1
|
Jiang Z, Xie X, Li Z, Ban X, Gu Z, Tang X, Hong Y, Cheng L, Li C. Regulation of Cell Membrane Permeability Enhanced the Non-Classical Secretion of γ-Cyclodextrin Glycosyltransferase in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16307-16315. [PMID: 36524966 DOI: 10.1021/acs.jafc.2c08320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
γ-Cyclodextrin glycosyltransferase (γ-CGTase, EC 2.4.1.19) is an essential enzyme required in the production of γ-cyclodextrin, which shows huge prospects in the food, medicine, materials, and chemical industries. In this study, γ-CGTase from Bacillus sp. G-825-6 STB17 was successfully cloned and expressed in Bacillus subtilis WB600. The final extracellular activity of γ-CGTase can reach 45.34 U/mL with the deletion of the signal peptide, which was about 11.3 times of the initial level of γ-CGTase secreted by the general pathway. By monitoring the whole cultivation process, secretion was divided into two stages, which were dominated by cell membrane changes and apoptosis. The measurement of lactate dehydrogenase and the results of fluorescence microscopy demonstrated that the cell membrane permeability changed significantly in the middle stage of fermentation, proving that it played a crucial role in the non-classical secretion of γ-CGTase. Furthermore, the addition of Triton X-100, a non-ionic surfactant, remarkably enhanced the secretion level of γ-CGTase by 21.5%, which was caused by the increase in cell membrane permeability. This work is the first to obtain the extracellular expression of CGTase via the non-classical secretion pathway in B. subtilis and provides a new strategy to enhance extracellular expression by regulating the cell membranes.
Collapse
Affiliation(s)
- Zihang Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaofang Xie
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoshu Tang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
2
|
Liao C, Ayansola H, Ma Y, Ito K, Guo Y, Zhang B. Advances in Enhanced Menaquinone-7 Production From Bacillus subtilis. Front Bioeng Biotechnol 2021; 9:695526. [PMID: 34354987 PMCID: PMC8330505 DOI: 10.3389/fbioe.2021.695526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
The production of nutraceutical compounds through biosynthetic approaches has received considerable attention in recent years. For example, Menaquinone-7 (MK-7), a sub-type of Vitamin K2, biosynthesized from Bacillus subtilis (B. subtilis), proved to be more efficiently produced than the conventional chemical synthesis techniques. This is possible due to the development of B. subtilis as a chassis cell during the biosynthesis stages. Hence, it is imperative to provide insights on the B. subtilis membrane permeability modifications, biofilm reactors, and fermentation optimization as advanced techniques relevant to MK-7 production. Although the traditional gene-editing method of homologous recombination improves the biosynthetic pathway, CRISPR-Cas9 could potentially resolve the drawbacks of traditional genome editing techniques. For these reasons, future studies should explore the applications of CRISPRi (CRISPR interference) and CRISPRa (CRISPR activation) system gene-editing tools in the MK-7 anabolism pathway.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Flores-Santos JC, Moguel IS, Monteiro G, Pessoa A, Vitolo M. Improvement in extracellular secretion of recombinant L-asparaginase II by Escherichia coli BL21 (DE3) using glycine and n-dodecane. Braz J Microbiol 2021; 52:1247-1255. [PMID: 34100260 DOI: 10.1007/s42770-021-00534-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/18/2021] [Indexed: 11/28/2022] Open
Abstract
L-asparaginase II (ASNase) is the biopharmaceutical of choice for the treatment of acute lymphoblastic leukaemia. In this study, E. coli BL21 (DE3) transformed with the pET15b + asnB vector which expresses recombinant ASNase was used as a source to obtain this enzyme. The ideal conditions to produce ASNase would be a high level of secretion into the extracellular medium, which depends not only on the application of molecular biology techniques but also on the development of a strategy to modify cell permeability such as the addition of substances to the culture medium that stimulate destabilisation of structural components of the cell. Thus, the growth of E. coli BL21 (DE3) in modified Luria-Bertani broth, supplemented with 0.8% (w/v) glycine and 6% (v/v) n-dodecane, increased the total yield of ASNase by about 50% (15,108 IU L-1) and resulted in a 16-fold increase in extracellular enzymatic productivity (484 IU L-1 h-1), compared to production using the same medium without addition of these substances. Most of the enzyme (89%) was secreted into the culture medium 24 h after the induction step. This proposed approach presents a simple strategy to increase extracellular production of ASNase in E. coli.
Collapse
Affiliation(s)
- Juan Carlos Flores-Santos
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil
| | - Ignacio S Moguel
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil
| | - Gisele Monteiro
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil.
| | - Adalberto Pessoa
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil
| | - Michele Vitolo
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Bloco 16, São Paulo, SP, CEP, 580, Brazil
| |
Collapse
|
4
|
Cao J, Wu R, Dong Q, Zhao L, Cao F, Su E. Effective Release of Intracellular Enzymes by Permeating the Cell Membrane with Hydrophobic Deep Eutectic Solvents. Chembiochem 2019; 21:672-680. [DOI: 10.1002/cbic.201900502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jun Cao
- Department of Food Science and TechnologyCollege of Light Industry and Food EngineeringNanjing Forestry University Nanjing 210037 P. R. China
| | - Rong Wu
- Department of Food Science and TechnologyCollege of Light Industry and Food EngineeringNanjing Forestry University Nanjing 210037 P. R. China
| | - Qihui Dong
- Department of Food Science and TechnologyCollege of Light Industry and Food EngineeringNanjing Forestry University Nanjing 210037 P. R. China
| | - Linguo Zhao
- Co-innovation Center for the Sustainable Forestry in Southern, ChinaCollege of ForestryNanjing Forestry University Nanjing 210037 P. R. China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern, ChinaCollege of ForestryNanjing Forestry University Nanjing 210037 P. R. China
| | - Erzheng Su
- Department of Food Science and TechnologyCollege of Light Industry and Food EngineeringNanjing Forestry University Nanjing 210037 P. R. China
- Co-innovation Center for the Sustainable Forestry in Southern, ChinaCollege of ForestryNanjing Forestry University Nanjing 210037 P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
5
|
Large scale microbial cell disruption using hydrodynamic cavitation: Energy saving options. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Han X, Liu Y, Liu G, Luo J, Liu SH, Zhao W, Yin J. A Versatile Naphthalimide-Sulfonamide-Coated Tetraphenylethene: Aggregation-Induced Emission Behavior, Mechanochromism, and Tracking Glutathione in Living Cells. Chem Asian J 2019; 14:890-895. [PMID: 30702806 DOI: 10.1002/asia.201801854] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/09/2019] [Indexed: 11/07/2022]
Abstract
A tetraphenylethene (TPE) derivative substituted with a sulfonyl-based naphthalimide unit (TPE-Np) was designed and synthesized. Its optical properties in solution and in the solid state were investigated. Photophysical properties indicated that the target molecule, TPE-Np, possessed aggregation-induced emission (AIE) behavior, although the linkage between TPE and the naphthalimide unit was nonconjugated. Additionally, it exhibited an unexpected, highly reversible mechanochromism in the solid state, which was attributed to the change in manner of aggregation between crystalline and amorphous states. On the other hand, a solution of TPE-Np in a mixture of dimethyl sulfoxide/phosphate-buffered saline was capable of efficiently distinguishing glutathione (GSH) from cysteine and homocysteine in the presence of cetyltrimethylammonium bromide. Furthermore, the strategy of using poly(ethylene glycol)-polyethylenimine (PEG-PEI) nanogel as a carrier to cross-link TPE-Np to obtain a water-soluble PEG-PEI/TPE-Np nanoprobe greatly improved the biocompatibility, and this nanoprobe could be successfully applied in the visualization of GSH levels in living cells.
Collapse
Affiliation(s)
- Xie Han
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation, Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing, Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China.,The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P.R. China
| | - Yuhong Liu
- National and Local Joint Engineering Research, Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Guotao Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation, Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing, Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Jing Luo
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation, Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing, Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Wenbo Zhao
- National and Local Joint Engineering Research, Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation, Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing, Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
7
|
An effective method for extraction of glutaryl-7-aminocephalosporanic acid acylase from recombinant E. coli cells. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-013-0607-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhao HW, Lv JP, Li SR. Production of Conjugated Linoleic Acid By Whole-Cell ofLactobacillus PlantarumA6-1F. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
|
10
|
|
11
|
Quantitative lipid composition of cell envelopes of Corynebacterium glutamicum elucidated through reverse micelle extraction. Proc Natl Acad Sci U S A 2011; 108:15360-5. [PMID: 21876124 DOI: 10.1073/pnas.1112572108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells of the Corynebacterium-Nocardia-Mycobacterium group of bacteria are surrounded by an outer membrane (OM) containing mycolic acids that are covalently linked to the underlying arabinogalactan-peptidoglycan complex. This OM presumably acts as a permeability barrier that imparts high levels of intrinsic drug resistance to some members of this group, such as Mycobacterium tuberculosis, and its component lipids have been studied intensively in a qualitative manner over the years. However, the quantitative lipid composition of this membrane has remained obscure, mainly because of difficulties in isolating it without contamination from the inner cytoplasmic membrane. Here we use the extraction, with reverse surfactant micelles, of intact cells of Corynebacterium glutamicum and show that this method extracts the free OM lipids quantitatively with no contamination from lipids of the cytoplasmic membrane, such as phosphatidylglycerol. Although only small amounts of corynomycolate were esterified to arabinogalactan, a large amount of cardiolipin was present in a nonextractable form, tightly associated, possibly covalently, with the peptidoglycan-arabinogalactan complex. Furthermore, we show that the OM contains just enough lipid hydrocarbons to produce a bilayer covering the cell surface, with its inner leaflet composed mainly of the aforementioned nonextractable cardiolipin and its outer leaflet composed of trehalose dimycolates, phosphatidylinositol mannosides, and highly apolar lipids, similar to the Minnikin model of 1982. The reverse micelle extraction method is also useful for extracting proteins associated with the OM, such as porins.
Collapse
|
12
|
|
13
|
Separation and purification of lipase using reverse micellar extraction: Optimization of conditions by response surface methodology. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0091-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Advances in product release strategies and impact on bioprocess design. Trends Biotechnol 2009; 27:477-85. [DOI: 10.1016/j.tibtech.2009.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022]
|
15
|
Effect of organic solvents on cell-bound penicillin V acylase activity of Erwinia aroideae (DSMZ 30186): A permeabilization effect. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Chen RR. Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol 2007; 74:730-8. [PMID: 17221194 DOI: 10.1007/s00253-006-0811-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/14/2006] [Accepted: 12/17/2006] [Indexed: 10/23/2022]
Abstract
Nutrient uptake and waste excretion are among the many important functions of the cellular membrane. While permitting nutrients into the cell, the cellular membrane system evolves to guide against noxious agents present in the environment from entering the intracellular milieu. The semipermeable nature of the membrane is at odds with biomolecular engineers in their endeavor of using microbes as cell factory. The cellular membrane often retards the entry of substrate into the cellular systems and prevents the product from being released from the cellular system for an easy recovery. Consequently, productivities of whole-cell bioprocesses such as biocatalysis, fermentation, and bioremediations are severely compromised. For example, the rate of whole-cell biocatalysis is usually 1-2 orders of magnitude slower than that of the isolated enzymes. When product export cannot keep pace with the production rate, intracellular product accumulation quickly leads to a halt of production due to product inhibition. While permeabilization via chemical or physical treatment of cell membrane is effective in small-scale process, large-scale implementation is problematic. Molecular engineering approach recently emerged as a much better alternative. Armed with increasingly sophisticated tools, biomolecular engineers are following nature's ingenuity to derive satisfactory solutions to the permeability problem. This review highlights these exciting molecular engineering achievements.
Collapse
Affiliation(s)
- Rachel Ruizhen Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| |
Collapse
|
17
|
Cheng S, Wei D, Song Q. Extraction penicillin G acylase from Alcaligenes faecalis in recombinant Escherichia coli with cetyl-trimethylammoniumbromide. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 2006; 25:99-121. [PMID: 17156965 DOI: 10.1016/j.biotechadv.2006.10.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 10/24/2022]
Abstract
Surfactants are amphiphilic compounds which can reduce surface and interfacial tensions by accumulating at the interface of immiscible fluids and increase the solubility, mobility, bioavailability and subsequent biodegradation of hydrophobic or insoluble organic compounds. Chemically synthesized surfactants are commonly used in the petroleum, food and pharmaceutical industries as emulsifiers and wetting agents. Biosurfactants produced by some microorganisms are becoming important biotechnology products for industrial and medical applications due to their specific modes of action, low toxicity, relative ease of preparation and widespread applicability. They can be used as emulsifiers, de-emulsifiers, wetting and foaming agents, functional food ingredients and as detergents in petroleum, petrochemicals, environmental management, agrochemicals, foods and beverages, cosmetics and pharmaceuticals, and in the mining and metallurgical industries. Addition of a surfactant of chemical or biological origin accelerates or sometimes inhibits the bioremediation of pollutants. Surfactants also play an important role in enhanced oil recovery by increasing the apparent solubility of petroleum components and effectively reducing the interfacial tensions of oil and water in situ. However, the effects of surfactants on bioremediation cannot be predicted in the absence of empirical evidence because surfactants sometimes stimulate bioremediation and sometimes inhibit it. For medical applications, biosurfactants are useful as antimicrobial agents and immunomodulatory molecules. Beneficial applications of chemical surfactants and biosurfactants in various industries are discussed in this review.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
19
|
Manocha B, Gaikar VG. Permeabilization ofAspergillus nigerby Reverse Micellar Solutions and Simultaneous Purification of Catalase. SEP SCI TECHNOL 2006. [DOI: 10.1080/01496390600894863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Alakomi HL, Paananen A, Suihko ML, Helander IM, Saarela M. Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration. Appl Environ Microbiol 2006; 72:4695-703. [PMID: 16820461 PMCID: PMC1489302 DOI: 10.1128/aem.00142-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria play an important role in the formation and stabilization of biofilm structures on stone surfaces. Therefore, the control of growth of gram-negative bacteria offers a way to diminish biodeterioration of stone materials. The effect of potential permeabilizers on the outer membrane (OM) properties of gram-negative bacteria was investigated and further characterized. In addition, efficacy of the agents in enhancing the activity of a biocide (benzalkonium chloride) was assessed. EDTA, polyethylenimine (PEI), and succimer (meso-2,3-dimercaptosuccinic) were shown to be efficient permeabilizers of the members of Pseudomonas and Stenotrophomonas genera, as indicated by an increase in the uptake of a hydrophobic probe (1-N-phenylnaphthylamine) and sensitization to hydrophobic antibiotics. Visualization of Pseudomonas cells treated with EDTA or PEI by atomic force microscopy revealed damage in the outer membrane structure. PEI especially increased the surface area and bulges of the cells. Topographic images of EDTA-treated cells were compatible with events assigned for the effect of EDTA on outer membranes, i.e., release of lipopolysaccharide and disintegration of OM structure. In addition, the effect of EDTA treatment was visualized in phase-contrast images as large areas with varying hydrophilicity on cell surfaces. In liquid culture tests, EDTA and PEI supplementation enhanced the activity of benzalkonium chloride toward the target strains. Use of permeabilizers in biocide formulations would enable the use of decreased concentrations of the active biocide ingredient, thereby providing environmentally friendlier products.
Collapse
Affiliation(s)
- H-L Alakomi
- Biotechnology, VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | | | | | | | | |
Collapse
|
21
|
Cheng S, Wei D, Song Q, Zhao X. Immobilization of permeabilized whole cell penicillin G acylase from Alcaligenes faecalis using pore matrix crosslinked with glutaraldehyde. Biotechnol Lett 2006; 28:1129-33. [PMID: 16799762 DOI: 10.1007/s10529-006-9067-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/31/2006] [Indexed: 11/26/2022]
Abstract
The activity of penicillin G acylase from Alcaligenes faecalis increased 7.5-fold when cells were permeabilized with 0.3% (w/v) CTAB. The treated cells were entrapped by polyvinyl alcohol crosslinked with boric acid, and crosslinked with 2% (v/v) glutaraldehyde to increase the stability. The conversion yield of penicillin G to 6-aminopenicillanic acid was 75% by immobilized system in batch reaction. No activity was lost after 15 cycles and about 65% enzyme activity was retained at the end of the 31th cycle.
Collapse
Affiliation(s)
- Shiwei Cheng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | | | | | | |
Collapse
|
22
|
|
23
|
Geckil H, Ates B, Gencer S, Uckun M, Yilmaz I. Membrane permeabilization of gram-negative bacteria with a potassium phosphate/hexane aqueous phase system for the release of l-asparaginase: an enzyme used in cancer therapy. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|