1
|
Chen S, Cheng S, Cai J, Liu Z, Li H, Wang P, Li Y, Yang F, Chen K, Qiu M. The current therapeutic cancer vaccines landscape in non-small cell lung cancer. Int J Cancer 2024; 155:1909-1927. [PMID: 39109825 DOI: 10.1002/ijc.35088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 10/04/2024]
Abstract
Currently, conventional immunotherapies for the treatment of non-small cell lung cancer (NSCLC) have low response rates and benefit only a minority of patients, particularly those with advanced disease, so novel therapeutic strategies are urgent deeded. Therapeutic cancer vaccines, a form of active immunotherapy, harness potential to activate the adaptive immune system against tumor cells via antigen cross-presentation. Cancer vaccines can establish enduring immune memory and guard against recurrences. Vaccine-induced tumor cell death prompts antigen epitope spreading, activating functional T cells and thereby sustaining a cancer-immunity cycle. The success of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rendered cancer vaccines a promising avenue, especially when combined with immunotherapy or chemoradiotherapy for NSCLC. This review delves into the intricate antitumor immune mechanisms underlying therapeutic cancer vaccines, enumerates the tumor antigen spectrum of NSCLC, discusses different cancer vaccines progress and summarizes relevant clinical trials. Additionally, we analyze the combination strategies, current limitations, and future prospects of cancer vaccines in NSCLC treatment, aiming to offer fresh insights for their clinical application in managing NSCLC. Overall, cancer vaccines offer promising potential for NSCLC treatment, particularly combining with chemoradiotherapy or immunotherapy could further improve survival in advanced patients. Exploring inhaled vaccines or prophylactic vaccines represents a crucial research avenue.
Collapse
Affiliation(s)
- Shaoyi Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Sida Cheng
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Jingsheng Cai
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Haoran Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
2
|
Dhall A, Patiyal S, Raghava GPS. A hybrid method for discovering interferon-gamma inducing peptides in human and mouse. Sci Rep 2024; 14:26859. [PMID: 39501025 DOI: 10.1038/s41598-024-77957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Interferon-gamma (IFN-γ) is a versatile pleiotropic cytokine essential for both innate and adaptive immune responses. It exhibits both pro-inflammatory and anti-inflammatory properties, making it a promising therapeutic candidate for treating various infectious diseases and cancers. We present IFNepitope2, a host-specific technique to annotate IFN-γ inducing peptides, it is an updated version of IFNepitope introduced by Dhanda et al. In this study, dataset used for developing prediction method contain experimentally validated 25,492 and 7983 IFN-γ inducing peptides in human and mouse host, respectively. In initial phase, machine learning techniques have been exploited to develop classification model using wide range of peptide features. Further, to improve machine learning based models or alignment free models, we explore potential of similarity-based technique BLAST. Finally, a hybrid model has been developed that combine best machine learning based model with BLAST. In most of the case, models based on extra tree perform better than other machine learning techniques. In case of peptide features, compositional feature particularly dipeptide composition performs better than one-hot encoding or binary profile. Our best machine learning based models achieved AUROC 0.89 and 0.83 for human and mouse host, respectively. The hybrid model achieved the AUROC 0.90 and 0.85 for human and mouse host, respectively. All models have been evaluated on an independent/validation dataset not used for training or testing these models. Newly developed method performs better than existing method on independent dataset. The major objective of this study is to predict, design and scan IFN-γ inducing peptides, thus server/software have been developed ( https://webs.iiitd.edu.in/raghava/ifnepitope2/ ). This method is also available as standalone at https://github.com/raghavagps/ifnepitope2 and python package index at https://pypi.org/project/ifnepitope2/ .
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India.
| |
Collapse
|
3
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
4
|
Linette GP, Bear AS, Carreno BM. Facts and Hopes in Immunotherapy Strategies Targeting Antigens Derived from KRAS Mutations. Clin Cancer Res 2024; 30:2017-2024. [PMID: 38266167 PMCID: PMC11094419 DOI: 10.1158/1078-0432.ccr-23-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
In this commentary, we advance the notion that mutant KRAS (mKRAS) is an ideal tumor neoantigen that is amenable for targeting by the adaptive immune system. Recent progress highlights key advances on various fronts that validate mKRAS as a molecular target and support further pursuit as an immunological target. Because mKRAS is an intracellular membrane localized protein and not normally expressed on the cell surface, we surmise that proteasome degradation will generate short peptides that bind to HLA class I (HLA-I) molecules in the endoplasmic reticulum for transport through the Golgi for display on the cell surface. T-cell receptors (TCR)αβ and antibodies have been isolated that specifically recognize mKRAS encoded epitope(s) or haptenated-mKRAS peptides in the context of HLA-I on tumor cells. Case reports using adoptive T-cell therapy provide proof of principle that KRAS G12D can be successfully targeted by the immune system in patients with cancer. Among the challenges facing investigators is the requirement of precision medicine to identify and match patients to available mKRAS peptide/HLA therapeutics and to increase the population coverage by targeting additional mKRAS epitopes. Ultimately, we envision mKRAS-directed immunotherapy as an effective treatment option for selected patients that will complement and perhaps synergize with small-molecule mKRAS inhibitors and targeted mKRAS degraders.
Collapse
Affiliation(s)
- Gerald P. Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adham S. Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beatriz M. Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Cheng NC, Vonderheide RH. Immune vulnerabilities of mutant KRAS in pancreatic cancer. Trends Cancer 2023; 9:928-936. [PMID: 37524642 PMCID: PMC10592263 DOI: 10.1016/j.trecan.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
The 40-year desire to target the mutant Kirsten rat sarcoma (KRAS) gene (mKRAS) therapeutically is being realized with more and more broadly applicable and tumor-specific small-molecule inhibitors. Immunologically, mKRAS has equal desirability as a target. Tumor KRAS signaling plays a large role in shaping the immunosuppressive nature of the tumor microenvironment, especially in pancreatic cancer, leaving mKRAS inhibitors with potentially powerful immune modulatory capabilities that could be exploited in immunological-oncological combinations. mKRAS is itself an immunological antigen, a 'shared neoepitope' linked to the oncogenic process, validated biochemically and immunologically. Novel approaches in the clinic are taking advantage of the fact that mKRAS peptides are naturally processed and presented in tumors by the major histocompatibility complex (MHC).
Collapse
Affiliation(s)
- Noah C Cheng
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
6
|
Jayaraman S, Montagne JM, Nirschl TR, Marcisak E, Johnson J, Huff A, Hsiao MH, Nauroth J, Heumann T, Zarif JC, Jaffee EM, Azad N, Fertig EJ, Zaidi N, Larman HB. Barcoding intracellular reverse transcription enables high-throughput phenotype-coupled T cell receptor analyses. CELL REPORTS METHODS 2023; 3:100600. [PMID: 37776855 PMCID: PMC10626196 DOI: 10.1016/j.crmeth.2023.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Assays linking cellular phenotypes with T cell or B cell antigen receptor sequences are crucial for characterizing adaptive immune responses. Existing methodologies are limited by low sample throughput and high cost. Here, we present INtraCEllular Reverse Transcription with Sorting and sequencing (INCERTS), an approach that combines molecular indexing of receptor repertoires within intact cells and fluorescence-activated cell sorting (FACS). We demonstrate that INCERTS enables efficient processing of millions of cells from pooled human peripheral blood mononuclear cell (PBMC) samples while retaining robust association between T cell receptor (TCR) sequences and cellular phenotypes. We used INCERTS to discover antigen-specific TCRs from patients with cancer immunized with a novel mutant KRAS peptide vaccine. After ex vivo stimulation, 28 uniquely barcoded samples were pooled prior to FACS into peptide-reactive and non-reactive CD4+ and CD8+ populations. Combining complementary patient-matched single-cell RNA sequencing (scRNA-seq) data enabled retrieval of full-length, paired TCR alpha and beta chain sequences for future validation of therapeutic utility.
Collapse
Affiliation(s)
- Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janelle M Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Quantitative Sciences, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas R Nirschl
- Pathobiology Graduate Program, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA
| | - Emily Marcisak
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanette Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda Huff
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meng-Hsuan Hsiao
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Julie Nauroth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thatcher Heumann
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Hematology Oncology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jelani C Zarif
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nilo Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Quantitative Sciences, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Leowattana W, Leowattana P, Leowattana T. Systemic treatment for advanced pancreatic cancer. World J Gastrointest Oncol 2023; 15:1691-1705. [PMID: 37969416 PMCID: PMC10631439 DOI: 10.4251/wjgo.v15.i10.1691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Pancreatic cancer is a deadly disease with an extremely poor 5-year survival rate due to treatment resistance and late-stage detection. Despite numerous years of research and pharmaceutical development, these figures have not changed. Treatment options for advanced pancreatic cancer are still limited. This illness is typically detected at a late stage, making curative surgical resection impossible. Chemotherapy is the most commonly utilized technique for treating advanced pancreatic cancer but has poor efficacy. Targeted therapy and immunotherapy have made significant progress in many other cancer types and have been proven to have extremely promising possibilities; these therapies also hold promise for pancreatic cancer. There is an urgent need for research into targeted treatment, immunotherapy, and cancer vaccines. In this review, we emphasize the foundational findings that have fueled the therapeutic strategy for advanced pancreatic cancer. We also address current advancements in targeted therapy, immunotherapy, and cancer vaccines, all of which continue to improve the clinical outcome of advanced pancreatic cancer. We believe that clinical translation of these novel treatments will improve the low survival rate of this deadly disease.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| |
Collapse
|
8
|
Bteich F, Mohammadi M, Li T, Bhat MA, Sofianidi A, Wei N, Kuang C. Targeting KRAS in Colorectal Cancer: A Bench to Bedside Review. Int J Mol Sci 2023; 24:12030. [PMID: 37569406 PMCID: PMC10418782 DOI: 10.3390/ijms241512030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with a myriad of alterations at the cellular and molecular levels. Kristen rat sarcoma (KRAS) mutations occur in up to 40% of CRCs and serve as both a prognostic and predictive biomarker. Oncogenic mutations in the KRAS protein affect cellular proliferation and survival, leading to tumorigenesis through RAS/MAPK pathways. Until recently, only indirect targeting of the pathway had been investigated. There are now several KRAS allele-specific inhibitors in late-phase clinical trials, and many newer agents and targeting strategies undergoing preclinical and early-phase clinical testing. The adequate treatment of KRAS-mutated CRC will inevitably involve combination therapies due to the existence of robust adaptive resistance mechanisms in these tumors. In this article, we review the most recent understanding and findings related to targeting KRAS mutations in CRC, mechanisms of resistance to KRAS inhibitors, as well as evolving treatment strategies for KRAS-mutated CRC patients.
Collapse
Affiliation(s)
- Fernand Bteich
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA;
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
| | - Mahshid Mohammadi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Terence Li
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Muzaffer Ahmed Bhat
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amalia Sofianidi
- Oncology Unit, Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ning Wei
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chaoyuan Kuang
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA;
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Zhu YH, Zheng JH, Jia QY, Duan ZH, Yao HF, Yang J, Sun YW, Jiang SH, Liu DJ, Huo YM. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46:17-48. [PMID: 36367669 DOI: 10.1007/s13402-022-00741-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jia-Hao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, 200240, People's Republic of China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
10
|
Martinov T, Greenberg PD. Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:331-351. [PMID: 37655310 PMCID: PMC10470615 DOI: 10.1146/annurev-cancerbio-061521-082114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
T cell reactivity to tumor-specific neoantigens can drive endogenous and therapeutically induced antitumor immunity. However, most tumor-specific neoantigens are unique to each patient (private) and targeting them requires personalized therapy. A smaller subset of neoantigens includes epitopes that span recurrent mutation hotspots, translocations, or gene fusions in oncogenic drivers and tumor suppressors, as well as epitopes that arise from viral oncogenic proteins. Such antigens are likely to be shared across patients (public), uniformly expressed within a tumor, and required for cancer cell survival and fitness. Although a limited number of these public neoantigens are naturally immunogenic, recent studies affirm their clinical utility. In this review, we highlight efforts to target mutant KRAS, mutant p53, and epitopes derived from oncogenic viruses using T cells engineered with off-the-shelf T cell receptors. We also discuss the challenges and strategies to achieving more effective T cell therapies, particularly in the context of solid tumors.
Collapse
Affiliation(s)
- Tijana Martinov
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Philip D Greenberg
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Immunology Department, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Targeting KRASp.G12C Mutation in Advanced Non-Small Cell Lung Cancer: a New Era Has Begun. Curr Treat Options Oncol 2022; 23:1699-1720. [PMID: 36394791 DOI: 10.1007/s11864-022-01033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
OPINION STATEMENT KRASp.G12C mutation occurs in 12% of newly diagnosed advanced NSCLC and has recently emerged as a positive predictive biomarker for the selection of advanced NSCLC patients who may respond to novel KRASp.G12C inhibitors. The recent discovery of a new binding pocket under the effector region of KRAS G12C oncoprotein has made direct pharmacological inhibition of the KRASp.G12 mutation possible, leading to the clinical development of a new series of direct selective inhibitors, with a potential major impact on patients' survival and quality of life. Promising efficacy and tolerability data emerging from the early phase CodeBreak trial have already supported the regulatory approval of sotorasib as first in class targeted treatment for the second-line treatment of KRASp.G12C-positive NSCLC population, following immunotherapy-based first-line therapies, while the randomized phase III CodeBreak 200 clinical study has recently confirmed a significant superiority of sotorasib over docetaxel in terms of progression-free survival and quality of life. However, KRAS mutant NSCLC is a high heterogeneous disease characterized by a high rate of co-mutations, most frequently involving P53, STK11, and KEAP1 genes, which significantly modulate the composition of the tumor microenvironment and consequently affect clinical responses to both immunotherapy and targeted inhibitors now available in clinical practice. Both pre-clinical and clinical translational series have recently revealed a wide spectrum of resistance mechanisms occurring under selective KRASG12C inhibitors, including both on-target and off-target molecular alterations as well as morphological switching, negatively affecting the antitumor activity of these drugs when used as single agent therapies. The understanding of such biological background along with the emergence of pre-clinical data provided a strong rational to investigate different combination strategies, including the inhibition of SHP2, SOS1, and KRAS G12C downstream effectors, as well as the addition of immunotherapy and/or chemotherapy to targeted therapy. The preliminary results of these trials have recently suggested a promising activity of SHP2 inhibitors in the front-line setting, while toxicity issues limited the concurrent administration of immune-checkpoint inhibitors and sotorasib. The identification of predictive genomic/immunological biomarkers will be crucial to understand how to optimally sequencing/combining different drugs and ultimately personalize treatment strategies under clinical investigation, to definitively increase the survival outcomes of KRASp.G12C mutant advanced NSCLC patients.
Collapse
|
12
|
Zhang J, Li R, Huang S. The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:951019. [PMID: 35965504 PMCID: PMC9365986 DOI: 10.3389/fonc.2022.951019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer has the seventh highest death rate of all cancers. The absence of any serious symptoms, coupled with a lack of early prognostic and diagnostic markers, makes the disease untreatable in most cases. This leads to a delay in diagnosis and the disease progresses so there is no cure. Only about 20% of cases are diagnosed early. Surgical removal is the preferred treatment for cancer, but chemotherapy is standard for advanced cancer, although patients can eventually develop drug resistance and serious side effects. Chemoresistance is multifactorial because of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment (TME). Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. This review focuses on the immune-related components of TME and the interactions between tumor cells and TME during the development and progression of pancreatic cancer, including immunosuppression, tumor dormancy and escape. Finally, we discussed a variety of immune components-oriented immunotargeting drugs in TME from a clinical perspective.
Collapse
Affiliation(s)
| | - Renfeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C, Shih YP, Leung A, Payne R, Sutcliffe K, Cramer J, Rosenberg SA, Fox BA, Urba WJ, Tran E. Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. N Engl J Med 2022; 386:2112-2119. [PMID: 35648703 PMCID: PMC9531755 DOI: 10.1056/nejmoa2119662] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A patient with progressive metastatic pancreatic cancer was treated with a single infusion of 16.2×109 autologous T cells that had been genetically engineered to clonally express two allogeneic HLA-C*08:02-restricted T-cell receptors (TCRs) targeting mutant KRAS G12D expressed by the tumors. The patient had regression of visceral metastases (overall partial response of 72% according to the Response Evaluation Criteria in Solid Tumors, version 1.1); the response was ongoing at 6 months. The engineered T cells constituted more than 2% of all the circulating peripheral-blood T cells 6 months after the cell transfer. In this patient, TCR gene therapy targeting the KRAS G12D driver mutation mediated the objective regression of metastatic pancreatic cancer. (Funded by the Providence Portland Medical Foundation.).
Collapse
Affiliation(s)
- Rom Leidner
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Nelson Sanjuan Silva
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Huayu Huang
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - David Sprott
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Chunhong Zheng
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Yi-Ping Shih
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Amy Leung
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Roxanne Payne
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Kim Sutcliffe
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Julie Cramer
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Steven A Rosenberg
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Bernard A Fox
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Walter J Urba
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| | - Eric Tran
- From the Earle A. Chiles Research Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., B.A.F., W.J.U., E.T.), Providence Cancer Institute (R.L., N.S.S., H.H., D.S., C.Z., Y.-P.S., A.L., R.P., K.S., J.C., B.A.F., W.J.U., E.T.), Portland, OR; and the Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (S.A.R.)
| |
Collapse
|
14
|
Corral de la Fuente E, Olmedo Garcia ME, Gomez Rueda A, Lage Y, Garrido P. Targeting KRAS in Non-Small Cell Lung Cancer. Front Oncol 2022; 11:792635. [PMID: 35083149 PMCID: PMC8784727 DOI: 10.3389/fonc.2021.792635] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is the most frequently altered oncogene in Non-Small Cell Lung Cancer (NSCLC). KRAS mutant tumors constitute a heterogeneous group of diseases, different from other oncogene-derived tumors in terms of biology and response to treatment, which hinders the development of effective drugs against KRAS. Therefore, for decades, despite enormous efforts invested in the development of drugs aimed at inhibiting KRAS or its signaling pathways, KRAS was considered to be undruggable. Recently, the discovery of a new pocket under the effector binding switch II region of KRAS G12C has allowed the development of direct KRAS inhibitors such as sotorasib, the first FDA-approved drug targeting KRAS G12C, or adagrasib, initiating a new exciting era. However, treatment with targeted KRAS G12C inhibitors also leads to resistance, and understanding the possible mechanisms of resistance and which drugs could be useful to overcome it is key. Among others, KRAS G12C (ON) tricomplex inhibitors and different combination therapy strategies are being analyzed in clinical trials. Another area of interest is the potential role of co-mutations in treatment selection, particularly immunotherapy. The best first-line strategy remains to be determined and, due to the heterogeneity of KRAS, is likely to be based on combination therapies.
Collapse
Affiliation(s)
- Elena Corral de la Fuente
- Early Phase Clinical Drug Development in Oncology, South Texas Accelerated Research Therapeutics (START) Madrid-Centro Integral Oncológico Clara Campal (CIOCC), Centro Integral Oncológico Clara Campal, Madrid, Spain
| | | | - Ana Gomez Rueda
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Yolanda Lage
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Pilar Garrido
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
15
|
Opportunities and challenges in targeted therapy and immunotherapy for pancreatic cancer. Expert Rev Mol Med 2021; 23:e21. [PMID: 34906271 DOI: 10.1017/erm.2021.26] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is one of the most malignant tumours with a poor prognosis. In recent years, the incidence of pancreatic cancer is on the rise. Traditional chemotherapy and radiotherapy for pancreatic cancer have been improved, first-line and second-line palliative treatments have been developed, and adjuvant treatments have also been used in clinical. However, the 5-year survival rate is still less than 10% and new treatment methods such as targeted therapy and immunotherapy need to be investigated. In the past decades, many clinical trials of targeted therapies and immunotherapies for pancreatic cancer were launched and some of them showed an ideal prospect in a subgroup of pancreatic cancer patients. The experience of both success and failure of these clinical trials will be helpful to improve these therapies in the future. Therefore, the current research progress and challenges of selected targeted therapies and immunotherapies for pancreatic cancer are reviewed.
Collapse
|
16
|
Anderson EM, Thomassian S, Gong J, Hendifar A, Osipov A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers (Basel) 2021; 13:5510. [PMID: 34771675 PMCID: PMC8583016 DOI: 10.3390/cancers13215510] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest malignancies among all cancers. Despite curative intent, surgery and the use of standard cytotoxic chemotherapy and radiation therapy, PDAC remains treatment-resistant. In recent years, more contemporary treatment modalities such as immunotherapy via checkpoint inhibition have shown some promise in many other malignancies, yet PDAC still eludes an effective curative treatment. In investigating these phenomena, research has suggested that the significant desmoplastic and adaptive tumor microenvironment (TME) of PDAC promote the proliferation of immunosuppressive cells and act as major obstacles to treatment efficacy. In this review, we explore challenges associated with the treatment of PDAC, including its unique immunosuppressive TME. This review examines the role of surgery in PDAC, recent advances in surgical approaches and surgical optimization. We further focus on advances in immunotherapeutic approaches, including checkpoint inhibition, CD40 agonists, and discuss promising immune-based future strategies, such as therapeutic neoantigen cancer vaccines as means of overcoming the resistance mechanisms which underly the dense stroma and immune milieu of PDAC. We also explore unique signaling, TME and stromal targeting via novel small molecule inhibitors, which target KRAS, FAK, CCR2/CCR5, CXCR4, PARP and cancer-associated fibroblasts. This review also explores the most promising strategy for advancement in treatment of pancreatic cancer by reviewing contemporary combinatorial approaches in efforts to overcome the treatment refractory nature of PDAC.
Collapse
Affiliation(s)
- Eric M. Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Shant Thomassian
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Jun Gong
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Andrew Hendifar
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Arsen Osipov
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| |
Collapse
|
17
|
Bear AS, Blanchard T, Cesare J, Ford MJ, Richman LP, Xu C, Baroja ML, McCuaig S, Costeas C, Gabunia K, Scholler J, Posey AD, O'Hara MH, Smole A, Powell DJ, Garcia BA, Vonderheide RH, Linette GP, Carreno BM. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat Commun 2021; 12:4365. [PMID: 34272369 PMCID: PMC8285372 DOI: 10.1038/s41467-021-24562-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Activating RAS missense mutations are among the most prevalent genomic alterations observed in human cancers and drive oncogenesis in the three most lethal tumor types. Emerging evidence suggests mutant KRAS (mKRAS) may be targeted immunologically, but mKRAS epitopes remain poorly defined. Here we employ a multi-omics approach to characterize HLA class I-restricted mKRAS epitopes. We provide proteomic evidence of mKRAS epitope processing and presentation by high prevalence HLA class I alleles. Select epitopes are immunogenic enabling mKRAS-specific TCRαβ isolation. TCR transfer to primary CD8+ T cells confers cytotoxicity against mKRAS tumor cell lines independent of histologic origin, and the kinetics of lytic activity correlates with mKRAS peptide-HLA class I complex abundance. Adoptive transfer of mKRAS-TCR engineered CD8+ T cells leads to tumor eradication in a xenograft model of metastatic lung cancer. This study validates mKRAS peptides as bona fide epitopes facilitating the development of immune therapies targeting this oncoprotein. KRAS is commonly mutated at codon 12 in several cancer types, offering a unique opportunity for the development of neoantigen-targeted immunotherapy. Here the authors present a pipeline for the prediction, identification and validation of HLA class-I restricted mutant KRAS G12 peptides, leading to the generation of mutant KRAS-specific T cell receptors for adoptive T cell immunotherapy.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Cesare
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Lee P Richman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miren L Baroja
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah McCuaig
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Costeas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Khatuna Gabunia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Anze Smole
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald P Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Dillard P, Casey N, Pollmann S, Vernhoff P, Gaudernack G, Kvalheim G, Wälchli S, Inderberg EM. Targeting KRAS mutations with HLA class II-restricted TCRs for the treatment of solid tumors. Oncoimmunology 2021; 10:1936757. [PMID: 34235003 PMCID: PMC8216182 DOI: 10.1080/2162402x.2021.1936757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T-cell receptor (TCR) redirected T cells are considered as the next generation of care for the treatment of numerous solid tumors. KRAS mutations are driver neoantigens that are expressed in over 25% of all cancers and are thus regarded as ideal targets for Adoptive Cell Therapy (ACT). We have isolated four KRAS-specific TCRs from a long-term surviving pancreatic cancer patient vaccinated with a mix of mutated KRAS peptides. The sequence of these TCRs could be identified and expressed in primary cells. We demonstrated stable expression of all TCRs as well as target-specific functionality when expressing T cells were co-incubated with target cells presenting KRAS peptides. In addition, these TCRs were all partially co-receptor independent since they were functional in both CD4 and CD8 T cells, thus indicating high affinity. Interestingly, we observed that certain TCRs were able to recognize several KRAS mutations in complex with their cognate Human leukocyte antigen (HLA), suggesting that, here, the point mutations were less important for the HLA binding and TCR recognition, whereas others were single-mutation restricted. Finally, we demonstrated that these peptides were indeed processed and presented, since HLA-matched antigen presenting cells exogenously loaded with KRAS proteins were recognized by TCR-transduced T cells. Taken together, our data demonstrate that KRAS mutations are immunogenic for CD4 T cells and are interesting targets for TCR-based cancer immunotherapy.
Collapse
Affiliation(s)
- Pierre Dillard
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Nicholas Casey
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sylvie Pollmann
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Patrik Vernhoff
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Liu X, Li Z, Wang Y. Advances in Targeted Therapy and Immunotherapy for Pancreatic Cancer. Adv Biol (Weinh) 2021; 5:e1900236. [PMID: 33729700 DOI: 10.1002/adbi.201900236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly aggressive malignancy with an overall 5-year survival rate of <6% due to therapeutic resistance and late-stage diagnosis. These statistics have not changed despite 50 years of research and therapeutic development. Pancreatic cancer is predicted to become the second leading cause of cancer mortality by the year 2030. Currently, the treatment options for pancreatic cancer are limited. This disease is usually diagnosed at a late stage, which prevents curative surgical resection. Chemotherapy is the most frequently used approach for pancreatic cancer treatment and has limited effects. In many other cancer types, targeted therapy and immunotherapy have made great progress and have been shown to be very promising prospects; these treatments also provide hope for pancreatic cancer. The need for research on targeted therapy and immunotherapy is pressing due to the poor prognosis of pancreatic cancer, and in recent years, there have been some breakthroughs for targeted therapy and immunotherapy in pancreatic cancer. This review summarizes the current preclinical and clinical studies of targeted therapy and immunotherapy for pancreatic cancer and ends by describing the challenges and outlook.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
20
|
Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol 2021; 95:107508. [PMID: 33725635 DOI: 10.1016/j.intimp.2021.107508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors with a high mortality rate and poor survival rate. Depending on the tumor stage, PDAC is either treated by resection surgery, chemotherapies, or radiotherapies. Various chemotherapeutic agents have been used to treat PDAC, alone or in combination. Despite the combinations, chemotherapy exhibits many side-effects leading to an increase in the toxicity profile amongst the PDAC patients. Additionally, these standard chemotherapeutic agents have only a modest impact on patient survival due to their limited efficacy. PDAC was previously considered as an immunologically silent malignancy, but recent findings have demonstrated that effective immune-mediated tumor cell death can be used for its treatment. PDAC is characterized by an immunosuppressive tumor microenvironment accompanied by the major expression of myeloid-derived suppressor cells (MDSC) and M2 tumor-associated macrophages. In contrast, the expression of CD8+ T cells is significantly low. Additionally, infiltration of mast cells in PDAC correlates with the poor prognosis. Immunotherapeutic agents target the immunity mediators and empower them to suppress the tumor and effectively treat PDAC. Different targets are studied and exploited to induce an antitumor immune response in PDAC patients. In recent times, site-specific delivery of immunotherapeutics also gained attention among researchers to effectively treat PDAC. In the present review, existing immunotherapies for PDAC treatment along with their limitations are addressed in detail. The review also includes the pathophysiology, traditional strategies and significance of targeted immunotherapies to combat PDAC effectively. Separately, the identification of ideal targets for the targeted therapy of PDAC is also reviewed exhaustively. Additionally, the review also addresses the applications of targeted immunotherapeutics like checkpoint inhibitors, adoptive T-cell therapy etc.
Collapse
|
21
|
Handlos Grauslund J, Holmström MO, Jørgensen NG, Klausen U, Weis-Banke SE, El Fassi D, Schöllkopf C, Clausen MB, Gjerdrum LMR, Breinholt MF, Kjeldsen JW, Hansen M, Koschmieder S, Chatain N, Novotny GW, Petersen J, Kjær L, Skov V, Met Ö, Svane IM, Hasselbalch HC, Andersen MH. Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With CALR-Mutant Chronic Myeloproliferative Neoplasms. Front Oncol 2021; 11:637420. [PMID: 33718228 PMCID: PMC7952976 DOI: 10.3389/fonc.2021.637420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background The calreticulin (CALR) exon 9 mutations that are identified in 20% of patients with Philadelphia chromosome negative chronic myeloproliferative neoplasms (MPN) generate immunogenic antigens. Thus, therapeutic cancer vaccination against mutant CALR could be a new treatment modality in CALR-mutant MPN. Methods The safety and efficacy of vaccination with the peptide CALRLong36 derived from the CALR exon 9 mutations was tested in a phase I clinical vaccination trial with montanide as adjuvant. Ten patients with CALRmut MPN were included in the trial and received 15 vaccines over the course of one year. The primary end point was evaluation of safety and toxicity of the vaccine. Secondary endpoint was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT03566446). Results Patients had a median age of 59.5 years and a median disease duration of 6.5 years. All patients received the intended 15 vaccines, and the vaccines were deemed safe and tolerable as only two grade three AE were detected, and none of these were considered to be related to the vaccine. A decline in platelet counts relative to the platelets counts at baseline was detected during the first 100 days, however this did not translate into neither a clinical nor a molecular response in any of the patients. Immunomonitoring revealed that four of 10 patients had an in vitro interferon (IFN)-γ ELISPOT response to the CALRLong36 peptide at baseline, and four additional patients displayed a response in ELISPOT upon receiving three or more vaccines. The amplitude of the immune response increased during the entire vaccination schedule for patients with essential thrombocythemia. In contrast, the immune response in patients with primary myelofibrosis did not increase after three vaccines. Conclusion Therapeutic cancer vaccination with peptide vaccines derived from mutant CALR with montanide as an adjuvant, is safe and tolerable. The vaccines did not induce any clinical responses. However, the majority of patients displayed a marked T-cell response to the vaccine upon completion of the trial. This suggests that vaccines directed against mutant CALR may be used with other cancer therapeutic modalities to enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nicolai Grønne Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Claudia Schöllkopf
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Mette Borg Clausen
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Guy Wayne Novotny
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Jesper Petersen
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
22
|
Principe DR, Korc M, Kamath SD, Munshi HG, Rana A. Trials and tribulations of pancreatic cancer immunotherapy. Cancer Lett 2021; 504:1-14. [PMID: 33549709 DOI: 10.1016/j.canlet.2021.01.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/09/2023]
Abstract
Immunotherapy has revolutionized cancer treatment in the last decade, and strategies to re-activate cytotoxic immunity are now standard of care in several malignancies. Despite rapid advances in immunotherapy for most solid cancers, progress in immunotherapy against pancreatic ductal adenocarcinoma (PDAC) has been exceptionally difficult. This is true for several approaches, most notably immune checkpoint inhibitors (ICIs) and GM-CSF cell-based vaccines (GVAX). Though many immunotherapies have been explored in clinical trials, few have shown significant therapeutic efficacy. Further, many have shown high rates of serious adverse effects and dose-limiting toxicities, and to date, immunotherapy regimens have not been successfully implemented in PDAC. Here, we provide a comprehensive summary of the key clinical trials exploring immunotherapy in PDAC, followed by a brief discussion of emerging molecular mechanisms that may explain the relative failure of immunotherapy in pancreas cancer thus far.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
23
|
Khalili JS, Hanson RW, Szallasi Z. In silico prediction of tumor antigens derived from functional missense mutations of the cancer gene census. Oncoimmunology 2021; 1:1281-1289. [PMID: 23243591 PMCID: PMC3518500 DOI: 10.4161/onci.21511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antigen-specific immune responses against peptides derived from missense gene mutations have been identified in multiple cancers. The application of personalized peptide vaccines based on the tumor mutation repertoire of each cancer patient is a near-term clinical reality. These peptides can be identified for pre-validation by leveraging the results of massive gene sequencing efforts in cancer. In this study, we utilized NetMHC 3.2 to predict nanomolar peptide binding affinity to 57 human HLA-A and B alleles. All peptides were derived from 5,685 missense mutations in 312 genes annotated as functionally relevant in the Cancer Genome Project. Of the 26,672,189 potential 8-11 mer peptide-HLA pairs evaluated, 0.4% (127,800) display binding affinities < 50 nM, predicting high affinity interactions. These peptides can be segregated into two groups based on the binding affinity to HLA proteins relative to germline-encoded sequences: peptides for which both the mutant and wild-type forms are high affinity binders, and peptides for which only the mutant form is a high affinity binder. Current evidence directs the attention to mutations that increase HLA binding affinity, as compared with cognate wild-type peptide sequences, as these potentially are more relevant for vaccine development from a clinical perspective. Our analysis generated a database including all predicted HLA binding peptides and the corresponding change in binding affinity as a result of point mutations. Our study constitutes a broad foundation for the development of personalized peptide vaccines that hone-in on functionally relevant targets in multiple cancers in individuals with diverse HLA haplotypes.
Collapse
Affiliation(s)
- Jahan S Khalili
- Departments of Melanoma Medical Oncology and Systems Biology; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | | | | |
Collapse
|
24
|
Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell 2020; 38:788-802. [PMID: 32946773 PMCID: PMC7738380 DOI: 10.1016/j.ccell.2020.08.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most immune-resistant tumor types. Its unique genomic landscape shaped by oncogenic drivers promotes immune suppression from the earliest stages of tumor inception to subvert adaptive T cell immunity. Single-agent immune modulators have thus far proven clinically ineffective, and multi-modal therapies targeting mechanisms of immunotherapy resistance are likely needed. Here, we review novel immunotherapy strategies currently under investigation to (1) confer antigen specificity, (2) enhance T cell effector function, and (3) neutralize immunosuppressive elements within the tumor microenvironment that may be rationally combined to untangle the web of immune resistance in PDA and other tumors.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. mark.o'
| |
Collapse
|
25
|
Holmström MO, Andersen MH. Healthy Donors Harbor Memory T Cell Responses to RAS Neo-Antigens. Cancers (Basel) 2020; 12:cancers12103045. [PMID: 33086698 PMCID: PMC7589254 DOI: 10.3390/cancers12103045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/22/2022] Open
Abstract
The RAS mutations are the most frequently occurring somatic mutations in humans, and several studies have established that T cells from patients with RAS-mutant cancer recognize and kill RAS-mutant cells. Enhancing the T cell response via therapeutic cancer vaccination against mutant RAS results in a clinical benefit to patients; thus, T cells specific to RAS mutations are effective at battling cancer. As the theory of cancer immuno-editing indicates that healthy donors may clear malignantly transformed cells via immune-mediated killing, and since T cells have been shown to recognize RAS-mutant cancer cells, we investigated whether healthy donors harbor T-cell responses specific to mutant RAS. We identified strong and frequent responses against several epitopes derived from the RAS codon 12 and codon 13 mutations. Some healthy donors demonstrated a response to several mutant epitopes, and some, but not all, exhibited cross-reactivity to the wild-type RAS epitope. In addition, several T cell responses were identified against mutant RAS epitopes in healthy donors directly ex vivo. Clones against mutant RAS epitopes were established from healthy donors, and several of these clones did not cross-react with the wild-type epitope. Finally, CD45RO+ memory T cells from healthy donors demonstrated a strong response to several mutant RAS epitopes. Taken together, these data suggest that the immune system in healthy donors spontaneously clears malignantly transformed RAS-mutant cells, and the immune system consequently generates T-cell memory against the mutations.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, DK-2730 Herlev, Denmark;
- Correspondence: ; Tel.: +45-38-682-602
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, DK-2730 Herlev, Denmark;
- Institute for Immunology and Microbiology, Copenhagen University, DK-2200 Copenhagen, Denmark
| |
Collapse
|
26
|
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020; 17:527-540. [PMID: 32398706 PMCID: PMC7442729 DOI: 10.1038/s41571-020-0363-5] [Citation(s) in RCA: 631] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumours despite the use of multi-agent conventional chemotherapy regimens. Such poor outcomes have fuelled ongoing efforts to exploit the tumour microenvironment (TME) for therapy, but strategies aimed at deconstructing the surrounding desmoplastic stroma and targeting the immunosuppressive pathways have largely failed. In fact, evidence has now shown that the stroma is multi-faceted, which illustrates the complexity of exploring features of the TME as isolated targets. In this Review, we describe ways in which the PDAC microenvironment has been targeted and note the current understanding of the clinical outcomes that have unexpectedly contradicted preclinical observations. We also consider the more sophisticated therapeutic strategies under active investigation - multi-modal treatment approaches and exploitation of biologically integrated targets - which aim to remodel the TME against PDAC.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Li QH, Wang YZ, Tu J, Liu CW, Yuan YJ, Lin R, He WL, Cai SR, He YL, Ye JN. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep (Oxf) 2020; 8:179-191. [PMID: 32665850 PMCID: PMC7333932 DOI: 10.1093/gastro/goaa026] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cetuximab and panitumumab, as the highly effective antibodies targeting epidermal growth factor receptor (EGFR), have clinical activity in the patients with metastatic colorectal cancer (mCRC). These agents have good curative efficacy, but drug resistance also exists at the same time. The effects of KRAS, NRAS, and BRAF mutations and HER2 amplification on the treatment of refractory mCRC have been elucidated and the corresponding countermeasures have been put forward. However, the changes in EGFR and its ligands, the mutations or amplifications of PIK3CA, PTEN, TP53, MET, HER3, IRS2, FGFR1, and MAP2K1, the overexpression of insulin growth factor-1, the low expression of Bcl-2-interacting mediator of cell death, mismatch repair-deficient, and epigenetic instability may also lead to drug resistance in mCRC. Although the emergence of drug resistance has genetic or epigenetic heterogeneity, most of these molecular changes relating to it are focused on the key signaling pathways, such as the RAS/RAF/mitogen-activated protein kinase or phosphatidylinositol 3-kinase/Akt/mammalian target of the rapamycin pathway. Accordingly, numerous efforts to target these signaling pathways and develop the novel therapeutic regimens have been carried out. Herein, we have reviewed the underlying mechanisms of the resistance to anti-EGFR therapy and the possible implications in clinical practice.
Collapse
Affiliation(s)
- Qing-Hai Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ying-Zhao Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jian Tu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Chu-Wei Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yu-Jie Yuan
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Run Lin
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Wei-Ling He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shi-Rong Cai
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yu-Long He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jin-Ning Ye
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
28
|
Mucciolo G, Roux C, Scagliotti A, Brugiapaglia S, Novelli F, Cappello P. The dark side of immunotherapy: pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:491-520. [PMID: 35582441 PMCID: PMC8992483 DOI: 10.20517/cdr.2020.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Since the journal Science deemed cancer immunotherapy as the "breakthrough of the year" in 2014, there has been an explosion of clinical trials involving immunotherapeutic approaches that, in the last decade - thanks also to the renaissance of the immunosurveillance theory (renamed the three Es theory) - have been continuously and successfully developed. In the latest update of the development of the immuno-oncology drug pipeline, published last November by Nature Review Drug Discovery, it was clearly reported that the immunoactive drugs under study almost doubled in just two years. Of the different classes of passive and active immunotherapies, "cell therapy" is the fastest growing. The aim of this review is to discuss the preclinical and clinical studies that have focused on different immuno-oncology approaches applied to pancreatic cancer, which we assign to the "dark side" of immunotherapy, in the sense that it represents one of the solid tumors showing less response to this type of therapeutic strategy.
Collapse
Affiliation(s)
- Gianluca Mucciolo
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Cecilia Roux
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Alessandro Scagliotti
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Silvia Brugiapaglia
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| |
Collapse
|
29
|
Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis E, Ziogas D, Psyrri A, Karamouzis MV. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat Rev 2020; 86:102016. [PMID: 32247999 DOI: 10.1016/j.ctrv.2020.102016] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic adenocarcinoma (PAC) is associated with extremely poor prognosis and remains a lethal malignancy. The main cure for PAC is surgical resection. Further treatment modalities, such as surgery, chemotherapy, radiotherapy and other locoregional therapies provide low survival rates. Currently, many clinical trials seek to assess the efficacy of immunotherapeutic strategies in PAC, including immune checkpoint inhibitors, cancer vaccines, adoptive cell transfer, combinations with other immunotherapeutic agents, chemoradiotherapy or other molecularly targeted agents; however, none of these studies have shown practice changing results. There seems to be a synergistic effect with increased response rates when a combinatorial approach of immunotherapy in conjunction with other modalities is being exploited. In this review, we illustrate the current role of immunotherapy in PAC.
Collapse
Affiliation(s)
- Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Christo Kole
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Panagiota Economopoulou
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Gkotsis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Amanda Psyrri
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Cheng H, Luo G, Jin K, Fan Z, Huang Q, Gong Y, Xu J, Yu X, Liu C. Kras mutation correlating with circulating regulatory T cells predicts the prognosis of advanced pancreatic cancer patients. Cancer Med 2020; 9:2153-2159. [PMID: 32017404 PMCID: PMC7064028 DOI: 10.1002/cam4.2895] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Kras mutation and abnormal immune status are associated with pancreatic cancer development and progression. In this study, we evaluated the Kras mutation status in circulating tumor DNA and circulating T cell subsets in a cohort of advanced pancreatic cancer patients. Methods Samples were retrospectively obtained from a series of 210 pathological advanced pancreatic cancer patients between 2012 and 2014. The Kras mutation status was detected in cell‐free circulating tumor DNA (ctDNA) by ddPCR and circulating T cell subsets were analyzed by flow cytometry. Results Univariate analysis found that tumor node metastasis (TNM) stage, chemotherapy, circulating regulatory T cells, CA19‐9 levels, CA125 levels, and KrasG12D and KrasG12V mutations were significantly related to overall survival in advanced pancreatic cancer patients. Multivariate analysis identified that TNM stage (P = .03, HR:1.422), Tregs (P = .004, HR:1.522), CA19‐9 levels (P = .009, HR:1.488), KrasG12D mutation (P = .044, HR:1.353), and KrasG12V mutation (P = .001, HR:1.667) were independent prognostic markers. Furthermore, we found that KrasG12V mutation in ctDNA was correlated with high circulating proportion of Tregs, and patients with both KrasG12V mutation and high levels of Tregs were associated with extremely poor survival in advanced pancreatic cancer. Conclusion KrasG12V mutation was associated with high circulating regulatory T cell levels, and both of them predicted worse prognosis in advanced pancreatic cancer patients.
Collapse
Affiliation(s)
- He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| |
Collapse
|
31
|
Zeng W, Horrocks KJ, Tan ACL, Wong CY, Chua BY, Jackson DC. Modular platforms for the assembly of self-adjuvanting lipopeptide-based vaccines for use in an out-bred population. Vaccine 2020; 38:597-607. [PMID: 31740096 DOI: 10.1016/j.vaccine.2019.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 01/08/2023]
Abstract
To facilitate the preparation of synthetic epitope-based self-adjuvanting vaccines capable of eliciting antibody responses in an out-bred population, we have developed two modular approaches. In the first, the Toll-like receptor 2 agonist Pam2Cys and the target antibody epitope are assembled as a module which is then coupled to a carrier protein as a source of antigens to stimulate T cell help. A vaccine candidate made in this way was shown to induce a specific immune response in four different strains of mice without the need for extraneous adjuvant. In the second approach, three vaccine components in the form of a target antibody epitope, a T helper cell epitope and Pam2Cys, were prepared separately each carrying different chemical functional groups. By using pH-mediated chemo-selective ligations, the vaccine was assembled in a one-pot procedure. Using this approach, a number of vaccine constructs including a lipopeptide-protein conjugate were made and also shown to elicit immune responses in different strains of mice. These two modular approaches thus constitute a powerful platform for the assembly of self-adjuvanting lipopeptide-based vaccines that can potentially be used to induce robust antibody responses in an outbred population. Finally, our study of the impact of chemical linkages on immunogenicity of a lipopeptide vaccine shows that a stable covalent bond between Pam2Cys and a B cell epitope, rather than between Pam2Cys and T helper cell epitope is critical for the induction of antibody responses and biological efficacy, indicating that Pam2Cys functions not only as an adjuvant but also participates in processing and presentation of the immunogen.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | - Kylie J Horrocks
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Amabel C L Tan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
32
|
Abstract
After more than a century of efforts to establish cancer immunotherapy in clinical practice, the advent of checkpoint inhibition (CPI) therapy was a critical breakthrough toward this direction (Hodi et al. in Cell Rep 13(2):412-424, 2010; Wolchok et al. in N Engl J Med 369(2):122-133, 2013; Herbst et al. in Nature 515(7528):563-567, 2014; Tumeh et al. in Nature 515(7528):568-571, 2014). Further, CPIs shifted the focus from long studied shared tumor-associated antigens to mutated ones. As cancer is caused by mutations in somatic cells, the concept to utilize these correlates of 'foreignness' to enable recognition and lysis of the cancer cell by T cell immunity seems an obvious thing to do.
Collapse
|
33
|
Abstract
T cells are key effectors of anticancer immunity. They are capable of distinguishing tumor cells from normal ones by recognizing major histocompatibility complex-bound cancer-specific peptides. Accumulating evidence suggests that peptides associated with T cell-mediated tumor rejection arise predominantly from somatically mutated proteins and are unique to every patient's tumor. Knowledge of an individual's cancer mutanome (the entirety of cancer mutations) allows harnessing this enormous tumor cell-specific repertoire of highly immunogenic antigens for individualized cancer vaccines. This review outlines the preclinical and clinical state of individualized cancer vaccine development and the challenges ahead.
Collapse
Affiliation(s)
- Mathias Vormehr
- Biopharmaceutical New Technologies (BioNTech) Corporation, 55131 Mainz, Germany; , .,University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, 55131 Mainz, Germany; ,
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, 55131 Mainz, Germany; , .,University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; .,TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, 55131 Mainz, Germany
| |
Collapse
|
34
|
Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019; 9:7807-7825. [PMID: 31695802 PMCID: PMC6831480 DOI: 10.7150/thno.37194] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peptide-based materials hold great promise as immunotherapeutic agents for the treatment of many malignant cancers. Extensive studies have focused on the development of peptide-based cancer vaccines and delivery systems by mimicking the functional domains of proteins with highly specific immuno-regulatory functions or tumor cells fate controls. However, a systemic understanding of the interactions between the different peptides and immune systems remains unknown. This review describes the role of peptides in regulating the functions of the innate and adaptive immune systems and provides a comprehensive focus on the design, categories, and applications of peptide-based cancer vaccines. By elucidating the impacts of peptide length and formulations on their immunogenicity, peptide-based immunomodulating agents can be better utilized and dramatic breakthroughs may also be realized. Moreover, some critical challenges for translating peptides into large-scale synthesis, safe delivery, and efficient cancer immunotherapy are posed to improve the next-generation peptide-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
35
|
Perkhofer L, Beutel AK, Ettrich TJ. Immunotherapy: Pancreatic Cancer and Extrahepatic Biliary Tract Cancer. Visc Med 2019; 35:28-37. [PMID: 31312647 DOI: 10.1159/000497291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and extrahepatic biliary tract cancer (BTC) are among the malignancies with the highest morbidity and mortality. Despite increasing knowledge on biology and novel therapies, outcome remains poor in these patients. Recent progress in immunotherapies created new hopes in the treatment of PDAC and extrahepatic BTC. Several trials tested immunotherapies in various therapeutic situations as monotherapies or in combinations. Although responses were seen in some of the trials, the value of immunotherapy in PDAC and extrahepatic BTC remains unclear in the current situation, especially regarding the complex biological characteristics with a high stroma component, intrinsic resistance mechanisms and an immunosuppressive, hypoxic microenvironment. These major hurdles have to be taken into account and overcome if immunotherapies should be successful in these tumor entities. Thereby, combinational approaches that allow on the one hand targeted therapy and on the other restore or boost the function of immune cells are promising.
Collapse
Affiliation(s)
- Lukas Perkhofer
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | - Alica K Beutel
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | - Thomas J Ettrich
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
36
|
Cheng H, Fan K, Luo G, Fan Z, Yang C, Huang Q, Jin K, Xu J, Yu X, Liu C. Kras G12D mutation contributes to regulatory T cell conversion through activation of the MEK/ERK pathway in pancreatic cancer. Cancer Lett 2019; 446:103-111. [PMID: 30664964 DOI: 10.1016/j.canlet.2019.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/04/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
Abstract
Genetic alterations have been attributed to the abnormal immune microenvironment in cancer. However, the relationship between the KrasG12D mutation and regulatory T cells (Tregs) in pancreatic cancer remains unclear. In this study, we found that KrasG12D mutation status as determined by ddPCR correlated with high levels of Treg infiltration in resectable pancreatic cancer tissues. Compared to wild-type tumour cells, tumours cells with the KrasG12D mutation were associated with higher levels of Tregs, and knockout of the KrasG12D mutation reversed this effect. In addition, overexpression of the KrasG12D mutation in wild-type Kras tumour cells resulted in conversion of CD4+CD25- T cells into Tregs. We also found that in tumour cells, the KrasG12D mutation activated the MEK/ERK pathway, thereby up-regulating the levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), which induced Treg conversion. In summary, KrasG12D mutation plays a critical role in Treg conversion and contributes to an immunosuppressive tumour microenvironment in pancreatic cancer. These results provide new insights into the relationship between gene mutation and immune escape.
Collapse
Affiliation(s)
- He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China.
| |
Collapse
|
37
|
Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J Gastroenterol 2018; 24:5418-5432. [PMID: 30622371 PMCID: PMC6319136 DOI: 10.3748/wjg.v24.i48.5418] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Therapeutic options for the treatment of colorectal cancer (CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hyper-mutated tumors suggests a permanent role of immune therapy in the clinical management of CRC. Substantial improvement in treatment outcome could be achieved by development of efficient patient-individual CRC vaccination strategies. This mini-review summarizes the current knowledge on the two general classes of targets: tumor-associated antigens (TAAs) and tumor-specific antigens. TAAs like carcinoembryonic antigen and melanoma associated antigen are present in and shared by a subgroup of patients and a variety of clinical studies examined the efficacy of different TAA-derived peptide vaccines. Combinations of several TAAs as the next step and the development of personalized TAA-based peptide vaccines are discussed. Improvements of peptide-based vaccines achievable by adjuvants and immune-stimulatory chemotherapeutics are highlighted. Finally, we sum up clinical studies using tumor-specific antigens - in CRC almost exclusively neoantigens - which revealed promising results; particularly no severe adverse events were reported so far. Critical progress for clinical outcomes can be expected by individualizing neoantigen-based peptide vaccines and combining them with immune-stimulatory chemotherapeutics and immune checkpoint inhibitors. In light of these data and latest developments, truly personalized neoantigen-based peptide vaccines can be expected to fulfill modern precision medicine’s requirements and will manifest as treatment pillar for routine clinical management of CRC.
Collapse
Affiliation(s)
- Sandra Wagner
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| | - Christina S Mullins
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| | - Michael Linnebacher
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| |
Collapse
|
38
|
Wang HC, Hung WC, Chen LT, Pan MR. From Friend to Enemy: Dissecting the Functional Alteration of Immunoregulatory Components during Pancreatic Tumorigenesis. Int J Mol Sci 2018; 19:E3584. [PMID: 30428588 PMCID: PMC6274888 DOI: 10.3390/ijms19113584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of approximately 8%. More than 80% of patients are diagnosed at an unresectable stage due to metastases or local extension. Immune system reactivation in patients by immunotherapy may eliminate tumor cells and is a new strategy for cancer treatment. The anti-CTLA-4 antibody ipilimumab and anti-PD-1 antibodies pembrolizumab and nivolumab have been approved for cancer therapy in different countries. However, the results of immunotherapy on PDAC are unsatisfactory. The low response rate may be due to poor immunogenicity with low tumor mutational burden in pancreatic cancer cells and desmoplasia that prevents the accumulation of immune cells in tumors. The immunosuppressive tumor microenvironment in PDAC is important in tumor progression and treatment resistance. Switching from an immune tolerance to immune activation status is crucial to overcome the inability of self-defense in cancer. Therefore, thoroughly elucidation of the roles of various immune-related factors, tumor microenvironment, and tumor cells in the development of PDAC may provide appropriate direction to target inflammatory pathway activation as a new therapeutic strategy for preventing and treating this cancer.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
39
|
Tanyi JL, George E. Personalized vaccination against ovarian cancer: what are the possibilities? Expert Rev Vaccines 2018; 17:955-958. [PMID: 30362844 DOI: 10.1080/14760584.2018.1541743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Janos L Tanyi
- a Department of Obstetrics and Gynecology , University of Pennsylvania Perelman School of Medicine , Philadelphia , USA
| | - Erin George
- a Department of Obstetrics and Gynecology , University of Pennsylvania Perelman School of Medicine , Philadelphia , USA
| |
Collapse
|
40
|
Foucher ED, Ghigo C, Chouaib S, Galon J, Iovanna J, Olive D. Pancreatic Ductal Adenocarcinoma: A Strong Imbalance of Good and Bad Immunological Cops in the Tumor Microenvironment. Front Immunol 2018; 9:1044. [PMID: 29868007 PMCID: PMC5960705 DOI: 10.3389/fimmu.2018.01044] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers with very few available treatments. For many decades, gemcitabine was the only treatment for patients with PDAC. A recent attempt to improve patient survival by combining this chemotherapy with FOLFIRINOX and nab-paclitaxel failed and instead resulted in increased toxicity. Novel therapies are urgently required to improve PDAC patient survival. New treatments in other cancers such as melanoma, non-small-cell lung cancer, and renal cancer have emerged, based on immunotherapy targeting the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 or programmed death 1 ligand. However, the first clinical trials using such immune checkpoint inhibitors in PDAC have had limited success. Resistance to immunotherapy in PDAC remains unclear but could be due to tissue components (cancer-associated fibroblasts, desmoplasia, hypoxia) and to the imbalance between immunosuppressive and effector immune populations in the tumor microenvironment. In this review, we analyzed the presence of “good and bad immunological cops” in PDAC and discussed the significance of changes in their balance.
Collapse
Affiliation(s)
- Etienne D Foucher
- Team Immunity and Cancer, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Clément Ghigo
- Team Cellular Stress, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Salem Chouaib
- INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par La Ligue Contre Le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jérôme Galon
- Laboratory of Integrative Cancer Immunology, INSERM, UMRS1138, Paris, France
| | - Juan Iovanna
- Team Cellular Stress, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
41
|
Hos BJ, Tondini E, van Kasteren SI, Ossendorp F. Approaches to Improve Chemically Defined Synthetic Peptide Vaccines. Front Immunol 2018; 9:884. [PMID: 29755468 PMCID: PMC5932164 DOI: 10.3389/fimmu.2018.00884] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Progress made in peptide-based vaccinations to induce T-cell-dependent immune responses against cancer has invigorated the search for optimal vaccine modalities. Design of new vaccine strategies intrinsically depends on the knowledge of antigen handling and optimal epitope presentation in both major histocompatibility complex class I and -II molecules by professional antigen-presenting cells to induce robust CD8 and CD4 T-cell responses. Although there is a steady increase in the understanding of the underlying mechanisms that bridges innate and adaptive immunology, many questions remain to be answered. Moreover, we are in the early stage of exploiting this knowledge to clinical advantage. Several adaptations of peptide-based vaccines like peptide-adjuvant conjugates have been explored and showed beneficial outcomes in preclinical models; but in the clinical trials conducted so far, mixed results were obtained. A major limiting factor to unravel antigen handling mechanistically is the lack of tools to efficiently track peptide vaccines at the molecular and (sub)cellular level. In this mini-review, we will discuss options to develop molecular tools for improving, as well as studying, peptide-based vaccines.
Collapse
Affiliation(s)
- Brett J Hos
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Elena Tondini
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, The Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
42
|
Li W, Song X, Yu H, Zhang M, Li F, Cao C, Jiang Q. Dendritic cell-based cancer immunotherapy for pancreatic cancer. Arab J Gastroenterol 2018. [PMID: 29526540 DOI: 10.1016/j.ajg.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is a lethal disease and remains one of the most resistant cancers to traditional therapies. New therapeutic modalities are urgently needed, particularly immunotherapy, which has shown promise in numerous animal model studies. Dendritic cell (DC)-based immunotherapy has been used in clinical trials for various cancers, including PC, because DCs are the most potent antigen-presenting cell (APC), which are capable of priming naive T cells and stimulating memory T cells to generate antigen-specific responses. In this paper, we review the preclinical and clinical efforts towards the application of DCs for PC.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Xiujun Song
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Huijie Yu
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Manze Zhang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Fengsheng Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Qisheng Jiang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China.
| |
Collapse
|
43
|
Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners. Cancers (Basel) 2018; 10:cancers10020051. [PMID: 29462900 PMCID: PMC5836083 DOI: 10.3390/cancers10020051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC). Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1), a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC)-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells), which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors) that could be effective in amplifying the response induced by the immune vaccination in PDA.
Collapse
|
44
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a devastating 5-year overall survival of only approximately 7%. Although just 4% of all malignant diseases are accounted to PDAC, it will become the second leading cause of cancer-related deaths before 2030. Immunotherapy has proven to be a promising therapeutic option in various malignancies such as melanoma, non-small cell lung cancer (NSCLC), microsatellite instability-high gastrointestinal cancer, urinary tract cancer, kidney cancer, and others. In this review, we summarize recent findings about immunological aspects of PDAC with the focus on the proposed model of the "cancer immunity cycle". By this model, a deeper understanding of the underlying mechanism in achieving a T-cell response against cancer cells is provided. There is currently great interest in the field around designing novel immunotherapy combination studies for PDAC based on a sound understanding of the underlying immunobiology.
Collapse
|
45
|
Skelton RA, Javed A, Zheng L, He J. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors. J Surg Oncol 2017. [PMID: 28628715 DOI: 10.1002/jso.24642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy has become a new modality of cancer treatment, but has had a limited success in treating PDAC. A combination approach to immunotherapy, using both immune checkpoint inhibitors and immune activating agonists, is needed, as PDAC does not respond to single-agent checkpoint inhibitors. Studies have also supported using vaccine-based therapies to prime the tumor microenvironment of PDAC with effector T-cells. Other therapeutic strategies including epigenetic agents, stroma modulators, radiotherapy, and T-cell transfer therapies may also prime the tumor microenvironment to overcome resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Richard A Skelton
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ammar Javed
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jin He
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
46
|
Abstract
The study of oncogenic RAS mutations has led to crucial discoveries regarding cancer molecular biology and behavior and has been integral in shaping the era of targeted cancer therapy. RAS mutations are one of the most common oncogenic drivers in human cancer, and intense efforts to find a clinically effective inhibitor are ongoing. Despite these efforts, targeting RAS mutations has remained elusive, so much so that some have termed oncogenic RAS mutations as "undruggable." In this review, we will summarize current understanding of RAS biology, explore strategies to inhibit RAS oncoproteins and its downstream effectors, and discuss recently described complexities that have shed new light on this pursuit.
Collapse
|
47
|
Thind K, Padrnos LJ, Ramanathan RK, Borad MJ. Immunotherapy in pancreatic cancer treatment: a new frontier. Therap Adv Gastroenterol 2017; 10:168-194. [PMID: 28286568 PMCID: PMC5330603 DOI: 10.1177/1756283x16667909] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer is a highly aggressive and lethal cancer characterized by high invasiveness, local and extensive dissemination at time of diagnosis and resistance to treatment. Few therapies have shown efficacy in the past and even standard of care therapies yield only modest improvements in the mortality of patients with advanced or metastatic disease. Efforts have been undertaken to study the pancreatic tumor microenvironment and have established its complex and immunosuppressive nature which could explain the high resistance to chemotherapy. Novel therapies targeting the tumor microenvironment with an aim to decrease this resistance, improve immune tolerance and increase the efficacy of the current treatment have shown some promising preliminary results in preclinical and clinical trials. We review the current advances in the field of immunotherapy and their effectiveness as a potential treatment strategy in the pancreatic cancer.
Collapse
Affiliation(s)
- Komal Thind
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| | - Leslie J. Padrnos
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Mitesh J. Borad
- Division of Hematology/Oncology, Mayo Clinic Arizona, 5777 E. Mayo Boulevard, Phoenix, AZ 85054, USA
| |
Collapse
|
48
|
Foley K, Kim V, Jaffee E, Zheng L. Current progress in immunotherapy for pancreatic cancer. Cancer Lett 2016; 381:244-51. [PMID: 26723878 PMCID: PMC4919239 DOI: 10.1016/j.canlet.2015.12.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer remains one of the most lethal cancers with few treatment options. Immune-based strategies to treat pancreatic cancer, such as immune checkpoint inhibitors, therapeutic vaccines, and combination immunotherapies, are showing promise where other approaches have failed. Immune checkpoint inhibitors, including anti-CTLA4, anti-PD-1, and anti-PD-L1 antibodies, are effective as single agents in immune sensitive cancers like melanoma, but lack efficacy in immune insensitive cancers including pancreatic cancer. However, these inhibitors are showing clinical activity, even in traditionally non-immunogenic cancers, when combined with other interventions, including chemotherapy, radiation therapy, and therapeutic vaccines. Therapeutic vaccines given together with immune modulating agents are of particular interest because vaccines are the most efficient way to induce effective anti-tumor T cell responses, which is required for immunotherapies to be effective. In pancreatic cancer, early studies suggest that vaccines can induce T cells that have the potential to recognize and kill pancreatic cancer cells, but the tumor microenvironment inhibits effective T cell trafficking and function. While progress has been made in the development of immunotherapies for pancreatic cancer over the last several years, additional trials are needed to better understand the signals within the tumor microenvironment that are formidable barriers to T cell infiltration and function. Additionally, as more pancreatic specific antigens are identified, immunotherapies will continue to be refined to provide the most significant clinical benefit.
Collapse
Affiliation(s)
- Kelly Foley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Victoria Kim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
49
|
Friedrich T, Leong S, Lieu CH. Beyond RAS and BRAF: a target rich disease that is ripe for picking. J Gastrointest Oncol 2016; 7:705-712. [PMID: 27747084 DOI: 10.21037/jgo.2016.06.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite numerous breakthroughs in the understanding of colorectal cancer and identification of many oncogenic mutations, the treatment of metastatic colorectal cancer remains relatively more empiric than targeted. Testing for mutations in rat sarcoma virus (RAS) and rapidly growing fibrosarcoma (RAF) are routinely performed, though identification of these mutations currently offers little more than a negative predictive marker for response to EGFR inhibitor treatment and, in the case of RAF mutation, a poor prognostic indicator. Next-generation sequencing has identified both common and rare mutations in colorectal cancer that offer options for more advanced, targeted therapy. With so much research invested in these targets, the treatment of metastatic colorectal cancer stands to become much more personalized in the near future. This review describes several of the more promising targets that are currently being investigated in advanced colorectal cancer.
Collapse
Affiliation(s)
- Tyler Friedrich
- Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado, USA
| | - Stephen Leong
- Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado, USA
| | - Christopher H Lieu
- Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
50
|
Bobisse S, Foukas PG, Coukos G, Harari A. Neoantigen-based cancer immunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:262. [PMID: 27563649 DOI: 10.21037/atm.2016.06.17] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging clinical evidence on the role of the antitumor activity of the immune system has generated great interest in immunotherapy in all cancer types. Recent clinical data clearly demonstrated that human tumor cells express antigenic peptides (epitopes) that can be recognized by autologous tumor-specific T cells and that enhancement of such immune reactivity can potentially lead to cancer control and cancer regression in patients with advanced disease. However, in most cases, it is unclear which tumor antigens (Ags) mediated cancer regression. Mounting evidence indicates that numerous endogenous mutated cancer proteins, a hallmark of tumor cells, can be processed into peptides and presented on the surface of tumor cells, leading to their immune recognition in vivo as "non-self" or foreign. Massively parallel sequencing has now overcome the challenge of rapidly identifying the comprehensive mutational spectrum of individual tumors (i.e., the "mutanome") and current technologies, as well as computational tools, have emerged that allow the identification of private epitopes derived from their mutanome and called neoantigens (neoAgs). On this basis, both CD4(+) and CD8(+) neoantigen-specific T cells have been identified in multiple human cancers and shown to be associated with a favorable clinical outcome. Notably, emerging data also indicate that neoantigen recognition represents a major factor in the activity of clinical immunotherapies. In the post-genome era, the mutanome holds promise as a long-awaited 'gold mine' for the discovery of unique cancer cell targets, which are exclusively tumor-specific and unlikely to drive immune tolerance, hence offering the chance for highly promising clinical programs of cancer immunotherapy.
Collapse
Affiliation(s)
- Sara Bobisse
- Ludwig Cancer Center and Department of Oncology, University of Lausanne, Lausanne, Switzerland;; Center of Experimental Therapeutics, University of Lausanne, Lausanne, Switzerland
| | - Periklis G Foukas
- Ludwig Cancer Center and Department of Oncology, University of Lausanne, Lausanne, Switzerland;; Center of Experimental Therapeutics, University of Lausanne, Lausanne, Switzerland;; 2nd Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - George Coukos
- Ludwig Cancer Center and Department of Oncology, University of Lausanne, Lausanne, Switzerland;; Center of Experimental Therapeutics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Cancer Center and Department of Oncology, University of Lausanne, Lausanne, Switzerland;; Center of Experimental Therapeutics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|