1
|
O'Connor MH, Rhodin KE, Tyler DS, Beasley GM. Management of In-transit Disease: Regional Therapies, Intralesional Therapies, and Systemic Therapy. Surg Oncol Clin N Am 2025; 34:393-410. [PMID: 40413006 PMCID: PMC12104569 DOI: 10.1016/j.soc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
In-transit (IT) melanoma represents a distinct, heterogeneous pattern of disease that arises as superficial tumors along the track between the primary site and the draining regional lymph node basin. Many therapies have been explored for treatment of this disease with the goal of maximizing delivery of the therapeutic agent to the tumor while minimizing systemic toxicities. These include regional chemotherapies, intralesional injections, checkpoint inhibitors, immunomodulators, and vaccines in various combinations or as monotherapy. Here, we review the general managemnt of patients with ITmelanoma, the range of currently available treatment options, and recommendations for specific therapies for individual patients.
Collapse
Affiliation(s)
- Margaret H O'Connor
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristen E Rhodin
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Douglas S Tyler
- Department of Surgery, Texas Medical Branch, Galveston, TX, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Carvalho DG, Kenski JCN, Moreira DA, Rajão MA, Krijgsman O, Furtado C, Boroni M, Viola JPB, Peeper DS, Possik PA. Resistance to BRAF inhibitors drives melanoma sensitivity to Chk1 inhibition. Pharmacol Res 2025; 217:107797. [PMID: 40414585 DOI: 10.1016/j.phrs.2025.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
BRAF inhibitor-resistant melanomas (BRAFiR) acquire (epi)genetic and functional alterations that enable them to evade alternative treatments. Identifying these alterations is critical to advancing treatment strategies. Here, we explored the effect of Chk1 inhibition (Chk1i) on BRAFiR cells, revealing higher sensitivity compared to treatment-naïve cells both in vitro and in vivo. Using FUCCI-labeling and time-lapse microscopy, we show that S phase progression is required for Chk1i-induced cytotoxicity in BRAFiR cells, but not in treatment-naïve cells. Replication stress markers, including reduced BrdU incorporation and increased phospho-RPA and γH2AX, were observed mostly in BRAFiR cells with increased sensitivity to Chk1i. Untreated BRAFiR cells exhibited upregulated DNA replication genes, reduced progressing forks and increased origin firing, suggesting intrinsic replication changes. MAPK pathway reactivation in treatment-naïve cells mimicked BRAFiR traits, increasing sensitivity to Chk1i. These findings indicate that Chk1i exploits elevated replication stress specifically in BRAFiR cells, highlighting its therapeutic potential in overcoming MAPK inhibitor resistance in BRAF600-mutant melanoma.
Collapse
Affiliation(s)
- Danielle G Carvalho
- Program of Immunology and Tumor Biology, Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil; Division of Molecular Oncology and Immunology, Oncode institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Juliana C N Kenski
- Division of Molecular Oncology and Immunology, Oncode institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel A Moreira
- Laboratory of Bioinformatics and Computational Biology, Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil; Bioinformatics Core Facility, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Matheus A Rajão
- Program of Immunology and Tumor Biology, Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Carolina Furtado
- Genomics core facility, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Patricia A Possik
- Program of Immunology and Tumor Biology, Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil; Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom.
| |
Collapse
|
3
|
Levinson A, Shannon K, Huang BJ. Targeting Hyperactive Ras Signaling in Pediatric Cancer. Cold Spring Harb Perspect Med 2025; 15:a041572. [PMID: 39009442 PMCID: PMC12047744 DOI: 10.1101/cshperspect.a041572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Somatic RAS mutations are among the most frequent drivers in pediatric and adult cancers. Somatic KRAS, NRAS, and HRAS mutations exhibit distinct tissue-specific predilections. Germline NF1 and RAS mutations in children with neurofibromatosis type 1 and other RASopathy developmental disorders have provided new insights into Ras biology. In many cases, these germline mutations are associated with increased cancer risk. Promising targeted therapeutic strategies for pediatric cancers and neoplasms with NF1 or RAS mutations include inhibition of downstream Ras effector pathways, directly inhibiting the signal output of oncogenic Ras proteins and associated pathway members, and therapeutically targeting Ras posttranslational modifications and intracellular trafficking. Acquired drug resistance to targeted drugs remains a significant challenge but, increasingly, rational drug combination approaches have shown promise in overcoming resistance. Developing predictive preclinical models of childhood cancers for drug testing is a high priority for the field of pediatric oncology.
Collapse
Affiliation(s)
- Anya Levinson
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
4
|
Steinberg FT, Simon M, Wawer-Matos Reimer PA, Rokohl AC, Heindl LM. [New systemic treatment approaches for conjunctival melanoma]. DIE OPHTHALMOLOGIE 2025; 122:349-356. [PMID: 40067450 DOI: 10.1007/s00347-025-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 02/05/2025] [Indexed: 05/08/2025]
Abstract
Conjunctival melanoma is a rare disease that nevertheless has a high tumor-associated mortality rate. A resection in sano with adjuvant local treatment currently represents the therapeutic gold standard and systemic treatment is used for metastasized conjunctival melanoma and/or very advanced nonresectable local findings. New knowledge on molecular changes in conjunctival melanoma shows a clear similarity to those of cutaneous melanoma. Therefore, many findings on new systemic forms of treatment for cutaneous melanoma can be transferred to conjunctival melanoma. In the clinical application BRAF/MEK inhibitors and immune checkpoint inhibitors are already in use and good response rates have been shown in small retrospective studies and case reports. Due to the rarity of conjunctival melanoma, there are no larger prospective studies comparing different systemic therapeutic agents. In a nonrandomized retrospective comparison, a better overall survival was shown for a combination of BRAF/MEK inhibitors (progression-free 1‑year survival probability of 54.7%; overall survival of 29.1 months) compared to a combination of PD1/CTLA4 antibodies (progression-free 1‑year survival probability of 42%; overall survival of 18 months). The current recommendation is to perform genomic profiling for every conjunctival melanoma, particularly to investigate a BRAF mutation. If a BRAF mutation is present, BRAF/MEK inhibitor treatment should preferably be initiated. Treatment with immune checkpoint inhibitors can be used in the case of BRAF-negative mutation status or treatment failure with BRAF/MEK inhibitors. Monotherapy with the CTLA4 antibody ipilimumab is not recommended due to its inferiority to PD1 antibodies. New knowledge in the genomic profiling of conjunctival melanoma could enable further targeted treatment options in the future.
Collapse
Affiliation(s)
| | - Michael Simon
- Zentrum für Augenheilkunde, Universitätsklinikum Köln, Köln, Deutschland
| | | | - Alexander C Rokohl
- Zentrum für Augenheilkunde, Universitätsklinikum Köln, Köln, Deutschland
| | - Ludwig M Heindl
- Zentrum für Augenheilkunde, Universitätsklinikum Köln, Köln, Deutschland
| |
Collapse
|
5
|
Ueki Y, Naylor RM, Ghozy SA, Thirupathi K, Rinaldo L, Kallmes DF, Kadirvel R. Advances in sporadic brain arteriovenous malformations: Novel genetic insights, innovative animal models and emerging therapeutic approaches. J Cereb Blood Flow Metab 2025; 45:793-799. [PMID: 39948029 PMCID: PMC11826813 DOI: 10.1177/0271678x251319913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Brain arteriovenous malformations (bAVMs) are a notable cause of intracranial hemorrhage, strongly associated with severe morbidity and mortality. Contemporary treatment options include surgery, stereotactic radiosurgery, and endovascular embolization, each of which has limitations. Hence, development of pharmacological interventions is urgently needed. The recent discovery of the presence of activating Kirsten rat sarcoma (KRAS) viral oncogene homologue mutations in most sporadic bAVMs has opened the door for a more comprehensive understanding of the pathogenesis of bAVMs and has pointed to entirely novel possible therapeutic targets. Herein, we review the status quo of genetics, animal models, and therapeutic approaches in bAVMs.
Collapse
Affiliation(s)
- Yasuhito Ueki
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
- Department of Neurosurgery, Faculty of Medicine, The University of Juntendo, Tokyo, Japan
| | - Ryan M Naylor
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Sherief A Ghozy
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | | | - Lorenzo Rinaldo
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | | | - Ramanathan Kadirvel
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
- Department of Radiology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
6
|
Reitmajer M, Schäffeler N, Bach A, Nanz L, Amaral T, Leiter U, Flatz L, Forschner A. Psychosocial distress and persistent adverse events in long-term survivors of stage IV melanoma - a cross-sectional questionnaire study. J Dtsch Dermatol Ges 2025. [PMID: 40277327 DOI: 10.1111/ddg.15712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/02/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors and targeted therapies have improved survival in patients with stage IV melanoma. However, the challenges faced by long-term survivors remain unclear. The long-term toxicity and psychosocial impact of these treatments in real-world patients have yet to be reported. MATERIAL AND METHODS We conducted a cross-sectional questionnaire study using established screening tools, including the Hornheide Screening Instrument (HSI), the Distress Thermometer (DT) with the National Comprehensive Cancer Network (NCCN) problem list, and melanoma-specific questions addressing persistent adverse events, social impairments, emotional needs, and financial concerns. RESULTS A total of 159 patients with stage IV melanoma (≥5 years after the initial diagnosis) were enrolled, of whom 93 completed the questionnaire. Approximately one-third of DT/HSI values exceeded the threshold, indicating a need for psycho-oncological support. More than 40% of patients reported persistent treatment-related complaints. Financial and work-related impacts were rare, affecting approximately 8% and 1% of patients, respectively. CONCLUSIONS High rates of psychosocial distress and persistent adverse events were observed, highlighting the need for cancer survivorship programs in the follow-up care of melanoma patients.
Collapse
Affiliation(s)
- Markus Reitmajer
- Department of Dermatology, University Hospital Tuebingen, Tübingen, Germany
| | - Norbert Schäffeler
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Tübingen, Germany
| | - Anne Bach
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Tübingen, Germany
| | - Lena Nanz
- Department of Dermatology, University Hospital Tuebingen, Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University Hospital Tuebingen, Tübingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tuebingen, Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, University Hospital Tuebingen, Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tuebingen, Tübingen, Germany
| |
Collapse
|
7
|
Wang S, Wang J, Zhang H, Wang J. Pancreatitis associated with BRAF inhibitors: a disproportionality analysis based on the Food and Drug Administration Adverse Event Reporting System. Int J Clin Pharm 2025:10.1007/s11096-025-01914-2. [PMID: 40266530 DOI: 10.1007/s11096-025-01914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/29/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND The relationship between the development of pancreatitis and the use of BRAF (B-Raf proto-oncogene, serine/threonine kinase) inhibitors remains incompletely understood, primarily due to the infrequency of such cases. AIM This study aimed to investigate the association between BRAF inhibitors and pancreatitis, and to describe the clinical characteristics of pancreatitis related to these agents. METHOD A disproportionality analysis was conducted using data from the Food and Drug Administration Adverse Event Reporting System between July 2011 and June 2024. The reporting odds ratio (ROR) and information component (IC) were employed to assess the association between BRAF inhibitors and pancreatitis. Additionally, subgroup analysis and time-to-onset analysis were further performed. RESULTS A total of 169 cases of pancreatitis were identified in association with BRAF inhibitors: 71 cases with vemurafenib, 63 with dabrafenib, and 35 with encorafenib. The median age of patients was 62 years. Vemurafenib, dabrafenib, and encorafenib all showed a positive signal for pancreatitis, with respective RORs and ICs as follows: vemurafenib (ROR 2.46, 95% CI 1.95-3.10; IC = 1.27, 95% CI 0.88-1.56), dabrafenib (ROR 1.56, 95% CI 1.22-2.00; IC = 0.63, 95% CI 0.21-0.93), and encorafenib (ROR 2.59, 95% CI 1.86-3.62; IC = 1.34, 95% CI 0.77-1.74). The shortest median time-to-onset for pancreatitis was observed with vemurafenib (6.5 days), followed by encorafenib (14.0 days) and dabrafenib (129.5 days). CONCLUSION This study reveals a significant reporting association between BRAF inhibitors and the development of pancreatitis, with a higher risk observed in the early stage of treatment.
Collapse
Affiliation(s)
- Shoujun Wang
- Department of Rheumatology and Hematology, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Jinjing Wang
- Department of Rheumatology and Hematology, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Huahua Zhang
- Department of Pharmacy, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Jiangfeng Wang
- Department of Pharmaceutical Services, Ipharmacare Ltd., No. 2073, Jinchang Road, Yuhang District, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Mechahougui H, Gutmans J, Gouasmi R, Smekens L, Friedlaender A. BRAF Targeting Across Solid Tumors: Molecular Aspects and Clinical Applications. Int J Mol Sci 2025; 26:3757. [PMID: 40332392 PMCID: PMC12027668 DOI: 10.3390/ijms26083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
BRAF mutations are critical drivers in cancers such as melanoma, colorectal cancer, and non-small-cell lung cancer. The most common mutation, BRAF V600E, is a key therapeutic target. Targeted treatments with BRAF and MEK inhibitors have significantly improved progression-free and overall survival in melanoma patients. However, in cancers like metastatic colorectal cancer, BRAF mutations are associated with poor outcomes due to aggressive disease behavior and resistance to conventional chemotherapy. Despite progress, resistance to BRAF/MEK inhibitors remains a major challenge, often driven by secondary mutations in the mitogen-activated protein kinase (MAPK) pathway, activation of alternative pathways such as phosphoinositide 3-kinases (PI3Ks)/protein kinase B (AKT), or changes in the tumor microenvironment. These challenges have motivated ongoing research into combining BRAF inhibitors with immunotherapies to enhance and prolong treatment effectiveness. Future research must also account for the role of the cancer's tissue of origin, as the biological context significantly influences response to targeted therapies, highlighting the need for a deeper understanding of tumor biology, micro-environment, and genetics.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France;
| | - Laure Smekens
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | | |
Collapse
|
9
|
Oddershede JK, Meklenborg IK, Bastholt L, Guldbrandt LM, Schmidt H, Friis RB. Cardiotoxicity in patients with metastatic melanoma treated with BRAF/MEK inhibitors: a real-world analysis of incidence, risk factors, and reversibility. Acta Oncol 2025; 64:507-515. [PMID: 40223207 PMCID: PMC12012651 DOI: 10.2340/1651-226x.2025.42567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/01/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND BRAF/MEK inhibitors (BRAFi/MEKi) improve outcome in patients with BRAF-mutated metastatic melanoma but are associated with cardiotoxicity, leading to a decline in left ventricular ejection fraction (LVEF). This study aimed to evaluate the incidence, timeline, risk factors, and reversibility of BRAFi/MEKi-induced cardiotoxicity in a real-world setting. PATIENTS/MATERIALS AND METHODS Patients with metastatic melanoma (n = 170) treated with Encorafenib/Binimetinib, Vemurafenib/Cobimetinib, or Dabrafenib/Trametinib at Aarhus and Odense University Hospital, Denmark, from 2015 to 2023 were included. Cardiac function was assessed at baseline and every 3 months during treatment with either echocardiograms or multigated acquisition scans. Cardiotoxicity was defined as a reduction of LVEF by ≥10 percentage points (pp) to an LVEF < 50% (Major cardiotoxicity) or a reduction of LVEF by ≥15 pp but remaining > 50% (Minor cardiotoxicity). RESULTS Cardiotoxicity occurred in 21% of patients, with 14% experiencing major cardiotoxicity. The mean time to LVEF decline was 187 days, with 92% of major cardiotoxicity cases occurring within the first year. Cardiotoxicity was reversible in 79% of patients following dose reduction, treatment pauses, heart failure therapy, or continued treatment with monitoring. Baseline atrial fibrillation (odds ratio 13.67, p = 0.008) was identified as a risk factor for major cardiotoxicity. INTERPRETATION BRAFi/MEKi-induced cardiotoxicity is a significant but manageable complication, often reversible with timely interventions. Routine LVEF monitoring is recommended. The majority (92%) of major cardiac events were diagnosed within the first year of treatment, which might warrant a discontinuation of routine LVEF monitoring after 1 year of BRAFi/MEKi treatment.
Collapse
Affiliation(s)
| | - Ida K Meklenborg
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus B Friis
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
10
|
Wang M, Zhao JH, Tang MX, Li M, Zhao H, Li ZY, Liu AD. Cell Death Modalities in Therapy of Melanoma. Int J Mol Sci 2025; 26:3475. [PMID: 40331942 PMCID: PMC12026598 DOI: 10.3390/ijms26083475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Melanoma, one of the most lethal cancers, demands urgent and effective treatment strategies. However, a successful therapeutic approach requires a precise understanding of the mechanisms underlying melanoma initiation and progression. This review provides an overview of melanoma pathogenesis, identifies current pathogenic factors contributing to mortality, and explores targeted therapy and checkpoint inhibitor therapy. Furthermore, we examine melanoma classification and corresponding therapies, along with advancements in various cell death mechanisms for melanoma treatment. We also discuss the current treatment status along with some drawbacks encountered during research stages such as resistance and metastasis.
Collapse
Affiliation(s)
- Meng Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Jia-Hui Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Ming-Xuan Tang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Meng Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Hu Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong-Yu Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Dong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Reitmajer M, Nanz L, Müller N, Leiter U, Amaral T, Aebischer V, Flatz L, Forschner A. Comparative real-world outcomes of stage III melanoma patients treated with talimogene laherparepvec or interleukin 2. Ther Adv Med Oncol 2025; 17:17588359251324035. [PMID: 40171522 PMCID: PMC11960150 DOI: 10.1177/17588359251324035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/12/2025] [Indexed: 04/03/2025] Open
Abstract
Background Talimogene laherparepvec (T-VEC) and interleukin-2 (IL-2) are both used in the intralesional treatment of melanoma skin metastases. T-VEC received regulatory approval from the European Medicines Agency and the U.S. Food and Drug Administration in 2015, while IL-2 has been used off-label for this purpose for many years. Despite their use in clinical practice, there is a lack of comparative data on the efficacy and safety of these treatments. Objectives This retrospective study aimed to compare the efficacy and safety of intralesional T-VEC and IL-2 in non-resectable stage III patients with melanoma treated at a single center between January 2016 and September 2024. Methods We identified eligible patients using the Central Malignant Melanoma Registry and the local University Hospital Pharmacy database. Overall survival (OS) and progression-free survival (PFS) were calculated. Furthermore, best response rates and occurrence of adverse events (AEs) were compared between the T-VEC and the IL-2 group. Concomitant systemic treatment was allowed. Results A total of 62 patients were included, with 37 receiving T-VEC and 25 receiving IL-2 as first-line therapy. Ten patients received both therapies subsequently. The median PFS for the cohort was 5.0 months, and the median OS was 34.0 months. No significant differences in PFS (p = 0.790), OS (p = 0.894), or best response rates (p = 0.468) were found between groups. Common AEs included local injection site reactions and fever, with no severe events leading to discontinuation by a physician. Conclusion No significant differences in PFS, OS, or best response rates were observed between IL-2 and T-VEC treatments. The choice of therapy may be influenced by factors such as availability, physician preference, and patient-specific considerations.
Collapse
Affiliation(s)
- Markus Reitmajer
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, Tuebingen 72076, Germany
| | - Lena Nanz
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Nina Müller
- University Pharmacy, University Hospital Tuebingen, Tuebingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Valentin Aebischer
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lukas Flatz
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Leibovit-Reiben Z, Godfrey H, Jedlowski P, Thiede R. Neurologic adverse events associated with BRAF and MEK inhibitor therapy in patients with malignant melanoma: a disproportionality analysis using the Food and Drug Administration Adverse Event Reporting System. Melanoma Res 2025; 35:122-129. [PMID: 39656586 DOI: 10.1097/cmr.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
BRAF and MEK inhibitor (BRAFi + MEKi) therapy has improved the treatment of solid tumors with BRAF mutation. However, their neurologic adverse events (nAEs) have been largely unexplored. This study aimed to provide clinicians with more updated knowledge on nAEs associated with BRAFi + MEKi therapy in patients with malignant melanoma compared with nonmelanoma cancers. The United States Food and Drug Administration Adverse Event Reporting System was queried from 2011 to 2022 to capture nAEs reported for the BRAFi + MEKi therapies, vemurafenib plus cobimetinib (V + C), dabrafenib plus trametinib (D + T), and encorafenib plus binimetinib (E + B). A disproportionality analysis was performed to calculate their reporting odds ratios (RORs) and 95% confidence intervals (CIs) using a control group of antineoplastic medications. There were 2881 BRAFi + MEKi therapy-associated nAE cases, the majority of which listed malignant melanoma as the reason for use (87.5, 66.7, and 62.0% for V + C, D + T, and E + B, respectively). Several novel associations were identified; including epidural lipomatosis (ROR: 320.07, 95% CI: 123.76-827.77 for V + C), peripheral nerve lesion (ROR: 185.64, 95% CI: 73.95-466.03 for V + C), Guillain-Barre syndrome (RORs: 8.80, 2.94, and 11.79, 95% CIs: 3.65-21.22, 1.40-6.19, and 5.87-23.66 for V + C, D + T, and E + B), demyelinating polyneuropathy (RORs: 24.72 and 78.98, 95% CI: 8.16-74.86 and 24.84-251.13 for D + T and E + B), and multiple sclerosis (ROR: 5.90, 95% CI: 3.06-11.40 for D + T) in melanoma patients. nAEs in the setting of BRAFi + MEKi therapy should be a safety consideration when utilizing these medications.
Collapse
Affiliation(s)
| | | | - Patrick Jedlowski
- Department of Dermatology, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Rebecca Thiede
- Department of Dermatology, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| |
Collapse
|
13
|
Huang K, Kim MO. Therapeutic Strategies for Drug-resistant Melanoma and Their Clinical Implications. J Cancer Prev 2025; 30:7-11. [PMID: 40201029 PMCID: PMC11973462 DOI: 10.15430/jcp.24.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 04/10/2025] Open
Abstract
Melanoma is a malignant tumor originating from melanocytes, characterized by its high invasiveness and metastasis, leading to poor prognosis and high mortality. Early-stage melanoma is primarily treated with surgery; however, due to its metastatic nature, surgery becomes challenging in advanced stages. Treatment strategies for advanced or metastatic melanoma include chemotherapy, radiation therapy, and targeted therapy. However, melanoma's propensity for rapid drug resistance remains a significant clinical challenge. This review summarizes the developments in the treatment of drug-resistant melanoma over the past decade and discusses the advantages and disadvantages of various therapeutic approaches and their clinical significance implications.
Collapse
Affiliation(s)
- Ke Huang
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Sciences, Kyungpook National University, Sangju, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Sciences, Kyungpook National University, Sangju, Korea
| |
Collapse
|
14
|
Jafari P, Forrest M, Segal J, Wang P, Tjota MY. Pan-Cancer Molecular Biomarkers: Practical Considerations for the Surgical Pathologist. Mod Pathol 2025; 38:100752. [PMID: 40058460 DOI: 10.1016/j.modpat.2025.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Traditional anatomic pathologic classification of cancer is based on tissue of origin and morphologic and immunohistochemical characterization of the malignant cells. With the technological improvements of massively parallel or next-generation sequencing, oncogenic drivers that are shared across different tumor types are increasingly being identified and used as pan-cancer biomarkers. This approach is reflected in the growing list of Food and Drug Administration-approved tumor-agnostic therapies, including pembrolizumab in the setting of microsatellite instability and high tumor mutational burden, larotrectinib and entrectinib for solid tumors with NTRK fusions, and combined dabrafenib-trametinib for BRAF V600E-mutated neoplasms. Several other biomarkers are currently under investigation, including fibroblast growth factor receptor (FGFR), RET, and ROS1 fusions; ERBB2 amplification; and mutations in the AKT1/2/3, NF1, RAS pathway and (mitogen-activated protein kinase (MAPK) pathway. As molecular assays are increasingly incorporated into routine tumor workup, the emergence of additional pan-cancer biomarkers is likely to be a matter more of "when" than "if." In this review, we first explore some of the conceptual and technical considerations at the intersection of surgical and molecular pathology, followed by a brief overview of both established and emerging molecular pan-cancer biomarkers and their diagnostic and clinical applications.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Megan Forrest
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Jeremy Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
15
|
Arun AS, Liarakos D, Mendiratta G, Kim J, Goshua G, Olson P, Stites EC. Integrating epidemiology and genomics data to estimate the prevalence of acquired cysteine drug targets in the U.S. cancer patient population. THE PHARMACOGENOMICS JOURNAL 2025; 25:5. [PMID: 40044654 DOI: 10.1038/s41397-025-00364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/12/2025] [Accepted: 02/14/2025] [Indexed: 04/25/2025]
Abstract
Reliable estimates for the number of cancer patients with a specific mutation can help quantify the size of the population that could potentially benefit from a targeted therapy. We adapt our previously developed approach for estimating gene-level mutation abundances to estimate mutation-specific (e.g., KRAS G12C) abundances by combining United States cancer epidemiology and genomic data. We demonstrate the approach by obtaining population-level estimates for all acquired somatic missense mutations that create a de novo cysteine residue. We find that approximately 14% of non-epidemiological informed estimates are more than twice the epidemiological informed estimate. Non-epidemiologically informed pan-cancer estimation of mutation rates may not be representative of the number of cancer patients with a specific mutation. Our study suggests that epidemiological and genomic information should be combined when estimating the population level abundance of specific pathogenic mutations.
Collapse
Affiliation(s)
- Adith S Arun
- Yale School of Medicine, New Haven, CT, 06510, USA
| | - David Liarakos
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biomolecular Engineering, University of Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Gaurav Mendiratta
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jacob Kim
- Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, 06510, USA
| | - George Goshua
- Yale School of Medicine, New Haven, CT, 06510, USA
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, New Haven, CT, 06510, USA
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, 06510, USA
| | - Peter Olson
- Mirati Therapeutics, Inc, San Diego, CA, 92121, USA
| | - Edward C Stites
- Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Laboratory Medicine, Yale University, New Haven, CT, 06510, USA.
- Yale Cancer Center, New Haven, CT, 06510, USA.
| |
Collapse
|
16
|
He Y, Li W, Zhang M, Wang H, Lin P, Yu Y, Huang B, Hao M, He J, Kong W, Luo D, Xu T, Wang J, Huang Y, Zhao Q, Liu Y, Zhang J, Nian Y, Zhang L, Zhu B, Yin C. PTPN23-dependent activation of PI3KC2α is a therapeutic vulnerability of BRAF-mutant cancers. J Exp Med 2025; 222:e20241147. [PMID: 39841180 PMCID: PMC11753290 DOI: 10.1084/jem.20241147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells. Silencing PTPN23 selectively kills BRAF-mutant melanoma cells but not those with wild-type BRAF. Mechanistically, PTPN23, a catalytically inactive phosphatase, intriguingly induces WNK3-mediated phosphorylation of phosphoinositide 3-kinase class II alpha (PI3KC2α) at serine 329, enhancing its catalytic activity. This activation promotes production of PI(3,4)P2 and subsequent AKT2 activation at endosomes to support cell survival. Genetic or pharmacological targeting of the PTPN23-PI3KC2α-AKT2 signaling axis, alone or in combination with BRAF inhibitors, effectively inhibits the growth of BRAF-mutant melanoma and other cancers in vitro and in vivo. We also demonstrate that melanocyte-specific knockout of PTPN23 significantly inhibits BRAFV600E-driven melanomagenesis. Altogether, our findings demonstrate that targeting PTPN23/PI3KC2α offers a new and viable therapeutic strategy for BRAF-mutant cancers.
Collapse
Affiliation(s)
- Ying He
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei Li
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Meiling Zhang
- Medical Research Institute, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China
| | - Peilu Lin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Bin Huang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Meng Hao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianuo He
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
- School of Artificial Intelligence, Nanjing University, Nanjing, China
| | - Weiyao Kong
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Dan Luo
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tengteng Xu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China
| | - Jiaqi Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ying Huang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Qinwen Zhao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhang
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
- School of Artificial Intelligence, Nanjing University, Nanjing, China
| | - Yong Nian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Bo Zhu
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China
| |
Collapse
|
17
|
Reitmajer M, Riedel P, Garbe C, Schäffeler N, Eigentler TK, Forschner A. Distress and Its Determinants in 820 Consecutive Melanoma Patients. Cancer Med 2025; 14:e70820. [PMID: 40125560 PMCID: PMC11931323 DOI: 10.1002/cam4.70820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/27/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Psycho-oncological burden not only affects patients' mental health but can also decrease treatment compliance and impair outcomes. The Distress Thermometer (DT) is a widely used screening tool in real-world medical care for identifying and monitoring psychological distress. Patients with melanoma presenting in oncologic outpatient departments comprise a wide range of characteristics. Although young adults may face challenges related to pivotal life stages, such as career responsibilities or parenting, older adults often contend with mobility issues, preexisting comorbidities, or age-related physical limitations. METHODS We conducted a retrospective evaluation of DT data from 820 patients with melanoma treated at our outpatient department between July and September 2016. These patients underwent routine DT screening and completed the associated National Comprehensive Cancer Network (NCCN) Problem List. The study aimed to identify factors influencing DT values above the threshold (≥ 5), further characterizing the patients' complaints according to the NCCN Problem List. RESULTS A total of 820 patients with melanoma underwent psycho-oncological screening. More than 40% had DT values above the threshold. Significant factors associated with DT values over the threshold included female gender, younger age, and advanced melanoma stages III-IV. Analysis of the NCCN Problem List revealed complaints such as fear, sleep issues, tingling in hands and feet, feeling swollen, problems at work or school, concerns regarding God, and loss of faith. CONCLUSION The results indicate a high need for psycho-oncological support for patients with melanoma. Particular attention should be given to patients with the identified factors that are associated with exceeding the DT threshold.
Collapse
Affiliation(s)
- Markus Reitmajer
- Department of DermatologyUniversity Hospital TuebingenTuebingenGermany
| | - Petra Riedel
- Department of Psychosomatic Medicine and PsychotherapyUniversity Hospital TübingenTübingenGermany
| | - Claus Garbe
- Department of DermatologyUniversity Hospital TuebingenTuebingenGermany
| | - Norbert Schäffeler
- Department of Psychosomatic Medicine and PsychotherapyUniversity Hospital TübingenTübingenGermany
| | - Thomas K. Eigentler
- Department of DermatologyCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Andrea Forschner
- Department of DermatologyUniversity Hospital TuebingenTuebingenGermany
| |
Collapse
|
18
|
Schram AM, Boni V, Adjei AA, Olszanski AJ, Vieito M, Francis JH, Kurman M, Ahsan JM, Tomkinson B, Garralda E. A phase I, first-in-human trial of KO-947, an ERK1/2 inhibitor, in patients with advanced solid tumors. ESMO Open 2025; 10:104300. [PMID: 39985888 PMCID: PMC11904481 DOI: 10.1016/j.esmoop.2025.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND KO-947, a potent, intravenously administered, extracellular signal-regulated kinase (ERK) inhibitor, has demonstrated activity in preclinical models. This phase I trial of KO-947 evaluated maximum tolerated dose (MTD), safety, and pharmacokinetics in patients with relapsed/refractory solid tumors. MATERIALS AND METHODS This multicenter, open-label, dose-escalation study evaluated KO-947 0.45-11.3 mg/kg in three schedules. Schedules 1 (0.45-5.4 mg/kg, 1- to 2-hour infusion) and 2 (4.8-9.6 mg/kg, 4-hour infusion) were administered once weekly on a 28-day cycle. Schedule 3 (3.6-11.3 mg/kg, 4-hour infusion) was administered on days 1, 4, and 8 (and on days 11 and 15 for two patients) on a 21-day cycle. The primary objective was determination of MTD and/or recommended phase II dose. Safety analysis included adverse events of special interest (AESIs), namely ocular toxicities and infusion-related reactions (e.g. hypotension, corrected QT interval prolongation). Results from the dose-escalation portion of the phase I study are presented due to trial termination before preplanned cohort expansion cohorts. RESULTS All 61 enrolled patients (schedules 1/2, n = 34, schedule 3, n = 27) discontinued treatment, mostly owing to disease progression (88% and 67%). The MTD for schedule 1 was 3.6 mg/kg; the maximum administered doses for schedules 2 and 3 were 9.6 and 11.3 mg/kg, respectively. Treatment-related adverse events occurred in 88% of patients in schedules 1/2, and 92% in schedule 3; most common were blurred vision (schedules 1/2, 50.0%; schedule 3, 33.3%). AESIs occurred in 50% of patients in schedules 1/2, and 82% in schedule 3. In all schedules, the best overall response was stable disease. CONCLUSIONS Intravenous KO-947 had a generally tolerable safety profile with minimal gastrointestinal toxicity compared with oral administration of other ERK inhibitors.
Collapse
Affiliation(s)
- A M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - V Boni
- NEXT University Hospital QuironSalud, Madrid, Spain
| | - A A Adjei
- Department of Oncology, Cleveland Clinic, Cleveland, USA
| | - A J Olszanski
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - M Vieito
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - J H Francis
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - M Kurman
- Kura Oncology, Inc., Boston, USA
| | | | | | - E Garralda
- Early Drug Development Unit, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
19
|
Zhao Z, Xiong G, Wang C, Cao W. From pathogenesis to precision medicine: Transformative advances in research and treatment of ameloblastoma. Cancer Lett 2025; 612:217448. [PMID: 39800213 DOI: 10.1016/j.canlet.2025.217448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Odontogenic neoplasms of the jaw are dominated by ameloblastoma (AM), a locally aggressive epithelial tumor with a significant propensity for recurrence. The World Health Organization's 2022 update to the AM classification system underscores recent progress in comprehending its underlying mechanisms and refining clinical approaches. Contemporary research has yielded significant insights into the genetic underpinnings of AM, paving the way for the development of precision-based treatment strategies. Advanced genetic profiling has revealed a significant frequency of BRAF (V-raf murine sarcoma viral oncogene homolog) V600E and SMO (Smoothened) gene alterations in AM. Importantly, therapeutic interventions specifically designed to target these genetic aberrations, including BRAF and MEK pathway blockers, have shown encouraging results in terms of both effectiveness and tolerability, as documented in individual case reports and small-scale clinical investigations. This comprehensive review summarizes the recent modifications to the World Health Organization's categorization of AMs, explores progress in elucidating their underlying molecular pathways, and evaluates emerging targeted treatment modalities. Our objective is to present a thorough synthesis of contemporary scientific discoveries and therapeutic interventions, potentially paving the way for more efficacious and individualized clinical management protocols for this complex neoplasm.
Collapse
Affiliation(s)
- Zhang Zhao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Gan Xiong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Wei Cao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
20
|
Resch EE, Makri SC, Ghanem P, Baraban EG, Cohen KJ, Cohen AR, Lipson EJ, Pratilas CA. Relapse-free survival in a pediatric patient with recurrent EZH2-mutant melanoma treated with adjuvant tazemetostat. NPJ Precis Oncol 2025; 9:48. [PMID: 39984702 PMCID: PMC11845573 DOI: 10.1038/s41698-025-00826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is an essential epigenetic regulator of H3K27 histone methylation and is mutated or overexpressed in a wide variety of cancers. In melanoma, EZH2 overexpression contributes to excessive trimethylation of H3K27 on tumor suppressor genes and has been proposed to be a mechanism of tumor progression and metastasis. EZH2-targeted therapies have been successfully used to treat patients with follicular lymphoma and epithelioid sarcoma, but their clinical use in melanoma has not been described. Here, we describe a pediatric patient with multiply relapsed melanoma harboring an EZH2 A692V missense mutation, treated adjuvantly with the EZH2 inhibitor tazemetostat, who experienced a prolonged relapse-free survival.
Collapse
Affiliation(s)
- Erin E Resch
- Division of Pediatric Oncology, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stavriani C Makri
- Division of Pediatric Oncology, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paola Ghanem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ezra G Baraban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth J Cohen
- Division of Pediatric Oncology, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan R Cohen
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan J Lipson
- Department of Oncology, Bloomberg~Kimmel Institute for Cancer Immunotherapy and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Connor C, Carr QL, Sweazy A, McMasters K, Hao H. Clinical Approaches for the Management of Skin Cancer: A Review of Current Progress in Diagnosis, Treatment, and Prognosis for Patients with Melanoma. Cancers (Basel) 2025; 17:707. [PMID: 40002300 PMCID: PMC11853469 DOI: 10.3390/cancers17040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Melanoma represents a significant public health challenge due to its increasing incidence and potential for metastasis. This review will explore the current clinical approaches to the management of melanoma, focusing on advancements in diagnosis, treatment, and prognosis. Methods for early detection and accurate staging have been enhanced by new diagnostic strategies. Treatment modalities have expanded beyond traditional surgical excision to include targeted therapy and immunotherapy. Prognostic assessment has benefited from the development of novel biomarkers and genetic profiling. This review will highlight the progress made in the multidisciplinary management of melanoma, underscoring the importance of continuous research to improve patient outcomes.
Collapse
Affiliation(s)
- Colton Connor
- School of Medicine, University of Louisville, Louisville, KY 40202, USA; (C.C.); (Q.L.C.)
| | - Quinton L. Carr
- School of Medicine, University of Louisville, Louisville, KY 40202, USA; (C.C.); (Q.L.C.)
| | - Alisa Sweazy
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| | - Kelly McMasters
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| | - Hongying Hao
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| |
Collapse
|
22
|
Kilmister EJ, Tan ST. Cancer Stem Cells and the Renin-Angiotensin System in the Tumor Microenvironment of Melanoma: Implications on Current Therapies. Int J Mol Sci 2025; 26:1389. [PMID: 39941158 PMCID: PMC11818896 DOI: 10.3390/ijms26031389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Multiple signaling pathways are dysregulated in melanoma, notably the Ras/RAF/MAPK/ERK and PI3K/AKT/mTOR pathways, which can be targeted therapeutically. The high immunogenicity of melanoma has been exploited using checkpoint inhibitors. Whilst targeted therapies and immune checkpoint inhibitors have improved the survival of patients with advanced melanoma, treatment resistance, their side effect profiles, and the prohibitive cost remain a challenge, and the survival outcomes remain suboptimal. Treatment resistance has been attributed to the presence of cancer stem cells (CSCs), a small subpopulation of pluripotent, highly tumorigenic cells proposed to drive cancer progression, recurrence, metastasis, and treatment resistance. CSCs reside within the tumor microenvironment (TME) regulated by the immune system, and the paracrine renin-angiotensin system, which is expressed in many cancer types, including melanoma. This narrative review discusses the role of CSCs and the paracrine renin-angiotensin system in the melanoma TME, and its implications on the current treatment of advanced melanoma with targeted therapy and immune checkpoint blockers. It also highlights the regulation of the Ras/RAF/MAPK/ERK and PI3K/AKT/mTOR pathways by the renin-angiotensin system via pro-renin receptors, and how this may relate to CSCs and treatment resistance, underscoring the potential for improving the efficacy of targeted therapy and immunotherapy by concurrently modulating the renin-angiotensin system.
Collapse
Affiliation(s)
- Ethan J. Kilmister
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
23
|
Luo X, Duan Y, He J, Huang C, Liu J, Liu Y, Xu M, Dai Q, Yang Z. Dihydrotanshinone I enhanced BRAF mutant melanoma treatment efficacy by inhibiting the STAT3/SOX2 signaling pathway. Front Oncol 2025; 15:1429018. [PMID: 39944829 PMCID: PMC11813777 DOI: 10.3389/fonc.2025.1429018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/13/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The Food and Drug Administration has approved the Serine/threonine-protein kinase B-raf (BRAF) inhibitor and Mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor combo as the first-line treatment for individuals with metastatic melanoma, although the majority of these patients exhibit primary or secondary drug resistance in the clinic. Dihydrotanshinone I (DHT) is a lipophilic compound extracted from the root of Salvia miltiorrhiza that has been linked to multiple antitumor activities. In this study, we investigated the effect of dihydrotanshinone I on the MAPK pathway inhibitor resistance of BRAF mutant malignant melanoma. METHOD After treating A375, A375R, and A2058 cells with DHT or a combination of DHT and BRAF/MEK inhibitors, WB and Real-Time RT-qPCR were used to confirm the activation of the MAPK and STAT3/SOX2 pathways. CCK-8 was used to assess cell viability, while flow cytometry was used to identify apoptosis. In addition, mice were inoculated with A375 cells to establish a model of tumour formation, and various drug groups and treatment models were utilized. The diameter and weight of tumours in each group were then measured, and IHC and HE staining were used to assess the expression of two pathways and cytotoxicity, respectively. RESULTS This study found that DHT directly interacts with STAT3 protein and it can stop the feedback activation of the STAT3/SOX2 pathway caused by the use of MAPK pathway inhibitors. In addition, the combination of DHT and BRAF/MEK inhibitors can inhibit the proliferation and growth of BRAF mutant melanoma cells and primary and secondary drug-resistant cells. Finally, we proved that the combined therapy of DHT and BRAF/MEK inhibitors is reliable and effective at animal and cell levels. CONCLUSION In BRAF mutant melanoma cells, DHT suppresses the STAT3/SOX2 signaling pathway. Combining DHT, BRAF inhibitors, and MEK inhibitors can help treat treatment-resistant BRAF mutant melanoma cells. Experimental results both in vitro and in vivo have shown that the combination of DHT and an inhibitor of the MAPK pathway is safer and more successful than using an inhibitor of the MAPK pathway alone when treating BRAF mutant melanoma.
Collapse
Affiliation(s)
- Xing Luo
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Duan
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jinwei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - CongGai Huang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Liu
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yifan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengdei Xu
- Clinical School of Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiong Dai
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
24
|
Karhana S, Samim M, Nidhi, Khan MA. The paradoxical activity of BRAF inhibitors: potential use in wound healing. Arch Dermatol Res 2025; 317:311. [PMID: 39873776 DOI: 10.1007/s00403-024-03785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
The area of wound healing presents a promising field of interest for clinicians as well as the scientific community. A major concern for physicians is the rising number of elderly people suffering from diabetes, leprosy, tuberculosis and the associated chronic wounds. While traditional therapies target basic wound care, innovative strategies that accelerate wound healing are needed. V-RAF murine sarcoma viral oncogene homolog B1 (BRAF) inhibitors are anti-cancer drugs used primarily for melanoma. They also exhibit paradoxical activity, a phenomenon characterized by unintended activation of the Mitogen-Activated Protein Kinase (MAPK) signalling pathway leading to skin hyperproliferation. Studies have demonstrated that BRAF inhibitors can be repurposed to accelerate the healing of acute and chronic wounds by exploiting their paradoxical activity. This review evaluates studies on BRAF inhibitors by employing a systematic search strategy using databases such as PubMed, Scopus, Google Scholar, and Web of Science. Articles were screened based on relevance to the paradoxical activity of BRAF inhibitors, their mechanisms, and applications in wound healing. Evidence from in vitro, in vivo, and clinical studies demonstrates that BRAF inhibitors can enhance processes such as epithelialization and angiogenesis, essential for wound repair. This review summarizes the reports on the paradoxical activity of BRAF inhibitors, the predicted mechanisms behind the paradoxical activity, and their potential use in wound healing.
Collapse
Affiliation(s)
- Sonali Karhana
- Department of Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohd Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nidhi
- Department of Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohd Ashif Khan
- Department of Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
25
|
Martínez-Vila C, Teixido C, Aya F, Martín R, González-Navarro EA, Alos L, Castrejon N, Arance A. Detection of Circulating Tumor DNA in Liquid Biopsy: Current Techniques and Potential Applications in Melanoma. Int J Mol Sci 2025; 26:861. [PMID: 39859576 PMCID: PMC11766255 DOI: 10.3390/ijms26020861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting BRAFV600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up. In melanoma, liquid biopsy has shown promising results, with a potential role in predicting relapse in resected high-risk patients or in disease monitoring during the treatment of advanced disease. Several components in peripheral blood have been analyzed, such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), and circulant tumoral DNA (ctDNA), which have turned out to be particularly promising. To analyze ctDNA in blood, different techniques have proven to be useful, including digital droplet polymerase chain reaction (ddPCR) to detect specific mutations and, more recently, next-generation sequencing (NGS) techniques, which allow analyzing a broader repertoire of the mutation landscape of each patient. In this review, our goal is to update the current understanding of liquid biopsy, focusing on the use of ctDNA as a biological material in the daily clinical management of melanoma patients, in particular those with advanced disease treated with ICI.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1–3, 08243 Manresa, Spain;
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (C.T.); (L.A.); (N.C.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martín
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Europa Azucena González-Navarro
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (C.T.); (L.A.); (N.C.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
| | - Natalia Castrejon
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (C.T.); (L.A.); (N.C.)
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (F.A.); (R.M.); (E.A.G.-N.)
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|
26
|
Yang J, Zeng X, Pei J, Su Z, Liu Q, Zhang Y, Yang Y, Li R, Zhou F, Deng Y. Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation. Med Oncol 2025; 42:48. [PMID: 39824992 DOI: 10.1007/s12032-025-02601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/04/2025] [Indexed: 01/30/2025]
Abstract
Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAFV600E mutation is the most frequently mutated site in melanoma. This study investigates the synergistic effect of protocatechuic aldehyde (PA) and temozolomide (TMZ) in killing BRAFV600E mutant melanoma cells and BRAF inhibitor-resistant melanoma cells as well as the underlying molecular mechanisms. We report that PA synergistically promoted TMZ cytotoxicity to both BRAF inhibitor-sensitive and BRAF inhibitor-resistant melanoma cells. Combination of PA and TMZ increased DNA double-strand breaks and elevated apoptosis. Mechanism study reveals that PA promoted TMZ cytotoxicity through inducing FANCD2 degradation. Our results suggest that PA is a potential compound for melanoma combinational chemotherapy, regardless of O-6-methylguanine-DNA methyltransferase (MGMT) status.
Collapse
Affiliation(s)
- Jie Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Xin Zeng
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Junxia Pei
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhou Su
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qi Liu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, Chengdu, 610106, China
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Fei Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| | - Yu Deng
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
27
|
Wang X, Ma S, Zhu S, Zhu L, Guo W. Advances in Immunotherapy and Targeted Therapy of Malignant Melanoma. Biomedicines 2025; 13:225. [PMID: 39857808 PMCID: PMC11761959 DOI: 10.3390/biomedicines13010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant melanoma (MM) is a malignant tumor, resulting from mutations in melanocytes of the skin and mucous membranes. Its mortality rate accounts for 90% of all dermatologic tumor mortality. Traditional treatments such as surgery, chemotherapy, and radiotherapy are unable to achieve the expected results due to MM's low sensitivity, high drug resistance, and toxic side effects. As treatment advances, immunotherapy and targeted therapy have made significant breakthroughs in the treatment of MM and have demonstrated promising application prospects. However, the heterogeneity of tumor immune response causes more than half of patients to not benefit from clinical immunotherapy and targeted therapy, which delays the patient's condition and causes them to suffer adverse immune events' side effects. The combination of immunotherapy and targeted therapy can help improve therapeutic effects, delay drug resistance, and mitigate adverse effects. This review provides a comprehensive overview of the current development status and research progress of immune checkpoints, targeted genes, and their inhibitors, with a view to providing a reference for the clinical treatment of MM.
Collapse
Affiliation(s)
- Xue Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.W.); (S.M.); (S.Z.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.W.); (S.M.); (S.Z.)
| | - Shuting Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.W.); (S.M.); (S.Z.)
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.W.); (S.M.); (S.Z.)
| |
Collapse
|
28
|
Schettini F, Sirico M, Loddo M, Williams GH, Hardisty KM, Scorer P, Thatcher R, Rivera P, Milani M, Strina C, Ferrero G, Ungari M, Bottin C, Zanconati F, de Manzini N, Aguggini S, Tancredi R, Fiorio E, Fioravanti A, Scaltriti M, Generali D. Next-generation sequencing-based evaluation of the actionable landscape of genomic alterations in solid tumors: the "MOZART" prospective observational study. Oncologist 2025; 30:oyae206. [PMID: 39177668 PMCID: PMC11783315 DOI: 10.1093/oncolo/oyae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The identification of the most appropriate targeted therapies for advanced cancers is challenging. We performed a molecular profiling of metastatic solid tumors utilizing a comprehensive next-generation sequencing (NGS) assay to determine genomic alterations' type, frequency, actionability, and potential correlations with PD-L1 expression. METHODS A total of 304 adult patients with heavily pretreated metastatic cancers treated between January 2019 and March 2021 were recruited. The CLIA-/UKAS-accredit Oncofocus assay targeting 505 genes was used on newly obtained or archived biopsies. Chi-square, Kruskal-Wallis, and Wilcoxon rank-sum tests were used where appropriate. Results were significant for P < .05. RESULTS A total of 237 tumors (78%) harbored potentially actionable genomic alterations. Tumors were positive for PD-L1 in 68.9% of cases. The median number of mutant genes/tumor was 2.0 (IQR: 1.0-3.0). Only 34.5% were actionable ESCAT Tier I-II with different prevalence according to cancer type. The DNA damage repair (14%), the PI3K/AKT/mTOR (14%), and the RAS/RAF/MAPK (12%) pathways were the most frequently altered. No association was found among PD-L1, ESCAT, age, sex, and tumor mutational status. Overall, 62 patients underwent targeted treatment, with 37.1% obtaining objective responses. The same molecular-driven treatment for different cancer types could be associated with opposite clinical outcomes. CONCLUSIONS We highlight the clinical value of molecular profiling in metastatic solid tumors using comprehensive NGS-based panels to improve treatment algorithms in situations of uncertainty and facilitate clinical trial recruitment. However, interpreting genomic alterations in a tumor type-specific manner is critical.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,”47014, Meldola, Italy
| | - Marco Loddo
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | | | - Paul Scorer
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | - Pablo Rivera
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Manuela Milani
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Carla Strina
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Giuseppina Ferrero
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Marco Ungari
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Nicolò de Manzini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Sergio Aguggini
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Richard Tancredi
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Elena Fiorio
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, 37134, Verona, Italy
| | | | - Maurizio Scaltriti
- Neurosurgery Unit, ASST Cremona, 26100, Cremona, Italy
- AstraZeneca, Gaithersburg, MD 20876, United States
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| |
Collapse
|
29
|
Sun Z, Shi M, Xia J, Li X, Chen N, Wang H, Gao Z, Jia J, Yang P, Ji D, Gu J. HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF V600E-mutant microsatellite stable colorectal cancer. J Immunother Cancer 2025; 13:e010460. [PMID: 39800382 PMCID: PMC11749543 DOI: 10.1136/jitc-2024-010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND B-Raf proto-oncogene, serine/threonine kinase (BRAF)V600E-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup. METHODS We first performed a large-scale drug screening using patient-derived organoid models and cell lines to pinpoint potential therapies. Subsequently, we investigated the synergistic effects of identified effective inhibitors and probed their cooperative mechanisms. Concurrently, we explored the immune characteristics of BRAFV600E MSS CRC using RNA sequencing and multiplex immunohistochemistry. Finally, we established a CT26 BRAFV637E mouse cell line and validated the efficacy of combining these inhibitors and programmed death 1 (PD-1) blockades in immunocompetent mice. RESULTS Drug screening identified histone deacetylase (HDAC) inhibitor and mitogen-activated protein kinase kinase (MEK) inhibitor as significantly effective against BRAFV600E MSS CRC. Further research revealed that these two inhibitors have superior synergistic effects by comprehensively inhibiting the activation of the epidermal growth factor receptor, mitogen-activated protein kinase, and phosphoinositide 3-kinase-protein kinase B pathways and suppressing the key target homeobox C6 (HOXC6). HOXC6, overexpressed in BRAFV600E MSS CRC, regulates the MYC gene and contributes to treatment resistance, tumor growth, and metastasis. Moreover, the combination therapy demonstrated the ability to enhance antitumor immunity by synergistically upregulating the expression of immune activation-related genes, activating the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) pathway, and diminishing the tumor cells' DNA mismatch repair capacity. Notably, BRAFV600E MSS CRC was identified to exhibit a distinct immune microenvironment with increased PD-1+ cell infiltration and potential responsiveness to immunotherapy. Echoing the above findings, in vivo, HDAC and MEK inhibitors significantly improved PD-1 blockade efficacy, accompanied by increased CD8+ T-cell infiltration. CONCLUSIONS Our findings indicate that combining HDAC inhibitor, MEK inhibitor, and PD-1 blockade is a potential strategy for treating BRAFV600E-mutant MSS CRC, warranting further investigation in clinical settings.
Collapse
Affiliation(s)
- Zhuang Sun
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengyuan Shi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinhong Xia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanyang Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Peking University Shougang Hospital, Beijing, China
| | - Jinying Jia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Peng Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dengbo Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Gu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
30
|
Wang XM, Borsky K, Proctor DW, Goodall R, Marshall DC, Dobell W, Salciccioli JD, Matin RN, Shalhoub J, El-Muttardi N. Trends in cutaneous melanoma mortality and incidence in European Union 15+ countries between 1990 and 2019. J Eur Acad Dermatol Venereol 2025. [PMID: 39780527 DOI: 10.1111/jdv.20524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Cutaneous melanoma (CM) is the leading cause of skin cancer mortality with associated high healthcare costs. Up-to-date reporting of epidemiological trends for CM is required to project future trends, assess the burden of disease and aid evaluation of new diagnostic, therapeutic and preventative strategies. OBJECTIVES To describe the trends in CM mortality, incidence, mortality-to-incidence indices (MIIs) and disability-adjusted life years (DALYs) over the last three decades. METHODS A population-based cross-sectional study of the Global Burden of Disease (GBD) database between 1990 and 2019 was performed. Nineteen high-income countries with similar health expenditure and classified as having high-quality mortality data including the United Kingdom, the United States, Australia and selected European Union countries were included. Annual age-standardized incidence rates (ASIRs), age-standardized death rates (ASDRs) and DALYs for each country were extracted. Mortality-to-incidence indexes were calculated by dividing the ASDR by the ASIR. Trends were described using Joinpoint regression analysis. RESULTS Almost all countries demonstrated increasing ASDR in males over the observation period with greatest percentage increase in Greece (+87%), and there was greater heterogeneity between countries in females. CM mortality was greater for males than females in all countries. Most recent Joinpoint analysis shows significantly decreasing mortality in all countries except the United Kingdom (+0.5% males between 2007 and 2019, +0.1% females between 2002 and 2019). Incidence rates increased in all countries, with evidence of plateau from 2015 onwards. While MIIs cannot be used as a proxy for survival, statistically significant decreases in MII were observed in all countries. Overall, DALYs remained static. CONCLUSIONS Over the past 30 years, CM mortality and incidence has increased in most EU15+ countries. There is evidence that in recent years, CM mortality is decreasing. The burden of disease as assessed using DALYs has remained mostly unchanged. Future work should not solely focus on expensive innovative therapies, but also on optimizing primary prevention.
Collapse
Affiliation(s)
- Xingyue M Wang
- Royal Marsden Hospital NHS Foundation Trust, Surrey, UK
- Medical Data Research Collaborative, London, UK
| | - Kim Borsky
- Medical Data Research Collaborative, London, UK
- Department of Plastic Surgery, Salisbury Foundation NHS Trust, Salisbury, UK
| | - Dominic W Proctor
- Medical Data Research Collaborative, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Richard Goodall
- Medical Data Research Collaborative, London, UK
- St Andrews Centre for Burns and Plastic Surgery, Broomfield Hospital, Chelmsford, Essex, UK
| | - Dominic C Marshall
- Medical Data Research Collaborative, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - William Dobell
- Medical Data Research Collaborative, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Justin D Salciccioli
- Medical Data Research Collaborative, London, UK
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rubeta N Matin
- Medical Data Research Collaborative, London, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Joseph Shalhoub
- Medical Data Research Collaborative, London, UK
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Naguib El-Muttardi
- St Andrews Centre for Burns and Plastic Surgery, Broomfield Hospital, Chelmsford, Essex, UK
| |
Collapse
|
31
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
32
|
Forschner A, Nanz L, Maczey-Leber Y, Amaral T, Flatz L, Leiter U. Response and outcome of patients with melanoma skin metastases and immune checkpoint inhibition. Int J Cancer 2025; 156:145-153. [PMID: 39032035 DOI: 10.1002/ijc.35103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/22/2024]
Abstract
It is known, that different metastatic organ systems respond differently to immune checkpoint inhibitors (ICIs). In this study, we aimed to investigate the extent to which skin/subcutaneous metastases respond to ICI or targeted therapies (TTs) and whether the response rate differs from that of distant metastases in the same patient. Patients with melanoma diagnosed between January 2021 and September 2023 with at least one skin/subcutaneous metastasis who had received therapy with ICI or TT in an advanced setting were included in the analysis. Best overall response (BOR) was classified according to the revised response evaluation criteria in solid tumors (RECIST). The BOR of skin metastases and visceral metastases to ICI and TT was compared using the chi-square test. Skin metastases treated with ICI a first-line setting showed an overall response rate (ORR) of 44.1%. In contrast, visceral metastases had a higher ORR of 51.1%. However, the difference was not statistically significant (p = .77). Regarding TT, the ORR for skin metastases was 57.1%, compared to 38.5% for visceral metastases (p = .59). Interestingly, the ORR for skin/subcutaneous metastases was notably lower with ICI compared to visceral metastases, in contrast to patients who underwent TT. Skin metastases showed a poorer response to ICI than visceral metastases. Therefore, careful monitoring is recommended to detect non-response early in patients with skin metastases as skin metastases may have a worse response than TT. A larger cohort is needed for a comprehensive analysis and confirmation of our results.
Collapse
Affiliation(s)
- Andrea Forschner
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Lena Nanz
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Yves Maczey-Leber
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Lukas Flatz
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Mahmud MA, Siddique AB, Tajmim A, King JA, El Sayed KA. The Olive Oil Monophenolic Secoiridoid Ligstroside Aglycone Suppresses Melanoma Progression by Targeting the BRAF Signaling Pathway. Molecules 2025; 30:139. [PMID: 39795195 PMCID: PMC11721798 DOI: 10.3390/molecules30010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Melanoma is among the most abundant malignancies in the US and worldwide. Ligstroside aglycone (LA) is a rare extra-virgin olive oil-derived monophenolic secoiridoid with diverse bioactivities. LA dose-response screening at the NCI 60 cancer cells panel identified the high sensitivity of the Malme-3M cell line, which harbors a BRAF V600E mutation. Daily oral 10 mg/kg LA exhibited potent in vivo antitumor effects against Malme-3M cells xenograft in a nude mouse model by targeting the BRAF signaling pathway. A human Clariom S microarray analysis of the collected Malme- 3M tumors identified 571 dysregulated genes, with the downregulation of pathways critical for melanoma cells growth and survival. A Western blot analysis of the collected animal tumors further validated the downregulation of the mutated BRAF-MAPK axis, as well as the GPD1 and ELOVL6 expression levels. A histopathological analysis of Malme-3M tumor sections showed extensive focal tumor necrosis in treated mice. An immunofluorescence study of tumor sections showed notable reductions in proliferation marker ki67 and the vasculogenesis marker CD31 in treated tumors. These findings promote LA as a potential nutraceutical lead for the control of the BRAF V600E mutant melanoma.
Collapse
Affiliation(s)
- Md Ashiq Mahmud
- Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (M.A.M.); (A.B.S.); (A.T.)
| | - Abu Bakar Siddique
- Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (M.A.M.); (A.B.S.); (A.T.)
| | - Afsana Tajmim
- Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (M.A.M.); (A.B.S.); (A.T.)
| | - Judy Ann King
- Foundational and Clinical Sciences Department, Thomas F. Frist, Jr. College of Medicine, Belmont University, 1900 Belmont Boulevard, Nashville, TN 37212, USA;
| | - Khalid A. El Sayed
- Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (M.A.M.); (A.B.S.); (A.T.)
| |
Collapse
|
34
|
Javaid A, Peres T, Pozas J, Thomas J, Larkin J. Current and emerging treatment options for BRAFV600-mutant melanoma. Expert Rev Anticancer Ther 2025; 25:55-69. [PMID: 39784319 DOI: 10.1080/14737140.2025.2451722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION BRAF mutations are the most common driver mutation in cutaneous melanoma, present in 40% of cases. Rationally designed BRAF targeted therapy (TT) has been developed in response to this, and alongside immune checkpoint inhibitors (ICI), forms the backbone of systemic therapy options for BRAF-mutant melanoma. Various therapeutic approaches have been studied in the neoadjuvant, adjuvant and advanced settings, and there is a wealth of information to guide clinicians managing these patients. Despite this, certain challenges remain. AREAS COVERED We reviewed the available literature regarding BRAF mutation types and resistance mechanisms, neoadjuvant and adjuvant approaches for patients with early-stage disease, management of advanced disease, including patients with brain metastases, as well as identified areas of further research. EXPERT OPINION Although there is a significant amount of literature to guide the management of BRAF-mutant melanoma, several questions remain. Thus far, the management of stage III BRAF-mutant patients following neoadjuvant ICI, treatment de-escalation in long-term TT responders in the advanced setting and the management of symptomatic brain metastases remain areas of debate. Further work on predictive and prognostic biomarkers for patients with BRAF-mutant melanoma patients will assist in clinical decision-making.
Collapse
Affiliation(s)
- Anadil Javaid
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| | - Tobias Peres
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| | - Javier Pozas
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| | - Jennifer Thomas
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| | - James Larkin
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
35
|
Kapoor G, Prakash S, Jaiswal V, Singh AK. Chronic Inflammation and Cancer: Key Pathways and Targeted Therapies. Cancer Invest 2025; 43:1-23. [PMID: 39648223 DOI: 10.1080/07357907.2024.2437614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Recent research has underscored the pivotal role of chronic inflammation in cancer development. Investigations have elucidated key molecular mechanisms underpinning inflammation-related cancer. Extrinsic pathway, driven by inflammatory conditions and intrinsic pathway, propelled by genetic events, emerged as critical links between inflammation and carcinogenesis. The persistent inflammation exacerbates genomic instability, providing a mechanistic link between inflammation and cancer. Targeting crucial inflammatory pathways such as NFκB, JAK-STAT, MAPK/ERK, PI3K/AKT, Wnt and TGF-β, holds promise for advancing cancer treatment modalities. Hence, understanding the key signalling pathways will highlight the intricate interplay between inflammation and cancer recognizing it as a potential target for interventions.
Collapse
Affiliation(s)
- Gauri Kapoor
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Swati Prakash
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Vishakha Jaiswal
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Ashok K Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
36
|
Qian J, Wan J, Yao Q, Chen Y, Ling T, Zhang Y, Tang Z. Cutaneous adverse events associated with BRAF and MEK inhibitors: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1457226. [PMID: 39776585 PMCID: PMC11703664 DOI: 10.3389/fphar.2024.1457226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Aim Cutaneous adverse events (CAEs) after treatment with BRAF and MEK inhibitors in patients with melanoma remain incompletely characterized. To determine the association of BRAF and MEK inhibitor treatment with CAEs in patients with melanoma compared with BRAF inhibitor alone. Method PubMed, Cochrane, Embase and Web of Science were systematically searched for BRAF and MEK inhibitors from database inception through 10 May 2024. Randomized clinical trials reporting on CAEs in patients with melanoma being treated with BRAF and MEK inhibitors compared with patients with melanoma being treated with BRAF inhibitor monotherapy were selected. Pooled Risk ratios (RRs) and 95% CIs were determined using random-effects analyses. The selected end points were alopecia, cutaneous squamous-cell carcinoma, hyperkeratosis, keratoacanthoma, palmoplantar erythrodysaesthesia syndrome, palmoplantar keratoderma, rash, photosensitivity reaction, and skin papilloma. All-grade and high-grade (≥3) CAEs were recorded. Results Comparing with BRAF and MEK inhibitors, treatment with BRAF inhibitors alone was associated with an increased risk of rash (RR, 0.73; 95% CI, 0.54-0.99; p = 0.039; I2 = 88%), alopecia (RR, 0.28; 95% CI, 0.20-0.41; P < 0.001; I2 = 76%), hyperkeratosis (RR, 0.30; 95% CI, 0.22-0.41; P < 0.001; I2 = 56%), palmoplantar erythrodysaesthesia syndrome (RR, 0.21; 95% CI, 0.10-0.47; P < 0.001; I2 = 81%), palmoplantar keratoderma (RR, 0.39; 95% CI, 0.26-0.57; P < 0.001; I2 = 29%), Skin papilloma (RR, 0.25; 95% CI, 0.12-0.52; P < 0.001; I2 = 77%), cutaneous squamous-cell carcinoma (RR, 0.21; 95% CI, 0.11-0.42; P < 0.001; I2 = 50%), and keratoacanthoma (RR, 0.22; 95% CI, 0.12-0.40; P < 0.001; I2 = 0%). Conclusion Therapy with BRAF and MEK inhibitors was associated with a lower risk of CAEs, especially rash, alopecia, hyperkeratosis, palmoplantar erythrodysaesthesia syndrome, palmoplantar keratoderma, skin papilloma, cutaneous squamous-cell carcinoma, and keratoacanthoma, compared with BRAF inhibitor alone. The risks of photosensitivity reaction was similar between the assessed groups. The findings may help to balance between beneficial melanoma treatment and cutaneous morbidity and mortality.
Collapse
Affiliation(s)
- Junhui Qian
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| | - Jinlong Wan
- Department of Gastroenterology, Gaozhou People’s Hospital, Maoming, China
| | - Qin Yao
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| | - Yin Chen
- Department of Pharmacy, Suqian First Hospital, Suqian, China
| | - Tao Ling
- Department of Pharmacy, Suqian First Hospital, Suqian, China
| | - Yuejuan Zhang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
37
|
DeGeorgia S“N, Kaufman CK. Specific SOX10 enhancer elements modulate phenotype plasticity and drug resistance in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628224. [PMID: 39764051 PMCID: PMC11702536 DOI: 10.1101/2024.12.12.628224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown. In this study, we initially leverage the well-established zebrafish melanoma model as a high-throughput system to dissect and analyze transcriptional control elements that are hijacked by melanoma. We identify key characteristics of these elements, making them translatable to human enhancer identification despite the lack of direct sequence conservation. Building on our identification of a zebrafish sox10 enhancer necessary for melanoma initiation, we extend these findings to human melanoma, identifying two human upstream enhancer elements that are critical for full SOX10 expression. Stable biallelic deletion of these enhancers using CRISPR-Cas9 induces a distinct phenotype shift across multiple human melanoma cell lines from a melanocytic phenotype towards an undifferentiated phenotype and is also characterized by an increase in drug resistance that mirrors clinical data including an upregulation of NTRK1, a tyrosine kinase, and potential therapeutic target. These results provide new insights into the transcriptional regulation of SOX10 in human melanoma and underscore the role of individual enhancer elements and potentially NTRK1 in driving melanoma phenotype plasticity and drug resistance. Our work lays the groundwork for future gene-based and combination kinase-inhibitor therapies targeting SOX10 regulation and NTRK1 as a potential avenue for enhancing the efficacy of current melanoma treatments.
Collapse
Affiliation(s)
- Sophia “Noah” DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| | - Charles K. Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| |
Collapse
|
38
|
Han D, Li A, Zhu L, Zhuang C, Zhao Q, Zou Y. Peptide inhibitors targeting Ras and Ras-associated protein-protein interactions. Eur J Med Chem 2024; 279:116878. [PMID: 39326269 DOI: 10.1016/j.ejmech.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Peptides represent attractive molecules for targeting protein-protein interactions, and peptide drug development has made great progress during the last decades. Ras protein, the most promising target in cancer therapy, is one of the major growth drivers in various cancers. Although many small molecule inhibitors have been reported to effectively target Ras protein and some inhibitors (such as MRTX849 and AMG 510) have been translated into clinical application, just a few peptide inhibitors have been reported. Here we summarize different types of peptide inhibitors, including monocyclic peptides, bicyclic peptides, stapled peptides, and proteomimetic inhibitors, developed in recent years; emphasize the limits and achievements; and discuss the outlook and challenges associated with future research in peptide inhibitors. This review aims to provide a reference for the discovery of Ras peptide inhibitors.
Collapse
Affiliation(s)
- Dan Han
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Anpeng Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; 92805 Military Hospital, Qingdao, PR China
| | - Lie Zhu
- Department of Burn Plastic Surgery, The Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, PR China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| |
Collapse
|
39
|
Lei T, Cai X, Zhang H, Wu X, Cao Z, Li W, Xie X, Zhang B. Bmal1 upregulates ATG5 expression to promote autophagy in skin cutaneous melanoma. Cell Signal 2024; 124:111439. [PMID: 39343115 DOI: 10.1016/j.cellsig.2024.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is a highly aggressive and malignant tumor that arises from the malignant transformation of melanocytes. In light of the limitations of existing treatment modalities, there is a pressing need to identify new drug targets for SKCM. Aryl-hydrocarbon receptor nuclear translocator-like (ARNTL), also known as Bmal1, is a gene that has been linked to the onset and progression of cancer. However, its role in SKCM remains understudied. METHODS The expression of Bmal1 mRNA and protein was detected using TCGA, GTEx, CCLE, and ULCAN databases. Moreover, survival analysis was performed to investigate the association between Bmal1 and immune invasion and gene expression in immune infiltrating cells via CIBERSORT, R programming, TIMER, Sangerbox, Kaplan-Meier. The study also explored the role of proteins associated with Bmal1 by using R programming and databases (STRING and GSEA). Both in vitro and in vivo studies were conducted to examine the potential role of Bmal1 in SKCM. RESULTS Compared to normal tissues, the expression level of Bmal1 was significantly reduced in SKCM. Which has been associated with its poor prognosis. Similarly, its expression in SKCM was substantially correlated with immune infiltration, while biogenic analysis indicated that it could potentially influence the tumor immune microenvironment (TME) by influencing tumor-associated neutrophils (TANs). Moreover, Bmal1 overexpression suppressed the proliferation and invasion of melanoma cells and enhanced apoptosis, migration, and cell colony formation. CONCLUSION This study concluded that Bmal1 is a novel biomarker that functions as both a diagnostic and prognostic indicator for the progression of SKCM.
Collapse
Affiliation(s)
- Tao Lei
- Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Cai
- Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Hao Zhang
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China
| | - Xunping Wu
- Guizhou Provincial People's Hospital Central Laboratory, Guiyang 550002, China
| | - Zhimin Cao
- Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People`s Hospital, China; Key Laboratory of Pulmonary Immune Diseases, National Health Commission, Guiyang 550002, China
| | - Xingming Xie
- Guizhou Institute of Precision Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China.
| | - Bangyan Zhang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People`s Hospital, China; Key Laboratory of Pulmonary Immune Diseases, National Health Commission, Guiyang 550002, China..
| |
Collapse
|
40
|
Lengyel AS, Meznerics FA, Galajda NÁ, Gede N, Kói T, Mohammed AA, Péter PN, Lakatos AI, Krebs M, Csupor D, Bánvölgyi A, Hegyi P, Holló P, Kemény LV. Safety and Efficacy Analysis of Targeted and Immune Combination Therapy in Advanced Melanoma-A Systematic Review and Network Meta-Analysis. Int J Mol Sci 2024; 25:12821. [PMID: 39684531 DOI: 10.3390/ijms252312821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The combinations of BRAF inhibitor-based targeted therapies with immune checkpoint inhibitors currently represent less common therapeutic approaches in advanced melanoma. The aim of this study was to assess the safety and efficacy of currently available melanoma treatments by conducting a systematic review and network meta-analysis. Four databases were systematically searched for randomized clinical studies that included patients with advanced/metastatic melanoma receiving chemotherapy, immune checkpoint inhibitors, BRAF/MEK inhibitor therapy, or combinations thereof. The primary endpoints were treatment-related adverse events (TRAE), serious adverse events (SAE) of grade ≥ 3 adverse events, therapy discontinuation, progression-free survival (PFS), as well as objective response rate (ORR) and complete response rate (CRR). A total of 63 articles were eligible for our systematic review; 59 of them were included in the statistical analysis. A separate subgroup analysis was conducted to evaluate the efficacy outcomes, specifically in BRAF-positive patients. Triple combination therapy or triple therapy (inhibiting BRAF, MEK and PD1/PDL1 axis) showed significantly longer progression-free survival compared to BRAF + MEK combination therapies (HR = 0.76; 95% CI 0.64-0.9), but similar objective and complete response rates in BRAF-mutated melanoma. This safety analysis suggests that triple therapy is not inferior to combined immune checkpoint inhibitors (ICI) and BRAF/MEK therapies in terms of serious adverse events and therapy discontinuation rates. However, monotherapies and BRAF/MEK combinations showed notable advantage over triple therapy in terms of treatment-related adverse events. Combination strategies including BRAF/MEK-targeted therapies with ICI therapies are effective first-line options for advanced, BRAF-mutant melanoma; however, they are associated with more frequent side effects. Therefore, future RCTs are required to evaluate and identify high-risk subpopulations where triple therapy therapies should be considered.
Collapse
Affiliation(s)
- Anna Sára Lengyel
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Fanni Adél Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Ágnes Galajda
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Gede
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Alzahra Ahmed Mohammed
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
| | - Petra Nikolett Péter
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Alexandra It Lakatos
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Máté Krebs
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Dezső Csupor
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Lajos V Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
- MTA-SE Lendület "Momentum" Dermatooncology Research Group, 1094 Budapest, Hungary
| |
Collapse
|
41
|
Wang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, et alWang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, Li W, Fu J, Wu L, Lan S, Ou J, Shi L, Zhai Z, Wang Y, Li B, Zhang Z, Wang K, Ma X, Li Z, Liu Z, Yang N, Wu L, Wang H, Jin G, Wang G, Wang J, Shi H, Fang M, Fang Y, Li Y, Wang X, Chen J, Zhang Y, Zhu X, Shen Y, Ma S, Wang B, Song Y, Song Z, Fang W, Lu Y, Si L. Expert consensus on the diagnosis and treatment of solid tumors with BRAF mutations. Innovation (N Y) 2024; 5:100661. [PMID: 39529955 PMCID: PMC11551471 DOI: 10.1016/j.xinn.2024.100661] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth, differentiation, and survival. When the BRAF gene mutates, it can lead to abnormal activation of the signaling pathway, which promotes cell proliferation, inhibits cell apoptosis, and ultimately contributes to the occurrence and development of cancer. BRAF mutations are widely present in various cancers, including malignant melanoma, thyroid cancer, colorectal cancer, non-small cell lung cancer, and hairy cell leukemia, among others. BRAF is an important target for the treatment of various solid tumors, and targeted combination therapies, represented by BRAF inhibitors, have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors. Dabrafenib plus trametinib, as the first tumor-agnostic therapy, has been approved by the US Food and Drug Administration for the treatment of adult and pediatric patients aged 6 years and older harboring a BRAF V600E mutation with unresectable or metastatic solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options. This is also the first time a BRAF/MEK inhibitor combination has been approved for use in pediatric patients. As research into the diagnosis and treatment of BRAF mutations advances, standardizing the detection of BRAF mutations and the clinical application of BRAF inhibitors becomes increasingly important. Therefore, we have established a universal and systematic strategy for diagnosing and treating solid tumors with BRAF mutations. In this expert consensus, we (1) summarize the epidemiology and clinical characteristics of BRAF mutations in different solid tumors, (2) provide recommendations for the selection of genetic testing methods and platforms, and (3) establish a universal strategy for the diagnosis and treatment of patients with solid tumors harboring BRAF mutations.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Nan Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 200030, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 200030, China
| | - Aijun Liu
- Senior Department of Pathology, the 7 Medical Center of PLA General Hospital, Beijing 100700, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Jilin, Changchun 130012, P.R. China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, West Lake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. ChinaP.R. China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical Area, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhansheng Jiang
- Derpartment of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongbo Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing 100035, P.R. China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900 Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100700, P.R. China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510300, P.R. China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, P.R. China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fan Xia
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P.R. China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 1550081, P.R. China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Fei Pang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Xin Huang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Meizhen Hu
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Qing Hao
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Kai Wang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Fan Wu
- Department of Medical, Menarini Silicon Biosystems Spa, Shanghai 400000, P.R. China
| | - Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014000, P.R. China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Xinqing Lin
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei, Anhui 230011, P.R. China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinnan, Shangdong 250012, P.R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200070, P.R. China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia Wei
- Department of the Comprehensive Cancer Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yue Feng
- Department of Gynecologic Radiation Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hong Wang
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bin Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Donglai Lv
- Department of Clinical Oncology, The 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, Yunnan 675000, P.R. China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lizhi Wu
- Department of Microsurgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Shijie Lan
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Huijuan Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hubing Shi
- Frontier Science Center for Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaojia Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
42
|
Senechal I, Andres MS, Tong J, Ramalingam S, Nazir MS, Rosen SD, Young K, Idaikkadar P, Larkin J, Lyon AR. Risk Stratification, Screening and Treatment of BRAF/MEK Inhibitors-Associated Cardiotoxicity. Curr Oncol Rep 2024; 26:1431-1441. [PMID: 39316222 DOI: 10.1007/s11912-024-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE OF REVIEW In this review article we describe the cardiovascular adverse events associated with BRAF and MEK inhibitors as well as their pathophysiologic mechanisms and provide up to date guidance for risk stratified surveillance of patients on treatment and the optimal management of emergent cardiotoxicities. RECENT FINDINGS Combination BRAF/MEK inhibition has become an established standard treatment option for patients with a wide variety of BRAF mutant haematological and solid organ cancers, its use is most commonly associated with stage three and metastatic melanoma. The introduction of these targeted drugs has significantly improved the prognosis of previously treatment resistant cancers. It is increasingly recognised that these drugs have a number of cardiovascular toxicities including left ventricular systolic dysfunction, hypertension and QTc interval prolongation. Whilst cardiotoxicity is largely reversible and manageable with medical therapy, it does limit the effective use of these highly active agents.
Collapse
Affiliation(s)
- Isabelle Senechal
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada.
| | - Maria Sol Andres
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jieli Tong
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sivatharshini Ramalingam
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Muhummad Sohaib Nazir
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Stuart D Rosen
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kate Young
- Royal Marsden Hospital Foundation Trust, London, UK
| | | | - James Larkin
- Royal Marsden Hospital Foundation Trust, London, UK
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
43
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024; 13:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
44
|
Gao Y, Zheng H. Role of mitochondria and potential of mitochondria-targeted therapy in BRAF mutant cancer: A review. Crit Rev Oncol Hematol 2024; 203:104484. [PMID: 39197669 DOI: 10.1016/j.critrevonc.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
The classical mitogen-activated protein kinase (MAPK) signaling pathway, the Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK protein kinase cascade, is a conserved cascade that regulates cell growth, differentiation, and proliferation. The significance of BRAF in cancer was established with the discovery of cancer-activating mutations in BRAF in several human tumors in 2002. Currently, BRAF is recognized as a driver mutation that affects cancer phenotypes in different ways, making it an important therapeutic target for cancer. BRAF-selective inhibitors have shown promise in clinical trials involving patients with metastatic melanoma. However, resistance mechanisms to BRAF inhibitors therapy have resulted in short-lived therapeutic responses. Further in-depth research is imperative to explore resistance mechanisms that oppose the effectiveness of BRAF inhibitors. Metabolic reprogramming has emerging role in BRAF-mutant cancers. In particular, mitochondrial metabolism and its closely related signaling pathways mediated by mitochondria have become recognized as potential new targets for treating BRAF-mutant cancers. This review, examines the progress in understanding BRAF mutations in cancer, the clinicopathological correlation of BRAF inhibitors, and recent advances in mitochondrial metabolism, mitochondrial dynamics and mitochondrial mediated death in BRAF-mutant cancer. This review will inform future cancer research and lay the foundation for novel treatment combinations of BRAF-mutant cancers.
Collapse
Affiliation(s)
- Yanyan Gao
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hua Zheng
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
45
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
46
|
Therien AD, Chime-Eze CM, Rhodin KE, Beasley GM. Neoadjuvant therapy for melanoma: past, present, and future. Surg Oncol 2024; 56:102127. [PMID: 39236515 DOI: 10.1016/j.suronc.2024.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Modern systemic therapy has dramatically improved outcomes for many patients with advanced metastatic melanoma. The success of these therapies has attracted much scientific interest while these therapies have made their way into the treatment of earlier stages of disease. Randomized trials have led to the approval of adjuvant immunotherapy and targeted therapy for resected stage III melanoma. However, most recently, these therapies have gained traction in the neoadjuvant setting. Promising early results led to randomized controlled trials that have now established neoadjuvant therapy as standard of care in advanced melanoma patients. Questions remain regarding the optimal choice of therapy, duration and timing of neoadjuvant therapy, extent of surgery, and the need for additional adjuvant therapy for patients who received neoadjuvant therapy. Herein we provide an overview of neoadjuvant therapy for melanoma and dilemmas to its broader applications.
Collapse
Affiliation(s)
| | | | - Kristen E Rhodin
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
47
|
Sierra-Davidson K, Boland GM. Advances in Adjuvant and Neoadjuvant Therapy for Melanoma. Hematol Oncol Clin North Am 2024; 38:953-971. [PMID: 39060118 DOI: 10.1016/j.hoc.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Melanoma remains one of the most common cancers diagnosed in the United States, yet there have been substantial advancements in the treatment of resectable disease. Adjuvant therapy with immune checkpoint blockade (ICB) and targeted therapy with BRAF/MEK inhibitors (BRAF/MEKi) have now become standard of care for resectable stage IIIB-IV melanoma. In this article, the authors discuss recent scientific developments pertinent to the treatment of resectable melanoma including ICB, targeted therapy with BRAF/MEKi, oncolytic viruses, tumor-infiltrating lymphocyte therapy, and cancer vaccines.
Collapse
|
48
|
Webster J, Ghith J, Penner O, Lieu CH, Schijvenaars BJA. Using Artificial Intelligence to Support Informed Decision-Making on BRAF Mutation Testing. JCO Precis Oncol 2024; 8:e2300685. [PMID: 39475660 DOI: 10.1200/po.23.00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 11/07/2024] Open
Abstract
PURPOSE Precision oncology relies on accurate and interpretable reporting of testing and mutation rates. Focusing on the BRAFV600 mutations in advanced colorectal carcinoma, non-small-cell lung carcinoma, and cutaneous melanoma, we developed a platform displaying testing and mutation rates reported in the literature, which we annotated using an artificial intelligence (AI) and natural language processing (NLP) pipeline. METHODS Using AI, we identified publications that likely reported a testing or mutation rate, filtered publications for cancer type, and identified sentences that likely reported rates. Rates and covariates were subsequently manually curated by three experts. The AI performance was evaluated using precision and recall metrics. We used an interactive platform to explore and present the annotated testing and mutation rates by certain study characteristics. RESULTS The interactive dashboard, accessible at the BRAF dimensions website, enables users to filter mutation and testing rates with relevant options (eg, country of study, study type, mutation type) and to visualize annotated rates. The AI pipeline demonstrated excellent filtering performance (>90% precision and recall for all target cancer types) and moderate performance for sentence classification (53%-99% precision; ≥75% recall). The manual annotation of testing and mutation rates revealed inter-rater disagreement (testing rate, 19%; mutation rate, 70%), indicating unclear or nonstandard reporting of rates in some publications. CONCLUSION Our AI-driven NLP pipeline demonstrated the potential for annotating biomarker testing and mutation rates. The difficulties we encountered highlight the need for more advanced AI-powered literature searching and data extraction, and more consistent reporting of testing rates. These improvements would reduce the risk of misinterpretation or misunderstanding of testing and mutation rates by AI-based technologies and the health care community, with beneficial impacts on clinical decision-making, research, and trial design.
Collapse
|
49
|
Yan RE, Greenfield JP. Challenges and Outlooks in Precision Medicine: Expectations Versus Reality. World Neurosurg 2024; 190:573-581. [PMID: 39425299 DOI: 10.1016/j.wneu.2024.06.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Recent developments in technology have led to rapid advances in precision medicine, especially due to the rise of next-generation sequencing and molecular profiling. These technological advances have led to rapid advances in research, including increased tumor subtype resolution, new therapeutic agents, and mechanistic insights. Certain therapies have even been approved for molecular biomarkers across histopathological diagnoses; however, translation of research findings to the clinic still faces a number of challenges. In this review, the authors discuss several key challenges to the clinical integration of precision medicine, including the blood-brain barrier, both a lack and excess of molecular targets, and tumor heterogeneity/escape from therapy. They also highlight a few key efforts to address these challenges, including new frontiers in drug delivery, a rapidly expanding treatment repertoire, and improvements in active response monitoring. With continued improvements and developments, the authors anticipate that precision medicine will increasingly become the gold standard for clinical care.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
50
|
Amarillo D, Flaherty KT, Sullivan RJ. Targeted Therapy Innovations for Melanoma. Hematol Oncol Clin North Am 2024; 38:973-995. [PMID: 38971651 DOI: 10.1016/j.hoc.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Melanoma, a malignant tumor of melanocytes, poses a significant clinical challenge due to its aggressive nature and high potential for metastasis. The advent of targeted therapy has revolutionized the treatment landscape of melanoma, particularly for tumors harboring specific genetic alterations such as BRAF V600E mutations. Despite the initial success of targeted agents, resistance inevitably arises, underscoring the need for novel therapeutic strategies. This review explores the latest advances in targeted therapy for melanoma, focusing on new molecular targets, combination therapies, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Dahiana Amarillo
- Oncóloga Médica, Departamento Básico de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Keith T Flaherty
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ryan J Sullivan
- Mass General Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|