1
|
Ramnarayan P, Richards-Belle A, Drikite L, Saull M, Orzechowska I, Darnell R, Sadique Z, Lester J, Morris KP, Tume LN, Davis PJ, Peters MJ, Feltbower RG, Grieve R, Thomas K, Mouncey PR, Harrison DA, Rowan KM. Effect of High-Flow Nasal Cannula Therapy vs Continuous Positive Airway Pressure Therapy on Liberation From Respiratory Support in Acutely Ill Children Admitted to Pediatric Critical Care Units: A Randomized Clinical Trial. JAMA 2022; 328:162-172. [PMID: 35707984 PMCID: PMC9204623 DOI: 10.1001/jama.2022.9615] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The optimal first-line mode of noninvasive respiratory support for acutely ill children is not known. OBJECTIVE To evaluate the noninferiority of high-flow nasal cannula therapy (HFNC) as the first-line mode of noninvasive respiratory support for acute illness, compared with continuous positive airway pressure (CPAP), for time to liberation from all forms of respiratory support. DESIGN, SETTING, AND PARTICIPANTS Pragmatic, multicenter, randomized noninferiority clinical trial conducted in 24 pediatric critical care units in the United Kingdom among 600 acutely ill children aged 0 to 15 years who were clinically assessed to require noninvasive respiratory support, recruited between August 2019 and November 2021, with last follow-up completed in March 2022. INTERVENTIONS Patients were randomized 1:1 to commence either HFNC at a flow rate based on patient weight (n = 301) or CPAP of 7 to 8 cm H2O (n = 299). MAIN OUTCOMES AND MEASURES The primary outcome was time from randomization to liberation from respiratory support, defined as the start of a 48-hour period during which a participant was free from all forms of respiratory support (invasive or noninvasive), assessed against a noninferiority margin of an adjusted hazard ratio of 0.75. Seven secondary outcomes were assessed, including mortality at critical care unit discharge, intubation within 48 hours, and use of sedation. RESULTS Of the 600 randomized children, consent was not obtained for 5 (HFNC: 1; CPAP: 4) and respiratory support was not started in 22 (HFNC: 5; CPAP: 17); 573 children (HFNC: 295; CPAP: 278) were included in the primary analysis (median age, 9 months; 226 girls [39%]). The median time to liberation in the HFNC group was 52.9 hours (95% CI, 46.0-60.9 hours) vs 47.9 hours (95% CI, 40.5-55.7 hours) in the CPAP group (absolute difference, 5.0 hours [95% CI -10.1 to 17.4 hours]; adjusted hazard ratio 1.03 [1-sided 97.5% CI, 0.86-∞]). This met the criterion for noninferiority. Of the 7 prespecified secondary outcomes, 3 were significantly lower in the HFNC group: use of sedation (27.7% vs 37%; adjusted odds ratio, 0.59 [95% CI, 0.39-0.88]); mean duration of critical care stay (5 days vs 7.4 days; adjusted mean difference, -3 days [95% CI, -5.1 to -1 days]); and mean duration of acute hospital stay (13.8 days vs 19.5 days; adjusted mean difference, -7.6 days [95% CI, -13.2 to -1.9 days]). The most common adverse event was nasal trauma (HFNC: 6/295 [2.0%]; CPAP: 18/278 [6.5%]). CONCLUSIONS AND RELEVANCE Among acutely ill children clinically assessed to require noninvasive respiratory support in a pediatric critical care unit, HFNC compared with CPAP met the criterion for noninferiority for time to liberation from respiratory support. TRIAL REGISTRATION ISRCTN.org Identifier: ISRCTN60048867.
Collapse
Affiliation(s)
- Padmanabhan Ramnarayan
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England
- Children’s Acute Transport Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England
| | - Alvin Richards-Belle
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| | - Laura Drikite
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| | - Michelle Saull
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| | - Izabella Orzechowska
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| | - Robert Darnell
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| | - Zia Sadique
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, England
| | | | - Kevin P. Morris
- Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, England
- Institute of Applied Health Research, University of Birmingham, Birmingham, England
| | - Lyvonne N. Tume
- School of Health and Society, University of Salford, Salford, England
| | - Peter J. Davis
- Paediatric Intensive Care Unit, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, England
| | - Mark J. Peters
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Biomedical Research Centre, London, England
- University College London Great Ormond Street Institute of Child Health, London, England
| | - Richard G. Feltbower
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds, England
| | - Richard Grieve
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, England
| | - Karen Thomas
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| | - Paul R. Mouncey
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| | - David A. Harrison
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| | - Kathryn M. Rowan
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, England
| |
Collapse
|
2
|
Ramnarayan P, Richards-Belle A, Drikite L, Saull M, Orzechowska I, Darnell R, Sadique Z, Lester J, Morris KP, Tume LN, Davis PJ, Peters MJ, Feltbower RG, Grieve R, Thomas K, Mouncey PR, Harrison DA, Rowan KM. Effect of High-Flow Nasal Cannula Therapy vs Continuous Positive Airway Pressure Following Extubation on Liberation From Respiratory Support in Critically Ill Children: A Randomized Clinical Trial. JAMA 2022; 327:1555-1565. [PMID: 35390113 PMCID: PMC8990361 DOI: 10.1001/jama.2022.3367] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE The optimal first-line mode of noninvasive respiratory support following extubation of critically ill children is not known. OBJECTIVE To evaluate the noninferiority of high-flow nasal cannula (HFNC) therapy as the first-line mode of noninvasive respiratory support following extubation, compared with continuous positive airway pressure (CPAP), on time to liberation from respiratory support. DESIGN, SETTING, AND PARTICIPANTS This was a pragmatic, multicenter, randomized, noninferiority trial conducted at 22 pediatric intensive care units in the United Kingdom. Six hundred children aged 0 to 15 years clinically assessed to require noninvasive respiratory support within 72 hours of extubation were recruited between August 8, 2019, and May 18, 2020, with last follow-up completed on November 22, 2020. INTERVENTIONS Patients were randomized 1:1 to start either HFNC at a flow rate based on patient weight (n = 299) or CPAP of 7 to 8 cm H2O (n = 301). MAIN OUTCOMES AND MEASURES The primary outcome was time from randomization to liberation from respiratory support, defined as the start of a 48-hour period during which the child was free from all forms of respiratory support (invasive or noninvasive), assessed against a noninferiority margin of an adjusted hazard ratio (HR) of 0.75. There were 6 secondary outcomes, including mortality at day 180 and reintubation within 48 hours. RESULTS Of the 600 children who were randomized, 553 children (HFNC, 281; CPAP, 272) were included in the primary analysis (median age, 3 months; 241 girls [44%]). HFNC failed to meet noninferiority, with a median time to liberation of 50.5 hours (95% CI, 43.0-67.9) vs 42.9 hours (95% CI, 30.5-48.2) for CPAP (adjusted HR, 0.83; 1-sided 97.5% CI, 0.70-∞). Similar results were seen across prespecified subgroups. Of the 6 prespecified secondary outcomes, 5 showed no significant difference, including the rate of reintubation within 48 hours (13.3% for HFNC vs 11.5 % for CPAP). Mortality at day 180 was significantly higher for HFNC (5.6% vs 2.4% for CPAP; adjusted odds ratio, 3.07 [95% CI, 1.1-8.8]). The most common adverse events were abdominal distension (HFNC: 8/281 [2.8%] vs CPAP: 7/272 [2.6%]) and nasal/facial trauma (HFNC: 14/281 [5.0%] vs CPAP: 15/272 [5.5%]). CONCLUSIONS AND RELEVANCE Among critically ill children requiring noninvasive respiratory support following extubation, HFNC compared with CPAP following extubation failed to meet the criterion for noninferiority for time to liberation from respiratory support. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN60048867.
Collapse
Affiliation(s)
- Padmanabhan Ramnarayan
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom
- Children’s Acute Transport Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alvin Richards-Belle
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Laura Drikite
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Michelle Saull
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Izabella Orzechowska
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Robert Darnell
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Zia Sadique
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Kevin P. Morris
- Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Lyvonne N. Tume
- School of Health & Society, University of Salford, Salford, United Kingdom
| | - Peter J. Davis
- Paediatric Intensive Care Unit, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Mark J. Peters
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Biomedical Research Centre, London, United Kingdom
- University College London Great Ormond St Institute of Child Health, London, United Kingdom
| | - Richard G. Feltbower
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Grieve
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Karen Thomas
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Paul R. Mouncey
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - David A. Harrison
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Kathryn M. Rowan
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| |
Collapse
|