1
|
Gencheva R, Coppo L, Arnér ESJ, Ren X. Selenium supplementation protects cancer cells from the oxidative stress and cytotoxicity induced by the combination of ascorbate and menadione sodium bisulfite. Free Radic Biol Med 2025; 233:317-329. [PMID: 40180024 DOI: 10.1016/j.freeradbiomed.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The combination of ascorbate (vitamin C) and menadione sodium bisulfite (MSB, vitamin K3), here called VC/VK3 (also named Apatone®, or M/A), has shown selective cytotoxicity in cancer cells and is under clinical investigation as a cancer therapy. However, the mechanisms of VC/VK3-induced cell death are not fully understood. In this in vitro study using human glioblastoma and non-transformed glial cell lines, we found that VC/VK3 caused higher toxicity in cancer cells in an H2O2- and iron-dependent manner, suggesting that ferroptosis may play a role in the cell death process. Furthermore, selenium supplementation significantly protected cancer cells from VC/VK3 treatment concomitantly with enhanced expression levels and enzymatic activity of antioxidant selenoproteins, including thioredoxin reductases (TXNRDs) and glutathione reductases (GPXs). We also found that VC/VK3 competes for electrons with thioredoxin (TXN), impairing peroxiredoxin 1 (PRDX1) in cells. Finally, chemically inhibiting TXNRDs or the glutathione-dependent antioxidant systems exaggerated the toxicity of VC/VK3. Overall, this study elucidated parts of the cell death mechanisms of VC/VK3 and identified combination strategies to overcome selenium-mediated resistance, advancing the translational potential of this prooxidant treatment.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; IC-MedTech Corporation, Las Vegas, NV, USA.
| |
Collapse
|
2
|
Arshadi M, Ghazal N, Ghavidel F, Beygi Z, Nasiri Z, Zarepour P, Abdollahi S, Azizi H, Khodamoradi F. The association between vitamin C and breast cancer, prostate cancer and colorectal cancer: A systematic review and meta-analysis. Clin Nutr ESPEN 2025; 65:400-407. [PMID: 39657872 DOI: 10.1016/j.clnesp.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND For a comprehensive evaluation and due to the inconsistent results of previous studies, we performed this meta-analysis with the aim of vitamin C effect on breast cancer and prostate cancer and colorectal cancer. METHODS PubMed, Scopus and Web of Science were searched to identify studies on the association between vitamin C and breast cancer, prostate cancer and colorectal cancer through September 11, 2023. The pooled RR and the 95 % confidence intervals were used to measure the association between vitamin C and breast cancer, prostate cancer and colorectal cancer by assuming a random effects meta-analytic model. Newcastle-Ottawa scale was used for quality appraisal. RESULTS A total of 69 studies were included. The pooled RR for the association between vitamin C (dietary) and breast cancer in the cohort study was 0.99 [95 % CI: 0.95, 1.03], but the pooled RR in the case-control study was 0.72 [95 % CI: 0.60, 0.85]. No association was found between vitamin E (supplemental, total intake) and breast cancer in studies. The pooled RR for the association between vitamin C (dietary) and prostate cancer was 0.88 [95 % CI: 0.77, 1.00], which represents a decrease in prostate cancer. No association was found between vitamin C (supplemental) and prostate cancer in studies. The pooled RR for the association between vitamin C (dietary) and colorectal cancer was 0.55 [95 % CI: 0.42, 0.73], which represents a decrease in colorectal cancer. CONCLUSION Our analysis shows an inverse significant relationship between vitamin C (dietary) and breast cancer in the case-control study. Also between vitamin C (dietary) and prostate cancer and colorectal cancer in studies, which represents a decrease in cancers.
Collapse
Affiliation(s)
- Maedeh Arshadi
- Department of Epidemiology and Biostatistics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Ghazal
- Student Research Committee of Shahid Sadougi University of Medical Sciences, Yazd Iran
| | - Fatemeh Ghavidel
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Beygi
- Department of Midwife and Nursing, Maybod Branch, Islamic Azad University, Maybod, Iran
| | - Zohal Nasiri
- Department of Social Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pardis Zarepour
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Abdollahi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Azizi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Khodamoradi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Fan D, Liu X, Shen Z, Wu P, Zhong L, Lin F. Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed Pharmacother 2023; 162:114695. [PMID: 37058822 DOI: 10.1016/j.biopha.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Vitamin C, a small organic molecule, is widely found in fruits and vegetables and is an essential nutrient in the human body. Vitamin C is closely associated with some human diseases such as cancer. Many studies have shown that high doses of vitamin C have anti-tumor ability and can target tumor cells in multiple targets. This review will describe vitamin C absorption and its function in cancer treatment. We will review the cellular signaling pathways associated with vitamin C against tumors depending on the different anti-cancer mechanisms. Based on this, we will further describe some applications of the use of vitamin C for cancer treatment in preclinical and clinical trials and the possible adverse events that can occur. Finally, this review also assesses the prospective advantages of vitamin C in oncology treatment and clinical applications.
Collapse
Affiliation(s)
- Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Faquan Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education,Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University.
| |
Collapse
|
4
|
Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:930205. [PMID: 35938170 PMCID: PMC9352950 DOI: 10.3389/fcell.2022.930205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials.
Collapse
Affiliation(s)
- S. Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C. Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - S. Antonelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G. Silvestrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N. I. Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - T. Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M. T. Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- *Correspondence: M. T. Voso,
| |
Collapse
|
5
|
Role of Vitamin C in Selected Malignant Neoplasms in Women. Nutrients 2022; 14:nu14040882. [PMID: 35215535 PMCID: PMC8876016 DOI: 10.3390/nu14040882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Since the first reports describing the anti-cancer properties of vitamin C published several decades ago, its actual effectiveness in fighting cancer has been under investigation and widely discussed. Some scientific reports indicate that vitamin C in high concentrations can contribute to effective and selective destruction of cancer cells. Furthermore, preclinical and clinical studies have shown that relatively high doses of vitamin C administered intravenously in ‘pharmacological concentrations’ may not only be well-tolerated, but significantly improve patients’ quality of life. This seems to be particularly important, especially for terminal cancer patients. However, the relatively high frequency of vitamin C use by cancer patients means that the potential clinical benefits may not be obvious. For this reason, in this review article, we focus on the articles published mainly in the last two decades, describing possible beneficial effects of vitamin C in preventing and treating selected malignant neoplasms in women, including breast, cervical, endometrial, and ovarian cancer. According to the reviewed studies, vitamin C use may contribute to an improvement of the overall quality of life of patients, among others, by reducing chemotherapy-related side effects. Nevertheless, new clinical trials are needed to collect stronger evidence of the role of this nutrient in supportive cancer treatment.
Collapse
|
6
|
Chen Z, Huang Y, Cao D, Qiu S, Chen B, Li J, Bao Y, Wei Q, Han P, Liu L. Vitamin C Intake and Cancers: An Umbrella Review. Front Nutr 2022; 8:812394. [PMID: 35127793 PMCID: PMC8812486 DOI: 10.3389/fnut.2021.812394] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Based on the existing systematic reviews and meta-analyses, we conducted this umbrella review aiming at evaluating the quality of evidence, validity and biases of the relationship between vitamin C (VC) intake and incidence and outcomes of multiple cancers. We identified 22 cancer outcomes within 3,562 articles. VC consumption was associated with lower incidence of bladder cancer, breast cancer, cervical tumors, endometrial cancer, esophageal cancer, gastric cancer, glioma, lung cancer, pancreatic cancer, prostate cancer, renal cell cancer, and total cancer occurrence. VC intake was also related to decreased risk of breast cancer prognosis (recurrence, cancer-specific mortality, and all-cause mortality).
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Yige Bao
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ping Han
| | - Liangren Liu
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Liangren Liu
| |
Collapse
|
7
|
Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:343. [PMID: 34717701 PMCID: PMC8557029 DOI: 10.1186/s13046-021-02134-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022]
Abstract
Mounting evidence indicates that vitamin C has the potential to be a potent anti-cancer agent when administered intravenously and in high doses (high-dose IVC). Early phase clinical trials have confirmed safety and indicated efficacy of IVC in eradicating tumour cells of various cancer types. In recent years, the multi-targeting effects of vitamin C were unravelled, demonstrating a role as cancer-specific, pro-oxidative cytotoxic agent, anti-cancer epigenetic regulator and immune modulator, reversing epithelial-to-mesenchymal transition, inhibiting hypoxia and oncogenic kinase signalling and boosting immune response. Moreover, high-dose IVC is powerful as an adjuvant treatment for cancer, acting synergistically with many standard (chemo-) therapies, as well as a method for mitigating the toxic side-effects of chemotherapy. Despite the rationale and ample evidence, strong clinical data and phase III studies are lacking. Therefore, there is a need for more extensive awareness of the use of this highly promising, non-toxic cancer treatment in the clinical setting. In this review, we provide an elaborate overview of pre-clinical and clinical studies using high-dose IVC as anti-cancer agent, as well as a detailed evaluation of the main known molecular mechanisms involved. A special focus is put on global molecular profiling studies in this respect. In addition, an outlook on future implications of high-dose vitamin C in cancer treatment is presented and recommendations for further research are discussed.
Collapse
Affiliation(s)
- Franziska Böttger
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Andrea Vallés-Martí
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Loraine Cahn
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Carroll RS, Buettner GR, Cullen JJ. Pharmacological ascorbate and use in pancreatic cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|
10
|
Codini M. Why Vitamin C Could Be an Excellent Complementary Remedy to Conventional Therapies for Breast Cancer. Int J Mol Sci 2020; 21:ijms21218397. [PMID: 33182353 PMCID: PMC7664876 DOI: 10.3390/ijms21218397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The most frequent cancer in women is breast cancer, which is a major cause of death. Currently, there are many pharmacological therapies that have made possible the cure and resolution of this tumor. However, these therapies are accompanied by numerous collateral effects that influence the quality of life (QoL) of the patients to varying degrees. For this reason, attention is turning to the use of complementary medicine to improve QoL. In particular, there are increased trials of intravenous injection of vitamin C at high doses to enhance the antitumor activity of drugs and/or decrease their side effects. This review intends to underline the anticancer mechanisms of vitamin C that could explain its efficacy for treating breast cancer, and why the use of vitamin C at high doses could help patients with breast cancer to enhance the efficacy of pharmacological therapies and/or decrease their side effects.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
11
|
Li Z, He P, Luo G, Shi X, Yuan G, Zhang B, Seidl C, Gewies A, Wang Y, Zou Y, Long Y, Yue D, Zhang X. Increased Tumoral Microenvironmental pH Improves Cytotoxic Effect of Pharmacologic Ascorbic Acid in Castration-Resistant Prostate Cancer Cells. Front Pharmacol 2020; 11:570939. [PMID: 33071784 PMCID: PMC7538777 DOI: 10.3389/fphar.2020.570939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/31/2020] [Indexed: 01/23/2023] Open
Abstract
Background The anticancer potential of pharmacologic ascorbic acid (AA) has been detected in a number of cancer cells. However, in vivo study suggested a strongly reduced cytotoxic activity of AA. It was known that pH could be a critical influencing factor for multiple anticancer treatments. In this study, we explored the influence of pH on the cytotoxicity of ascorbic acid. We employed castration-resistant prostate cancer (CRPC) cell lines PC3 and DU145 to observe the therapeutic effect of AA on PCa cells that were cultured with different pH in vitro. We also analyzed the influence of pH and extracellular oxidation on cytotoxicity of AA in cancer cells using reactive oxygen species (ROS) assay, cellular uptake of AA, and NADPH assay. Male BALB/c nude mice bearing prostate carcinoma xenografts (PC3 or DU145) were used to assess treatment response to AA with or without bicarbonate in vivo. The cellular uptake of AA in PCa xenografts was detected using positron emission tomography (PET). Small animal PET/CT scans were performed on mice after the administration of 6-deoxy-6-[18F] fluoro-L-ascorbic acid (18F-DFA). Results Our in vitro studies demonstrate that acidic pH attenuates the cytotoxic activity of pharmacologic ascorbic acid by inhibiting AA uptake in PCa cells. Additionally, we found that the cancer cell-selective toxicity of AA depends on ROS. In vivo, combination of AA and bicarbonate could provide a significant better therapeutic outcome in comparison with controls or AA single treated mice. 18F-DFA PET imaging illustrated that the treatment with NaHCO3 could significantly increase the AA uptake in tumor. Conclusions The alkalinity of tumor microenvironment plays an important role in anticancer efficiency of AA in CRPC. 18F-DFA PET/CT imaging could predict the therapeutic response of PCa animal model through illustration of tumoral uptake of AA. 18F-DFA might be a potential PET tracer in clinical diagnosis and treatment for CRPC.
Collapse
Affiliation(s)
- Zhoulei Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peng He
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ganhua Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gang Yuan
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Christof Seidl
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Gewies
- Institute of Molecular Toxicology and Pharmacology, German Research Center for Environmental Health, Munich, Germany
| | - Yue Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Zou
- Sichuan Key Laboratory of Medical Imaging & Ultrasound Medical Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yali Long
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dianchao Yue
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Roa FJ, Peña E, Gatica M, Escobar-Acuña K, Saavedra P, Maldonado M, Cuevas ME, Moraga-Cid G, Rivas CI, Muñoz-Montesino C. Therapeutic Use of Vitamin C in Cancer: Physiological Considerations. Front Pharmacol 2020; 11:211. [PMID: 32194425 PMCID: PMC7063061 DOI: 10.3389/fphar.2020.00211] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Since the early studies of William J. McCormick in the 1950s, vitamin C has been proposed as a candidate for the treatment of cancer. A number of reports have shown that pharmacological concentrations of vitamin C selectively kill cancer cells in vitro and decrease the growth rates of a number of human tumor xenografts in immunodeficient mice. However, up to the date there is still doubt regarding this possible therapeutic role of vitamin C in cancer, mainly because high dose administration in cancer patients has not showed a clear antitumor activity. These apparent controversial findings highlight the fact that we lack information on the interactions that occurs between cancer cells and vitamin C, and if these transformed cells can uptake, metabolize and compartmentalize vitamin C like normal human cells do. The role of SVCTs and GLUTs transporters, which uptake the reduced form and the oxidized form of vitamin C, respectively, has been recently highlighted in the context of cancer showing that the relationship between vitamin C and cancer might be more complex than previously thought. In this review, we analyze the state of art of the effect of vitamin C on cancer cells in vitro and in vivo, and relate it to the capacity of cancer cells in acquiring, metabolize and compartmentalize this nutrient, with its implications on the potential therapeutic role of vitamin C in cancer.
Collapse
Affiliation(s)
- Francisco J Roa
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eduardo Peña
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcell Gatica
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar-Acuña
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paulina Saavedra
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Mafalda Maldonado
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Magdalena E Cuevas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carola Muñoz-Montesino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
13
|
Zheng Z, Luo G, Shi X, Long Y, Shen W, Li Z, Zhang X. The X c- inhibitor sulfasalazine improves the anti-cancer effect of pharmacological vitamin C in prostate cancer cells via a glutathione-dependent mechanism. Cell Oncol (Dordr) 2019; 43:95-106. [PMID: 31617161 DOI: 10.1007/s13402-019-00474-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Traditional treatment regimens for advanced prostate cancer, especially castration-resistant prostate cancer, result in low survival times with severe side effects. Therefore, new treatment options are required. Vitamin C (VC) has been identified as a promising anti-cancer agent of which the effects depend on the accumulation of H2O2 that is produced through autoxidation. Sulfasalazine (SAS), a cystine transporter (Xc-) inhibitor, is known to suppress cellular glutathione (GSH) biosynthesis. Here, we hypothesized that targeting the Xc- transporter via SAS may improve the anti-cancer activity of VC through regulating GSH biosynthesis, which in turn may result in the accumulation of reactive oxygen species (ROS). METHODS The anti-cancer effect of VC and/or SAS on prostate cancer cells was assessed using WST-8, colony formation and annexin V-FITC/PI FACS assays. Changes in cellular ROS and GSH levels were determined to verify our hypothesis. Finally, BALB/c nude mice bearing prostate cancer xenografts were used to assess the anti-cancer effects of single or combined VC and SAS therapies. RESULTS We found that SAS could potentiate the short- and long-term cytotoxicity of VC in prostate cancer cells. We also found that the synergistic effect of SAS and VC led to significant cellular GSH depletion, resulting in increased ROS accumulation. This synergistic effect could be reversed by the antioxidant N-acetyl-L-cysteine (NAC). The synergistic effect of SAS and VC was also noted in prostate cancer xenografts and correlated with immunohistochemistry results. CONCLUSIONS Our results strongly indicate that SAS, a relatively non-toxic drug that targets cystine transporters, in combination with VC may be superior to their single applications in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zijie Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ganhua Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yali Long
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wanqing Shen
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhoulei Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T, Berg DJ, Zhang J, Keech J, Parekh KR, Bhatia S, Monga V, Bodeker KL, Ahmann L, Vollstedt S, Brown H, Shanahan Kauffman EP, Schall ME, Hohl RJ, Clamon GH, Greenlee JD, Howard MA, Schultz MK, Smith BJ, Riley DP, Domann FE, Cullen JJ, Buettner GR, Buatti JM, Spitz DR, Allen BG. O 2⋅- and H 2O 2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell 2017; 31:487-500.e8. [PMID: 28366679 PMCID: PMC5497844 DOI: 10.1016/j.ccell.2017.02.018] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 01/10/2023]
Abstract
Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H2O2; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O2⋅- and H2O2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H2O2. In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy.
Collapse
Affiliation(s)
- Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Zita A Sibenaller
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Kimberly L Cramer-Morales
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sonia Sandhu
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Thomas L Carlisle
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Mark C Smith
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Taher Abu Hejleh
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Daniel J Berg
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jun Zhang
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - John Keech
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Kalpaj R Parekh
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sudershan Bhatia
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Kellie L Bodeker
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Logan Ahmann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sandy Vollstedt
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Heather Brown
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Erin P Shanahan Kauffman
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Mary E Schall
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Ray J Hohl
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Gerald H Clamon
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jeremy D Greenlee
- Department of Neurosurgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew A Howard
- Department of Neurosurgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael K Schultz
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Brian J Smith
- Departmet of Biostatistics, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Frederick E Domann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Joseph J Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - John M Buatti
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA.
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Pei Z, Zhang X, Ji C, Liu SM, Wang J. Transcriptomic and functional pathways analysis of ascorbate-induced cytotoxicity and resistance of Burkitt lymphoma. Oncotarget 2016; 7:63950-63959. [PMID: 27590508 PMCID: PMC5325416 DOI: 10.18632/oncotarget.11740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Ascorbate is a pro-oxidant that generates hydrogen peroxide-dependent cytotoxity in cancer cells without adversely affecting normal cells. To determine the mechanistic basis for this phenotype, we selected Burkitt lymphoma cells resistant to ascorbate (JLPR cells) and their ascorbate-sensitive parental cells (JLPS cells). Compared with JLPS cells, the increased glucose uptake in JLPR cells (with upregulated glucose transporters, increased antioxidant enzyme activity, and altered cell cycling) conferred ascorbate-induced cytotoxicity and resistance. Transcriptomic profiles and function pathway analysis identified differentially expressed gene signatures for JLPR cells and JLPS cells, which differential expression levels of five genes (ATF5, CD79B, MHC, Myosin, and SAP18) in ascorbate-resistant cells were related to phosphoinositide 3 kinase, cdc42, DNA methylation and transcriptional repression, polyamine regulation, and integrin-linked kinase signaling pathways. These results suggested that coordinated changes occurred in JLPR cells to enable their survival when exposed to the cytotoxic pro-oxidant stress elicited by pharmacologic ascorbate treatment.
Collapse
Affiliation(s)
- Zenglin Pei
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Xuan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Chunxia Ji
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jin Wang
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| |
Collapse
|
16
|
Wang G, Yin T, Wang Y. In vitro and in vivo assessment of high-dose vitamin C against murine tumors. Exp Ther Med 2016; 12:3058-3062. [PMID: 27882116 DOI: 10.3892/etm.2016.3707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Vitamin C is widely used in clinical settings and is well known for its safety. Previous studies have shown the efficacy of intravenous vitamin C; however, intratumoral delivery of vitamin C has yet to be attempted. In the present study, the biological effects of high-dose vitamin C on tumor cells were investigated in vitro by using the MTT assay and flow cytometry. When administered in vitro, high-dose vitamin C inhibited the proliferation of murine colon and breast cancer cells, and induced tumor cell apoptosis. Cytotoxicity of vitamin C was partially reversed by N-acetyl-cysteine at a relatively low dosage. In addition, synergistic anti-tumor effects of vitamin C and cisplatin were observed. In vivo, intratumoral delivery of vitamin C delayed tumor growth in murine solid tumor models. Considering its low toxicity and availability, the present study indicates that vitamin C may be a novel therapeutic method for patients with advanced tumors.
Collapse
Affiliation(s)
- Guoping Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Abstract
The prognosis for patients diagnosed with pancreatic cancer remains dismal, with less than 3% survival at 5 years. Recent studies have demonstrated that high-dose, intravenous pharmacological ascorbate (ascorbic acid, vitamin C) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells vs. normal cells, suggesting a promising new role of ascorbate as a therapeutic agent. At physiologic concentrations, ascorbate functions as a reducing agent and antioxidant. However, when pharmacological ascorbate is given intravenously, it is possible to achieve millimolar plasma concentration. At these pharmacological levels, and in the presence of catalytic metal ions, ascorbate can induce oxidative stress through the generation of hydrogen peroxide (H2O2). Recent in vitro and in vivo studies have demonstrated ascorbate oxidation occurs extracellularly, generating H2O2 flux into cells resulting in oxidative stress. Pharmacologic ascorbate also inhibits the growth of pancreatic tumor xenografts and displays synergistic cytotoxic effects when combined with gemcitabine in pancreatic cancer. Phase I trials of pharmacological ascorbate in pancreatic cancer patients have demonstrated safety and potential efficacy. In this chapter, we will review the mechanism of ascorbate-induced cytotoxicity, examine the use of pharmacological ascorbate in treatment and assess the current data supporting its potential as an adjuvant in pancreatic cancer.
Collapse
Affiliation(s)
| | - Joseph J Cullen
- 1528 JCP, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
18
|
Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med 2014; 6:222ra18. [PMID: 24500406 DOI: 10.1126/scitranslmed.3007154] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ascorbate (vitamin C) was an early, unorthodox therapy for cancer, with an outstanding safety profile and anecdotal clinical benefit. Because oral ascorbate was ineffective in two cancer clinical trials, ascorbate was abandoned by conventional oncology but continued to be used in complementary and alternative medicine. Recent studies provide rationale for reexamining ascorbate treatment. Because of marked pharmacokinetic differences, intravenous, but not oral, ascorbate produces millimolar concentrations both in blood and in tissues, killing cancer cells without harming normal tissues. In the interstitial fluid surrounding tumor cells, millimolar concentrations of ascorbate exert local pro-oxidant effects by mediating hydrogen peroxide (H(2)O(2)) formation, which kills cancer cells. We investigated downstream mechanisms of ascorbate-induced cell death. Data show that millimolar ascorbate, acting as a pro-oxidant, induced DNA damage and depleted cellular adenosine triphosphate (ATP), activated the ataxia telangiectasia mutated (ATM)/adenosine monophosphate-activated protein kinase (AMPK) pathway, and resulted in mammalian target of rapamycin (mTOR) inhibition and death in ovarian cancer cells. The combination of parenteral ascorbate with the conventional chemotherapeutic agents carboplatin and paclitaxel synergistically inhibited ovarian cancer in mouse models and reduced chemotherapy-associated toxicity in patients with ovarian cancer. On the basis of its potential benefit and minimal toxicity, examination of intravenous ascorbate in combination with standard chemotherapy is justified in larger clinical trials.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
19
|
Parrow NL, Leshin JA, Levine M. Parenteral ascorbate as a cancer therapeutic: a reassessment based on pharmacokinetics. Antioxid Redox Signal 2013; 19:2141-56. [PMID: 23621620 PMCID: PMC3869468 DOI: 10.1089/ars.2013.5372] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Ewan Cameron reported that ascorbate, given orally and intravenously at doses of up to 10 g/day, was effective in the treatment of cancer. Double-blind placebo-controlled clinical trials showed no survival advantage when the same doses of ascorbate were given orally, leading the medical and scientific communities to dismiss the use of ascorbate as a potential cancer treatment. However, the route of administration results in major differences in ascorbate bioavailability. Tissue and plasma concentrations are tightly controlled in response to oral administration, but this can be bypassed by intravenous administration. These data provide a plausible scientific rationale for the absence of a response to orally administered ascorbate in the Mayo clinic trials and indicate the need to reassess ascorbate as a cancer therapeutic. RECENT ADVANCES High dose ascorbate is selectively cytotoxic to cancer cell lines through the generation of extracellular hydrogen peroxide (H2O2). Murine xenograft models confirm a growth inhibitory effect of pharmacological concentrations. The safety of intravenous ascorbate has been verified in encouraging pilot clinical studies. CRITICAL ISSUES Neither the selective toxicity of pharmacologic ascorbate against cancer cells nor the mechanism of H2O2-mediated cytotoxicity is fully understood. Despite promising preclinical data, the question of clinical efficacy remains. FUTURE DIRECTIONS A full delineation of mechanism is of interest because it may indicate susceptible cancer types. Effects of pharmacologic ascorbate used in combination with standard treatments need to be defined. Most importantly, the clinical efficacy of ascorbate needs to be reassessed using proper dosing, route of administration, and controls.
Collapse
Affiliation(s)
- Nermi L Parrow
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | | | | |
Collapse
|
20
|
Mastrangelo D, Massai L, Fioritoni G, Iacone A, Bartolomeo PD, Accorsi P, Bonfini T, Muscettola M, Grasso G. Megadoses of Sodium Ascorbate Efficiently Kill HL60 Cells <i>in Vitro</i>: Comparison with Arsenic Trioxide. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.48162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Cullen JJ, Spitz DR, Buettner GR. Comment on "Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer," i.e., all we are saying is, give C a chance. Free Radic Biol Med 2011; 50:1726-7. [PMID: 21459141 PMCID: PMC3128375 DOI: 10.1016/j.freeradbiomed.2011.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/27/2022]
Affiliation(s)
- Joseph J Cullen
- Free Radical and Radiation Biology Graduate Program, Department of Surgery, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
22
|
Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr 2011; 2:78-88. [PMID: 22332036 PMCID: PMC3065766 DOI: 10.3945/an.110.000109] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A concentration-function approach to vitamin C (ascorbate) has yielded new physiology and pharmacology discoveries. To determine the range of vitamin C concentrations possible in humans, pharmacokinetics studies were conducted. They showed that when vitamin C is ingested by mouth, plasma and tissue concentrations are tightly controlled by at least 3 mechanisms in healthy humans: absorption, tissue accumulation, and renal reabsorption. A 4th mechanism, rate of utilization, may be important in disease. With ingested amounts found in foods, vitamin C plasma concentrations do not exceed 100 μmol/L. Even with supplementation approaching maximally tolerated doses, ascorbate plasma concentrations are always <250 μmol/L and frequently <150 μmol/L. By contrast, when ascorbate is i.v. injected, tight control is bypassed until excess ascorbate is eliminated by glomerular filtration and renal excretion. With i.v. infusion, pharmacologic ascorbate concentrations of 25-30 mmol/L are safely achieved. Pharmacologic ascorbate can act as a pro-drug for hydrogen peroxide (H(2)O(2)) formation, which can lead to extracellular fluid at concentrations as high as 200 μmol/L. Pharmacologic ascorbate can elicit cytotoxicity toward cancer cells and slow the growth of tumors in experimental murine models. The effects of pharmacologic ascorbate should be further studied in diseases, such as cancer and infections, which may respond to generation of reactive oxygen species via H(2)O(2).
Collapse
Affiliation(s)
- Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1372, USA.
| | | | | |
Collapse
|
23
|
Ranzato E, Biffo S, Burlando B. Selective Ascorbate Toxicity in Malignant Mesothelioma. Am J Respir Cell Mol Biol 2011; 44:108-17. [DOI: 10.1165/rcmb.2009-0340oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Padayatty SJ, Sun AY, Chen Q, Espey MG, Drisko J, Levine M. Vitamin C: intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS One 2010; 5:e11414. [PMID: 20628650 PMCID: PMC2898816 DOI: 10.1371/journal.pone.0011414] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/30/2010] [Indexed: 12/25/2022] Open
Abstract
Background Anecdotal information and case reports suggest that intravenously administered vitamin C is used by Complementary and Alternate Medicine (CAM) practitioners. The scale of such use in the U.S. and associated side effects are unknown. Methods and Findings We surveyed attendees at annual CAM Conferences in 2006 and 2008, and determined sales of intravenous vitamin C by major U.S. manufacturers/distributors. We also queried practitioners for side effects, compiled published cases, and analyzed FDA's Adverse Events Database. Of 199 survey respondents (out of 550), 172 practitioners administered IV vitamin C to 11,233 patients in 2006 and 8876 patients in 2008. Average dose was 28 grams every 4 days, with 22 total treatments per patient. Estimated yearly doses used (as 25g/50ml vials) were 318,539 in 2006 and 354,647 in 2008. Manufacturers' yearly sales were 750,000 and 855,000 vials, respectively. Common reasons for treatment included infection, cancer, and fatigue. Of 9,328 patients for whom data is available, 101 had side effects, mostly minor, including lethargy/fatigue in 59 patients, change in mental status in 21 patients and vein irritation/phlebitis in 6 patients. Publications documented serious adverse events, including 2 deaths in patients known to be at risk for IV vitamin C. Due to confounding causes, the FDA Adverse Events Database was uninformative. Total numbers of patients treated in the US with high dose vitamin C cannot be accurately estimated from this study. Conclusions High dose IV vitamin C is in unexpectedly wide use by CAM practitioners. Other than the known complications of IV vitamin C in those with renal impairment or glucose 6 phosphate dehydrogenase deficiency, high dose intravenous vitamin C appears to be remarkably safe. Physicians should inquire about IV vitamin C use in patients with cancer, chronic, untreatable, or intractable conditions and be observant of unexpected harm, drug interactions, or benefit.
Collapse
Affiliation(s)
- Sebastian J. Padayatty
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew Y. Sun
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qi Chen
- Program in Integrative Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Michael Graham Espey
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeanne Drisko
- Program in Integrative Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Du J, Martin SM, Levine M, Wagner BA, Buettner GR, Wang SH, Taghiyev AF, Du C, Knudson CM, Cullen JJ. Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res 2010; 16:509-20. [PMID: 20068072 DOI: 10.1158/1078-0432.ccr-09-1713] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Pharmacologic concentrations of ascorbate may be effective in cancer therapeutics. We hypothesized that ascorbate concentrations achievable with i.v. dosing would be cytotoxic in pancreatic cancer for which the 5-year survival is <3%. EXPERIMENTAL DESIGN Pancreatic cancer cell lines were treated with ascorbate (0, 5, or 10 mmol/L) for 1 hour, then viability and clonogenic survival were determined. Pancreatic tumor cells were delivered s.c. into the flank region of nude mice and allowed to grow at which time they were randomized to receive either ascorbate (4 g/kg) or osmotically equivalent saline (1 mol/L) i.p. for 2 weeks. RESULTS There was a time- and dose-dependent increase in measured H(2)O(2) production with increased concentrations of ascorbate. Ascorbate decreased viability in all pancreatic cancer cell lines but had no effect on an immortalized pancreatic ductal epithelial cell line. Ascorbate decreased clonogenic survival of the pancreatic cancer cell lines, which was reversed by treatment of cells with scavengers of H(2)O(2). Treatment with ascorbate induced a caspase-independent cell death that was associated with autophagy. In vivo, treatment with ascorbate inhibited tumor growth and prolonged survival. CONCLUSIONS These results show that pharmacologic doses of ascorbate, easily achievable in humans, may have potential for therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Juan Du
- Department of Surgery, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 2009; 11:2985-3011. [PMID: 19505186 PMCID: PMC2783918 DOI: 10.1089/ars.2009.2513] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 01/11/2023]
Abstract
The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Ascorbate (vitamin C) is a cofactor for a number of metabolic enzymes and is an indisputable essential vitamin C for humans. However, the potential of ascorbate as an anticancer agent has been a topic of controversy. A number of previous reports have addressed both positive aspects and limitations of ascorbate in cancer therapy. In this review, we briefly summarize the potential antitumor effects of ascorbate and its prospects for clinical use.
Collapse
Affiliation(s)
- Wang-Jae Lee
- Department of Anatomy and Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul 110-744, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| |
Collapse
|
28
|
Levine M, Espey MG, Chen Q. Losing and finding a way at C: new promise for pharmacologic ascorbate in cancer treatment. Free Radic Biol Med 2009; 47:27-9. [PMID: 19361554 PMCID: PMC2981594 DOI: 10.1016/j.freeradbiomed.2009.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1372, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Kallistratos G, Evangelou A, Agnantis N, Fasske E, Karkabounas S, Donos A. Enhancement of the antineoplastic effect of anticarcinogens on benzo[a]pyrene-treated Wistar rats, in relation to their number and biological activity. Cancer Lett 1994; 82:153-65. [PMID: 8050086 DOI: 10.1016/0304-3835(94)90006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Naturally occurring anticarcinogens, such as vitamins C and E, and the microelement selenium were found to inhibit the induction of benzo[a]pyrene-induced malignant tumors in Wistar rats to various extends. The antineoplastic effect of the tested anticarcinogens is gradually increased according to the number of inhibitors selected. To date the maximum action against malignancy is manifested by use of the above three inhibitors. In the group of rats receiving vitamins C, E and selenium, the prolongation of life induced by adding more than one anticarcinogen to the treatment regime reached, and in some cases surpassed, the normal life expectancy of the rats. It is expected that by adding even more anticarcinogens, the antineoplastic potency (Ap) of the inhibitors will be further improved. These results encouraged us to conduct a clinical trial in terminal human cancer cases, in conjunction with the usual treatments of surgery or chemotherapy and irradiation.
Collapse
Affiliation(s)
- G Kallistratos
- Department of Experimental Physiology, Faculty of Medicine, University of Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
31
|
Abul-Hajj YJ, Kelliher M. Failure of ascorbic acid to inhibit growth of transplantable and dimethylbenzanthracene induced rat mammary tumors. Cancer Lett 1982; 17:67-73. [PMID: 6817914 DOI: 10.1016/0304-3835(82)90110-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The effect of ascorbic acid on the growth of 7,12-dimethylbenzanthracene (DMBA)-induced mammary tumor and on growth of R3230AC and MT/W9a-B transplantable rat mammary tumors was investigated. High doses of ascorbic acid averaging about 540 mg/day/rat administered orally in drinking water had no effect on the growth of both R3230A and MT/W9a-B transplantable mammary tumors. Furthermore, vitamin C was unable to postpone tumor induction, reduce tumor incidence or prolong survival time of rats treated with DMBA.
Collapse
|
32
|
Kallistratos G, Fasske E. Inhibition of benzo(a)pyrene carcinogenesis in rats with vitamin C. J Cancer Res Clin Oncol 1980; 97:91-6. [PMID: 7400211 DOI: 10.1007/bf00411283] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The s.c. infection of 10 mg benzo(a)pyrene dissolved in 1 ml tricaprylin induced in Wistar rats local malignant tumors, such as fibrosarcoma, rhabdomyosarcoma, and polymorph cell sarcoma. The growth of the tumors was relatively rapid, reaching weights of 140-155 g before rats died 142-168 days after the administration of the carcinogen. On the contrary, under the same experimental conditions, high doses of Vitamin C about 525 mg/day/rat administered orally in drinking water (total amount of Vitamin C 55 g/rat corresponding to 40% of their body weight ) inhibited to a great extent the benzo(a)pyrene carcinogenesis. Only one slowly growing rhabdomyosarcoma (13 g of weight) was developed showing characteristic damage of malignant cells and partial replacement of the neoplastic area with granuloma tissue. The significance ov Vitamin C for cancer prevention and treatment is discussed.
Collapse
|
33
|
Gruber HE, Tewfik HH, Tewfik FA. Cytoarchitecture of Ehrlich ascites carcinoma implanted in the hind limb of ascorbic acid-supplemented mice. Eur J Cancer 1980; 16:441-8. [PMID: 7398716 DOI: 10.1016/0014-2964(80)90223-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Bremermann HJ. Theory of spontaneous cell fusion. Sexuality in cell populations as an evolutionarily stable strategy. Applications to immunology and cancer. J Theor Biol 1979; 76:311-34. [PMID: 439907 DOI: 10.1016/0022-5193(79)90315-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Cameron E. Biological function of ascorbic acid and the pathogenesis of scurvy: a working hypothesis. Med Hypotheses 1976; 2:154-63. [PMID: 958038 DOI: 10.1016/0306-9877(76)90072-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This communication advances the proposal that all the diverse manifestations of scurvy can be attributed to depolymerisation of ground substance glycosaminoglycans brought about by exposure to uninhibited cellular hyaluronidase. It suggests that ascorbic acid exerts its prime biological function indirectly by incorporation into a glycosaminoglycan residue to form the physiological hyaluronidase inhibitor. The therapeutic implications of this working hypothesis are briefly discussed.
Collapse
|
36
|
Cameron E, Campbell A, Jack T. The orthomolecular treatment of cancer. III. Reticulum cell sarcoma: double complete regression induced by high-dose ascorbic acid therapy. Chem Biol Interact 1975; 11:387-93. [PMID: 1104207 DOI: 10.1016/0009-2797(75)90007-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The response of a patient with histologically proven reticulum cell sarcoma to no treatment other than large doses of ascorbic acid is described. At the time of first diagnosis, the disease was widely disseminated, and a very dramatic regression of all parameters of disease activity was induced by the continuous administration of large doses of ascorbic acid. Reduction in dosage some months later coincided with reactivation of the disease process. The reinstitution of regular high-dose ascorbic acid therapy induced a second complete remission. The case report is illustrated by serial radiographs. The significance of the therapeutic response is briefly discussed in relation to general schemes of cancer management.
Collapse
|
37
|
Cameron E, Campbell A. The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem Biol Interact 1974; 9:285-315. [PMID: 4430016 DOI: 10.1016/0009-2797(74)90019-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Cameron E, Pauling L. The orthomolecular treatment of cancer. I. The role of ascorbic acid in host resistance. Chem Biol Interact 1974; 9:273-83. [PMID: 4609626 DOI: 10.1016/0009-2797(74)90018-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|