either inadequately robust or prohibitively expensive and invasive. A non-invasive and relatively inexpensive method to identify patients who will benefit most from novel anti-inflammatory therapies is required, a role likely to be fulfilled by functional imaging methods. This review article outlines our current understanding of the inflammatory biology of atherosclerosis, upcoming therapies and recent landmark clinical trials, imaging modalities (both invasive and non-invasive) and the current landscape surrounding functional imaging including through targeted nuclear and nanobody tracer development and their application.
Collapse
Affiliation(s)
- Reece Parry
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Kamran Majeed
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Waikato District Health Board, Hamilton 3204, New Zealand
| | - Fiona Pixley
- School of Biomedical Sciences, Pharmacology and Toxicology, University of Western Australia, Perth 6009, Australia
| | - Graham Scott Hillis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Roslyn Jane Francis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - Carl Johann Schultz
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| |
Collapse
|
34
|
Sriranjan R, Zhao TX, Tarkin J, Hubsch A, Helmy J, Vamvaka E, Jalaludeen N, Bond S, Hoole SP, Knott P, Buckenham S, Warnes V, Bird N, Cheow H, Templin H, Cacciottolo P, Rudd JHF, Mallat Z, Cheriyan J. Low-dose interleukin 2 for the reduction of vascular inflammati on in acute corona ry syndromes (IVORY): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase II clinical trial. BMJ Open 2022; 12:e062602. [PMID: 36207050 PMCID: PMC9558794 DOI: 10.1136/bmjopen-2022-062602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/19/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Inflammation plays a critical role in the pathogenesis of atherosclerosis, the leading cause of ischaemic heart disease (IHD). Studies in preclinical models have demonstrated that an increase in regulatory T cells (Tregs), which have a potent immune modulatory action, led to a regression of atherosclerosis. The Low-dose InterLeukin 2 (IL-2) in patients with stable ischaemic heart disease and Acute Coronary Syndromes (LILACS) study, established the safety of low-dose IL-2 and its biological efficacy in IHD. The IVORY trial is designed to assess the effects of low-dose IL-2 on vascular inflammation in patients with acute coronary syndromes (ACS). METHODS AND ANALYSIS In this study, we hypothesise that low-dose IL-2 will reduce vascular inflammation in patients presenting with ACS. This is a double-blind, randomised, placebo-controlled, phase II clinical trial. Patients will be recruited across two centres, a district general hospital and a tertiary cardiac centre in Cambridge, UK. Sixty patients with ACS (unstable angina, non-ST elevation myocardial infarction or ST elevation myocardial infarction) with high-sensitivity C reactive protein (hsCRP) levels >2 mg/L will be randomised to receive either 1.5×106 IU of low-dose IL-2 or placebo (1:1). Dosing will commence within 14 days of admission. Dosing will comprise of an induction and a maintenance phase. 2-Deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) positron emission tomography/CT (PET/CT) scans will be performed before and after dosing. The primary endpoint is the change in mean maximum target to background ratios (TBRmax) in the index vessel between baseline and follow-up scans. Changes in circulating T-cell subsets will be measured as secondary endpoints of the study. The safety and tolerability of extended dosing with low-dose IL-2 in patients with ACS will be evaluated throughout the study. ETHICS AND DISSEMINATION The Health Research Authority and Health and Care Research Wales, UK (19/YH/0171), approved the study. Written informed consent is required to participate in the trial. The results will be reported through peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER NCT04241601.
Collapse
Affiliation(s)
- Rouchelle Sriranjan
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Tian Xiao Zhao
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Jason Tarkin
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Annette Hubsch
- Department of Medicine, Division of Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Cambridge, UK
| | - Joanna Helmy
- Department of Medicine, Division of Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Cambridge, UK
| | - Evangelia Vamvaka
- Department of Medicine, Division of Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Cambridge, UK
| | - Navazh Jalaludeen
- Department of Medicine, Division of Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Cambridge, UK
| | - Simon Bond
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Stephen P Hoole
- Cardiology, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Philip Knott
- Department of Clinical Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Samantha Buckenham
- Department of Clinical Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Victoria Warnes
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nick Bird
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Heok Cheow
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Heike Templin
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Paul Cacciottolo
- Department of Medicine, Division of Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Cambridge, UK
| | - James H F Rudd
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Joseph Cheriyan
- Department of Medicine, Division of Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Kaiser Y, Verberne HJ. Arterial 18F-NaF-uptake as a marker for vascular calcification activity. Can a little salt cut the sweet: a golden bullet to evaluate vascular mineralization? J Nucl Cardiol 2022; 29:1867-1869. [PMID: 33948889 DOI: 10.1007/s12350-021-02624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yannick Kaiser
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hein J Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| |
Collapse
|
36
|
Bellinge JW, Francis RJ, Lee SC, Vickery A, Macdonald W, Gan SK, Chew GT, Phillips M, Lewis JR, Watts GF, Schultz CJ. The effect of Vitamin-K 1 and Colchicine on Vascular Calcification Activity in subjects with Diabetes Mellitus (ViKCoVaC): A double-blind 2x2 factorial randomized controlled trial. J Nucl Cardiol 2022; 29:1855-1866. [PMID: 33825140 DOI: 10.1007/s12350-021-02589-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND There is currently no treatment for attenuating progression of arterial calcification. 18F-sodium fluoride positron emission tomography (18F-NaF PET) locates regions of calcification activity. We tested whether vitamin-K1 or colchicine affected arterial calcification activity. METHODS 154 patients with diabetes mellitus and coronary calcification, as detected using computed tomography (CT), were randomized to one of four treatment groups (placebo/placebo, vitamin-K1 [10 mg/day]/placebo, colchicine [0.5 mg/day]/placebo, vitamin-K1 [10 mg/day]/ colchicine [0.5 mg/day]) in a double-blind, placebo-controlled 2x2 factorial trial of three months duration. Change in coronary calcification activity was estimated as a change in coronary maximum tissue-to-background ratio (TBRmax) on 18F-NaF PET. RESULTS 149 subjects completed follow-up (vitamin-K1: placebo = 73:76 and colchicine: placebo = 73:76). Neither vitamin-K1 nor colchicine had a statistically significant effect on the coronary TBRmax compared with placebo (mean difference for treatment groups 0·00 ± 0·16 and 0·01 ± 0·17, respectively, p > 0.05). There were no serious adverse effects reported with colchicine or vitamin-K1. CONCLUSIONS In patients with type 2 diabetes, neither vitamin-K1 nor colchicine significantly decreases coronary calcification activity, as estimated by 18F-NaF PET, over a period of 3 months. CLINICAL TRIAL REGISTRATION ACTRN12616000024448.
Collapse
Affiliation(s)
- Jamie W Bellinge
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Roslyn J Francis
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Sing Ching Lee
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Alistair Vickery
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia
- Black Swan Health, Perth, Western Australia, Australia
| | - William Macdonald
- Department of Nuclear Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Seng Khee Gan
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Gerard T Chew
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Michael Phillips
- Harry Perkins Institute for Medical Research, and Centre for Medical Research, University of Western Australia and, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Kidney Research, Children's Hospital Westmead, School of Public Health, University of Sydney, Westmead, New South Wales, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia
- Cardiometabolic service, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Carl J Schultz
- School of Medicine, Faculty of Health and Biomedical Science, University of Western Australia, Royal Perth Hospital Campus, M570, Po Box X2213, Perth, Western Australia, Australia.
- Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
37
|
Debono S, Nash J, Fletcher AJ, Syed MBJ, Semple SI, van Beek EJR, Fletcher A, Cadet S, Williams MC, Dey D, Slomka PJ, Forsythe RO, Dweck MR, Newby DE. Quantifying sodium [ 18F]fluoride uptake in abdominal aortic aneurysms. EJNMMI Res 2022; 12:33. [PMID: 35666397 PMCID: PMC9170850 DOI: 10.1186/s13550-022-00904-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Aortic microcalcification activity is a recently described method of measuring aortic sodium [18F]fluoride uptake in the thoracic aorta on positron emission tomography. In this study, we aimed to compare and to modify this method for use within the infrarenal aorta of patients with abdominal aortic aneurysms. METHODS Twenty-five patients with abdominal aortic aneurysms underwent an sodium [18F]fluoride positron emission tomography and computed tomography scan. Maximum and mean tissue-to-background ratios (TBR) and abdominal aortic microcalcification activity were determined following application of a thresholding and variable radius method to correct for vertebral sodium [18F]fluoride signal spill-over and the nonlinear changes in aortic diameter, respectively. Agreement between the methods, and repeatability of these approaches were assessed. RESULTS The aortic microcalcification activity method was much quicker to perform than the TBR method (14 versus 40 min, p < 0.001). There was moderate-to-good agreement between TBR and aortic microcalcification activity measurements for maximum (interclass correlation co-efficient, 0.67) and mean (interclass correlation co-efficient, 0.88) values. These correlations sequentially improved with the application of thresholding (intraclass correlation coefficient 0.93, 95% confidence interval 0.89-0.95) and variable diameter (intraclass correlation coefficient 0.97, 95% confidence interval 0.94-0.99) techniques. The optimised method had good intra-observer (mean 1.57 ± 0.42, bias 0.08, co-efficient of repeatability 0.36 and limits of agreement - 0.43 to 0.43) and inter-observer (mean 1.57 ± 0.42, bias 0.08, co-efficient of repeatability 0.47 and limits of agreement - 0.53 to 0.53) repeatability. CONCLUSIONS Aortic microcalcification activity is a quick and simple method which demonstrates good intra-observer and inter-observer repeatabilities and provides measures of sodium [18F]fluoride uptake that are comparable to established methods.
Collapse
Affiliation(s)
- Samuel Debono
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Jennifer Nash
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Alexander J Fletcher
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Maaz B J Syed
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Scott I Semple
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Edwin J R van Beek
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alison Fletcher
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sebastien Cadet
- Division of Artificial Intelligence, Department of Medicine, Cedars-Sinai Medical Centre, Biomedical Imaging Research Institute, Los Angeles, USA
| | - Michelle C Williams
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Damini Dey
- Division of Artificial Intelligence, Department of Medicine, Cedars-Sinai Medical Centre, Biomedical Imaging Research Institute, Los Angeles, USA
| | - Piotr J Slomka
- Division of Artificial Intelligence, Department of Medicine, Cedars-Sinai Medical Centre, Biomedical Imaging Research Institute, Los Angeles, USA
| | - Rachael O Forsythe
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Marc R Dweck
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - David E Newby
- The University of Edinburgh Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
38
|
Fletcher AJ, Lembo M, Kwiecinski J, Syed MBJ, Nash J, Tzolos E, Bing R, Cadet S, MacNaught G, van Beek EJR, Moss AJ, Doris MK, Walker NL, Dey D, Adamson PD, Newby DE, Slomka PJ, Dweck MR. Quantifying microcalcification activity in the thoracic aorta. J Nucl Cardiol 2022; 29:1372-1385. [PMID: 33474695 PMCID: PMC8497049 DOI: 10.1007/s12350-020-02458-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Standard methods for quantifying positron emission tomography (PET) uptake in the aorta are time consuming and may not reflect overall vessel activity. We describe aortic microcalcification activity (AMA), a novel method for quantifying 18F-sodium fluoride (18F-NaF) uptake in the thoracic aorta. METHODS Twenty patients underwent two hybrid 18F-NaF PET and computed tomography (CT) scans of the thoracic aorta less than three weeks apart. AMA, as well as maximum (TBRmax) and mean (TBRmean) tissue to background ratios, were calculated by two trained operators. Intra-observer repeatability, inter-observer repeatability and scan-rescan reproducibility were assessed. Each 18F-NaF quantification method was compared to validated cardiovascular risk scores. RESULTS Aortic microcalcification activity demonstrated excellent intra-observer (intraclass correlation coefficient 0.98) and inter-observer (intraclass correlation coefficient 0.97) repeatability with very good scan-rescan reproducibility (intraclass correlation coefficient 0.86) which were similar to previously described TBRmean and TBRmax methods. AMA analysis was much quicker to perform than standard TBR assessment (3.4min versus 15.1min, P<0.0001). AMA was correlated with Framingham stroke risk scores and Framingham risk score for hard cononary heart disease. CONCLUSIONS AMA is a simple, rapid and reproducible method of quantifying global 18F-NaF uptake across the ascending aorta and aortic arch that correlates with cardiovascular risk scores.
Collapse
Affiliation(s)
- Alexander J Fletcher
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | - Maria Lembo
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Maaz B J Syed
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jennifer Nash
- Department of Vascular Surgery, Queen Elizabeth University Hospital, Glasgow, UK
| | - Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Sebastien Cadet
- Department of Imaging (Division of Nuclear Cardiology), Cedars-Sinai Medical Centre, Los Angeles, USA
| | - Gillian MacNaught
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Edwin J R van Beek
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alistair J Moss
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mhairi K Doris
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Niki L Walker
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Scottish Adult Congenital Cardiology Service, Golden Jubilee National Hospital, Clydebank, Glasgow, UK
| | - Damini Dey
- Department of Imaging (Division of Nuclear Cardiology), Cedars-Sinai Medical Centre, Los Angeles, USA
| | - Philip D Adamson
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Piotr J Slomka
- Department of Imaging (Division of Nuclear Cardiology), Cedars-Sinai Medical Centre, Los Angeles, USA
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Alavi A, Werner TJ, Høilund-Carlsen PF, Revheim ME. Can Target-to-Background Ratio Measurement Lead to Detection and Accurate Quantification of Atherosclerosis With FDG PET? Likely Not. Clin Nucl Med 2022; 47:532-536. [PMID: 35384906 PMCID: PMC9071036 DOI: 10.1097/rlu.0000000000004131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/19/2022] [Indexed: 12/02/2022]
Abstract
ABSTRACT The introduction of FDG in 1976 started a new discipline and enhanced the role of molecular imaging in medicine. While the initial intent with this tracer was to determine brain function in a variety of neuropsychiatric disorders, over time, this powerful approach has made a major impact on managing many other diseases and disorders. During the past 2 decades, FDG PET has been used to detect inflammatory lesions in the atherosclerotic plaques and in other settings. However, the suboptimal spatial resolution of PET limits its ability to visualize plaques that are very small in size. Furthermore, this tracer remains in the blood for an extended period and therefore provides suboptimal results. Target-to-background ratio (TBR) has been suggested to correct for this source of error. Unfortunately, TBR values vary substantially, depending on the timing of image acquisition. Delayed imaging at later time points (3-4 hours) may obviate the need for TBR measurement, but it is impractical with conventional PET instruments. Recently, 18F-sodium fluoride (NaF) has been used for detection and quantification of molecular calcification in the plaques. This tracer is highly specific for calcification and is rapidly cleared from the circulation. In addition, global atherosclerotic burden as measured by NaF PET can be determined accurately either in the heart or major arteries throughout the body. Therefore, the role of FDG PET-based TBR measurement for detection and quantification of atherosclerotic plaques is questionable at this time.
Collapse
Affiliation(s)
- Abass Alavi
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Thomas J. Werner
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Poul Flemming. Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Devesa A, Lobo-González M, Martínez-Milla J, Oliva B, García-Lunar I, Mastrangelo A, España S, Sanz J, Mendiguren JM, Bueno H, Fuster JJ, Andrés V, Fernández-Ortiz A, Sancho D, Fernández-Friera L, Sanchez-Gonzalez J, Rossello X, Ibanez B, Fuster V. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur Heart J 2022; 43:1809-1828. [PMID: 35567559 PMCID: PMC9113301 DOI: 10.1093/eurheartj/ehac102] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Experimental studies suggest that increased bone marrow (BM) activity is involved in the association between cardiovascular risk factors and inflammation in atherosclerosis. However, human data to support this association are sparse. The purpose was to study the association between cardiovascular risk factors, BM activation, and subclinical atherosclerosis. METHODS AND RESULTS Whole body vascular 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) was performed in 745 apparently healthy individuals [median age 50.5 (46.8-53.6) years, 83.8% men] from the Progression of Early Subclinical Atherosclerosis (PESA) study. Bone marrow activation (defined as BM 18F-FDG uptake above the median maximal standardized uptake value) was assessed in the lumbar vertebrae (L3-L4). Systemic inflammation was indexed from circulating biomarkers. Early atherosclerosis was evaluated by arterial metabolic activity by 18F-FDG uptake in five vascular territories. Late atherosclerosis was evaluated by fully formed plaques on MRI. Subjects with BM activation were more frequently men (87.6 vs. 80.0%, P = 0.005) and more frequently had metabolic syndrome (MetS) (22.2 vs. 6.7%, P < 0.001). Bone marrow activation was significantly associated with all MetS components. Bone marrow activation was also associated with increased haematopoiesis-characterized by significantly elevated leucocyte (mainly neutrophil and monocytes) and erythrocyte counts-and with markers of systemic inflammation including high-sensitivity C-reactive protein, ferritin, fibrinogen, P-selectin, and vascular cell adhesion molecule-1. The associations between BM activation and MetS (and its components) and increased erythropoiesis were maintained in the subgroup of participants with no systemic inflammation. Bone marrow activation was significantly associated with high arterial metabolic activity (18F-FDG uptake). The co-occurrence of BM activation and arterial 18F-FDG uptake was associated with more advanced atherosclerosis (i.e. plaque presence and burden). CONCLUSION In apparently healthy individuals, BM 18F-FDG uptake is associated with MetS and its components, even in the absence of systemic inflammation, and with elevated counts of circulating leucocytes. Bone marrow activation is associated with early atherosclerosis, characterized by high arterial metabolic activity. Bone marrow activation appears to be an early phenomenon in atherosclerosis development.[Progression of Early Subclinical Atherosclerosis (PESA); NCT01410318].
Collapse
Affiliation(s)
- Ana Devesa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Lobo-González
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Juan Martínez-Milla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Belén Oliva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, Hospital Ramón y Cajal, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Annalaura Mastrangelo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Javier Sanz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hector Bueno
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitario 12 de Octubre, and i+12 Research Institute, Madrid, Spain
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Hospital Universitario HM Montepríncipe-CIEC, Madrid, Spain
| | | | - Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitari Son Espases-IDISBA, Palma de Mallorca, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Positron Emission Tomography in Coronary Heart Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With advances in scanner technology, postprocessing techniques, and the development of novel positron emission tomography (PET) tracers, the applications of PET for the study of coronary heart disease have been gaining momentum in the last few years. Depending on the tracer and acquisition protocol, cardiac PET can be used to evaluate the atherosclerotic lesion (plaque imaging) and to assess its potential consequences—ischemic versus nonischemic (perfusion imaging) and viable versus scarred (viability imaging) myocardium. The scope of this review is to summarize the role of PET in coronary heart disease.
Collapse
|
42
|
Manubolu VS, Budoff MJ. Achieving coronary plaque regression: a decades-long battle against coronary artery disease. Expert Rev Cardiovasc Ther 2022; 20:291-305. [PMID: 35466832 DOI: 10.1080/14779072.2022.2069559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Traditionally atherosclerosis was thought to be progressive and medical treatment solely focused on delaying the progression of atherosclerosis rather than treating the disease itself. Multiple recent studies, however, have demonstrated a significant decrease in cardiovascular mortality with the use of additional anti-atherosclerotic therapies beyond statins. Consistent with these observations, mechanistic studies indicate that these additional anti-atherosclerotic therapies have a positive effect on both halting and reversing the course of atherosclerosis. AREAS COVERED We examine the progression of atherosclerosis and the efficacy of various anti-atherosclerotic treatment classes in this review utilizing multimodality imaging techniques. Searches were conducted in electronic databases: PubMed and EMBASE for all peer reviewed publications that examined coronary plaque progression, regression and stabilization using different imaging modalities and antiatherosclerosis therapies. The keywords coronary plaque, coronary angiography, IVUS, intravascular OCT, CCTA in conjunction with the various therapies included in this review were searched in different combinations. All relevant published articles on this topic were identified and their reference lists were screened for relevance. EXPERT COMMENTARY Though lipoprotein levels have traditionally been the target for antiatherosclerosis medication, several newer strategies have emerged creating novel targets in the treatment of coronary atherosclerosis. Using a combination of antiatherosclerosis therapies in conjunction with noninvasive imaging modalities like CCTA to directly visualize the plaque, is currently the focus of the future, with the aim of preventing and reversing atherosclerosis.
Collapse
Affiliation(s)
| | - Matthew J Budoff
- Department of Cardiology, Lundquist Institute, Torrance, CA, USA
| |
Collapse
|
43
|
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol 2022; 19:228-249. [PMID: 34759324 PMCID: PMC8580169 DOI: 10.1038/s41569-021-00629-x] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology could improve our understanding of the pathophysiology of atherosclerosis and contribute to the development of novel diagnostic and therapeutic strategies to further reduce the risk of cardiovascular disease. Macrophages have key roles in atherosclerosis progression and, therefore, macrophage-associated pathological processes are important targets for both diagnostic imaging and novel therapies for atherosclerosis. In this Review, we highlight efforts in the past two decades to develop imaging techniques and to therapeutically manipulate macrophages in atherosclerotic plaques with the use of rationally designed nanoparticles. We review the latest progress in nanoparticle-based imaging modalities that can specifically target macrophages. Using novel molecular imaging technology, these modalities enable the identification of advanced atherosclerotic plaques and the assessment of the therapeutic efficacy of medical interventions. Additionally, we provide novel perspectives on how macrophage-targeting nanoparticles can deliver a broad range of therapeutic payloads to atherosclerotic lesions. These nanoparticles can suppress pro-atherogenic macrophage processes, leading to improved resolution of inflammation and stabilization of plaques. Finally, we propose future opportunities for novel diagnostic and therapeutic strategies and provide solutions to challenges in this area for the purpose of accelerating the clinical translation of nanomedicine for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Boswijk E, de Ligt M, Habets MFJ, Mingels AMA, van Marken Lichtenbelt WD, Mottaghy FM, Schrauwen P, Wildberger JE, Bucerius J. Resveratrol treatment does not reduce arterial inflammation in males at risk of type 2 diabetes: a randomized crossover trial. Nuklearmedizin 2021; 61:33-41. [PMID: 34918332 DOI: 10.1055/a-1585-7215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Resveratrol has shown promising anti-inflammatory effects in in vitro and animal studies. We aimed to investigate this effect on arterial inflammation in vivo. METHODS This was an additional analysis of a double-blind randomized crossover trial which included eight male subjects with decreased insulin sensitivity who underwent an 18F-fluoroxyglucose (18F-FDG) PET/CT after 34 days of placebo and resveratrol treatment (150 mg/day). 18F-FDG uptake was analyzed in the carotid arteries and the aorta, adipose tissue regions, spleen, and bone marrow as measures for arterial and systemic inflammation. Maximum target-to-background ratios (TBRmax) were compared between resveratrol and placebo treatment with the non-parametric Wilcoxon signed-rank test. Median values are shown with their interquartile range. RESULTS Arterial 18F-FDG uptake was non-significantly higher after resveratrol treatment (TBRmax all vessels 1.7 (1.6-1.7)) in comparison to placebo treatment (1.5 (1.4-1.6); p=0.050). Only in visceral adipose tissue, the increase in 18F-FDG uptake after resveratrol reached statistical significance (p=0.024). Furthermore, CRP-levels were not significantly affected by resveratrol treatment (p=0.091). CONCLUSIONS Resveratrol failed to attenuate arterial or systemic inflammation as measured with 18F-FDG PET in subjects at risk of developing type 2 diabetes. However, validation of these findings in larger human studies is needed.
Collapse
Affiliation(s)
- Ellen Boswijk
- Department of Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Marlies de Ligt
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Marie-Fleur J Habets
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Alma M A Mingels
- Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht UMC+, Maastricht, Netherlands
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, Netherlands.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Department of Nuclear Medicine, Universitätsmedizin Göttingen, Gottingen, Germany
| |
Collapse
|
45
|
Peix A. Choosing between anatomy and function is not always evident for the heart of end-stage renal disease patients. How low can we go? J Nucl Cardiol 2021; 28:2671-2675. [PMID: 32342299 DOI: 10.1007/s12350-020-02118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Patients with chronic kidney disease (CKD) are at a very high risk of adverse cardiovascular events. In CKD patients, vascular calcification is more prevalent, appears at an earlier age, and is more severe than in the general population. CKD physiology rather than the effects of dialysis is the primary driver of microvascular disease in these patients. Considering the significant morbidity and mortality attributable to cardiovascular disease in the CKD population, risk stratification remains an important challenge. Topics such as function vs anatomy to properly risk stratify these patients, as well as future perspectives on non-invasive techniques, will be addressed.
Collapse
Affiliation(s)
- Amalia Peix
- Nuclear Medicine Department, Institute of Cardiology, 17 No. 702, Vedado, CP 10 400, La Habana, Cuba.
| |
Collapse
|
46
|
Zhou W, Dey A, Manyak G, Teklu M, Patel N, Teague H, Mehta NN. The application of molecular imaging to advance translational research in chronic inflammation. J Nucl Cardiol 2021; 28:2033-2045. [PMID: 33244675 PMCID: PMC8149483 DOI: 10.1007/s12350-020-02439-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 01/23/2023]
Abstract
Over the past several decades, molecular imaging techniques to assess cellular processes in vivo have been integral in advancing our understanding of disease pathogenesis. 18F-fluorodeoxyglucose (18-FDG) positron emission tomography (PET) imaging in particular has shaped the field of atherosclerosis research by highlighting the importance of underlying inflammatory processes that are responsible for driving disease progression. The ability to assess physiology using molecular imaging, combining it with anatomic delineation using cardiac coronary angiography (CCTA) and magnetic resonance imaging (MRI) and lab-based techniques, provides a powerful combination to advance both research and ultimately clinical care. In this review, we demonstrate how molecular imaging studies, specifically using 18-FDG PET, have revealed that early vascular disease is a systemic process with multiple, concurrent biological mechanisms using inflammatory diseases as a basis to understand early atherosclerotic mechanisms in humans.
Collapse
Affiliation(s)
- Wunan Zhou
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Cardiovascular Branch, NHLBI, 10 Center Drive, CRC, Room 5-5140, Bethesda, MD, 20892, USA
| | - Amit Dey
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Grigory Manyak
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Meron Teklu
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nidhi Patel
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Heather Teague
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nehal N Mehta
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
- Cardiovascular Branch, NHLBI, 10 Center Drive, CRC, Room 5-5140, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Ibrahim M, Thanigaimani S, Singh TP, Morris D, Golledge J. Systematic review and Meta-Analysis of Mendelian randomisation analyses of Abdominal aortic aneurysms. IJC HEART & VASCULATURE 2021; 35:100836. [PMID: 34286064 PMCID: PMC8274287 DOI: 10.1016/j.ijcha.2021.100836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Mendelian randomisation (MR) has been suggested to be able to overcome biases of observational studies, but no meta-analysis is available on MR studies on abdominal aortic aneurysm (AAA). This systematic review and Meta-analysis examined the evidence of causal risk factors for AAA identified in MR studies. METHODS Publicly available databases were systematically searched for MR studies that reported any causal risk factors for AAA diagnosis. Meta-analyses were performed using random effect models and reported as odds ratio (OR) and 95% confidence intervals (CI). Study quality was assessed using a modified version of Strengthening the Reporting of Mendelian Randomisation Studies (STROBE-MR) guidelines. RESULTS Sixteen MR studies involving 34,050 patients with AAA and 2,205,894 controls were included. Meta-analyses suggested that one standard deviation increase in high density lipoprotein (HDL) significantly reduced (OR: 0.66, 95% CI: 0.61, 0.72) and one standard deviation increase in low density lipoprotein (LDL) significantly increased the risk (OR: 1.68, 95%, CI: 1.55, 1.82) of AAA. One standard deviation increase in triglycerides did not significantly increase the risk of AAA (OR: 1.21, 95% CI: 0.86, 1.71). Quality assessment suggested that ten and five studies were of low and moderate risk of bias respectively, with one study considered as high risk of bias. CONCLUSION This meta-analysis suggests LDL and HDL are positive and negative casual risk factors for AAA.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Tejas P Singh
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| | - Dylan Morris
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| |
Collapse
|
48
|
Bernal A, Calcagno C, Mulder WJM, Pérez-Medina C. Imaging-guided nanomedicine development. Curr Opin Chem Biol 2021; 63:78-85. [PMID: 33735814 PMCID: PMC8384634 DOI: 10.1016/j.cbpa.2021.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Nanomedicine research is an active field that produces thousands of studies every year. However, translation of nanotherapeutics to the clinic has yet to catch up with such a vast output. In recent years, the need to better understand nanomedicines' in vivo behavior has been identified as one of the major challenges for efficient clinical translation. In this context, noninvasive imaging offers attractive solutions to provide valuable information about nanomedicine biodistribution, pharmacokinetics, stability, or therapeutic efficacy. Here, we review the latest imaging approaches used in the development of therapeutic nanomedicines, discuss why these strategies bring added value along the translational pipeline, and give a perspective on future advances in the field.
Collapse
Affiliation(s)
- Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Chemical Biology, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Carlos Pérez-Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
49
|
Ripa RS, Zobel EH, von Scholten BJ, Jensen JK, Binderup T, Diaz LJ, Curovic VR, Hansen TW, Rossing P, Kjaer A. Effect of Liraglutide on Arterial Inflammation Assessed as [ 18F]FDG Uptake in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Circ Cardiovasc Imaging 2021; 14:e012174. [PMID: 34187185 PMCID: PMC8300846 DOI: 10.1161/circimaging.120.012174] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The mechanism behind the cardiovascular protection observed with human GLP-1 RA (glucagon-like peptide-1 receptor agonists) in type 2 diabetes is unknown. We hypothesized that treatment with the GLP-1 RA liraglutide had a positive effect on vascular inflammation. METHODS LIRAFLAME (Effect of liraglutide on vascular inflammation in type-2 diabetes: A randomized, placebocontrolled, double-blind, parallel clinical PET/CT trial) was a double-blind, randomized controlled trial performed at a single university hospital clinic in Denmark. Patients with type 2 diabetes were via computer-generated randomization list assigned (1:1) liraglutide up to 1.8 mg or placebo once daily for 26 weeks. The primary end point was change in vascular inflammation over 26 weeks assessed by [18F]-fluorodeoxyglucose positron emission tomography/computed tomography. Analyses were based on intention-to-treat. Key secondary outcomes included change in other indices of atherosclerosis. RESULTS Between October 26, 2017, and August 16, 2019, 147 patients were screened and 102 were randomly assigned to liraglutide (n=51) or placebo (n=51) and 99 (97%) completed the trial. Change in the [18F]-fluorodeoxyglucose positron emission tomography measure of vascular inflammation (active-segment target-to-background ratio) did not differ between treatment groups: change from baseline to 26 weeks was -0.04 (95% CI, -0.17 to 0.08) in the liraglutide group compared with -0.09 (-0.19 to 0.01) in the placebo group (mean difference, 0.05 [95% CI, -0.11 to 0.21], P=0.53). Secondary analyses restricted to [18F]-fluorodeoxyglucose positron emission tomography of the carotid arteries as well as other indices of atherosclerosis confirmed the primary result. We performed an explorative analysis of interaction between treatment group and history of cardiovascular disease (P=0.052). CONCLUSIONS In this low to moderate risk population with type 2 diabetes, liraglutide did not change vascular inflammation assessed as [18F]-fluorodeoxyglucose uptake compared with placebo. An explorative analysis indicated a possible effect in persons with history of cardiovascular disease, in line with current guidelines where liraglutide is recommended to patients with history of cardiovascular disease. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03449654.
Collapse
Affiliation(s)
- Rasmus S Ripa
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark (R.S.R., J.K.J., T.B., A.K.)
| | - Emilie H Zobel
- Steno Diabetes Center Copenhagen, Denmark (E.H.Z., B.J.v.S., L.J.D., V.R.C., T.W.H., P.R.)
| | - Bernt J von Scholten
- Steno Diabetes Center Copenhagen, Denmark (E.H.Z., B.J.v.S., L.J.D., V.R.C., T.W.H., P.R.).,Novo Nordisk A/S, Søborg, Denmark (B.J.v.S.)
| | - Jacob K Jensen
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark (R.S.R., J.K.J., T.B., A.K.)
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark (R.S.R., J.K.J., T.B., A.K.)
| | - Lars J Diaz
- Steno Diabetes Center Copenhagen, Denmark (E.H.Z., B.J.v.S., L.J.D., V.R.C., T.W.H., P.R.)
| | - Viktor R Curovic
- Steno Diabetes Center Copenhagen, Denmark (E.H.Z., B.J.v.S., L.J.D., V.R.C., T.W.H., P.R.)
| | - Tine W Hansen
- Steno Diabetes Center Copenhagen, Denmark (E.H.Z., B.J.v.S., L.J.D., V.R.C., T.W.H., P.R.)
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Denmark (E.H.Z., B.J.v.S., L.J.D., V.R.C., T.W.H., P.R.).,University of Copenhagen, Denmark (P.R.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark (R.S.R., J.K.J., T.B., A.K.)
| |
Collapse
|
50
|
Giles JT, Rist PM, Liao KP, Tawakol A, Fayad ZA, Mani V, Paynter NP, Ridker PM, Glynn RJ, Lu F, Broderick R, Murray M, Vanni KMM, Solomon DH, Bathon JM. Testing the Effects of Disease-Modifying Antirheumatic Drugs on Vascular Inflammation in Rheumatoid Arthritis: Rationale and Design of the TARGET Trial. ACR Open Rheumatol 2021; 3:371-380. [PMID: 33932148 PMCID: PMC8207684 DOI: 10.1002/acr2.11256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
Individuals with rheumatoid arthritis (RA) are at increased risk for atherosclerotic cardiovascular disease (ASCVD) events relative to the general population, potentially mediated by atherosclerotic plaques that are more inflamed and rupture prone. We sought to address whether RA immunomodulators reduce vascular inflammation, thereby reducing ASCVD risk, and whether such reduction depends on the type of immunomodulator. The TARGET (Treatments Against RA and Effect on 18-Fluorodeoxyglucose [18 F-FDG] Positron Emission Tomography [PET]/Computed Tomography [CT]) trial (NCT02374021) will enroll 150 patients with RA with active disease and an inadequate response to methotrexate. Participants will be randomized to add either a tumor necrosis factor (TNF) inhibitor (etanercept or adalimumab) or sulfasalazine and hydroxychloroquine to their background methotrexate. Participants will undergo full-body 18 F-FDG-labelled PET scanning at baseline and after 6 months. Efficacy and safety evaluations will occur every 6 weeks, with therapy modified in a treat-to-target approach. The primary outcome is the comparison of change in arterial inflammation in the wall of the aorta and carotid arteries between the randomized treatment groups, specifically, the change in the mean of the maximum target-to-background ratio of arterial 18 F-FDG uptake in the most diseased segment of either the aorta and carotid arteries. A secondary analysis will compare the effects of achieving low disease activity or remission with those of moderate to high disease activity on vascular inflammation. The TARGET trial will test, for the first time, whether RA treatments reduce arterial inflammation and whether such reduction differs according to treatment strategy with either TNF inhibitors or a combination of nonbiologic disease-modifying antirheumatic drugs.
Collapse
Affiliation(s)
- Jon T. Giles
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| | - Pamela M. Rist
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Katherine P. Liao
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Ahmed Tawakol
- Massachusetts General Hospital and Harvard Medical SchoolBoston
| | - Zahi A. Fayad
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew York
| | - Venkatesh Mani
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew York
| | - Nina P. Paynter
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Paul M. Ridker
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Robert J. Glynn
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Fengxin Lu
- Brigham and Women's HospitalBostonMassachusetts
| | - Rachel Broderick
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| | | | | | - Daniel H. Solomon
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Joan M. Bathon
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| |
Collapse
|