1
|
Vlakh EG, Platonova GA, Tennikova TB. The preparation and study of the properties of macroporous monolith-based continuous flow bioreactors. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0027131416020085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Vlakh EG, Platonova GA, Tennikova TB. Affinity chromatography of proteins on monolithic columns. Methods Mol Biol 2014; 1129:303-24. [PMID: 24648084 DOI: 10.1007/978-1-62703-977-2_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, monolithic stationary phases, because of their morphology, are widely used for development and realization of fast dynamic and static processes based on mass transition between liquid and solid phases. These are liquid chromatography, solid phase synthesis, microarrays, flow-through enzyme reactors, etc. High-performance liquid chromatography on monoliths, including bioaffinity mode, represents a unique technique appropriate for fast and efficient separation of biological (macro)molecules of different sizes and shapes (proteins, nucleic acids, peptides), as well as such supramolecular systems as viruses.In this work, the examples of application of commercially available macroporous monoliths for modern affinity processing are presented. In particular, the original methods developed for efficient isolation and fractionation of monospecific antibodies from rabbit blood sera, the possibility of simultaneous affinity separation of protein G and serum albumin from human serum, the isolation of recombinant products, such as protein G and tissue plasminogen activator from E. coli cell lysate and Chinese Hamster Ovary cell culture supernatant, respectively, are described in detail. The suggested and realized multifunctional fractionation of polyclonal pools of antibodies by combination of several short monolithic columns (disks) with different affinity functionalities stacked in the same cartridge represents an original and practically valuable method that can be used in biotechnology.
Collapse
Affiliation(s)
- E G Vlakh
- Chemical Faculty, St. Petersburg State University, Bolshoy pr. 31, 199004, St. Petersburg, Russia
| | | | | |
Collapse
|
3
|
Lopes J, Alves M, Oliveira M, Cardoso S, Rodrigues A. Internal mass transfer enhancement in flow-through catalytic membranes. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Vlakh EG, Tennikova TB. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application. J Sep Sci 2013; 36:1149-67. [DOI: 10.1002/jssc.201201090] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Evgenia G. Vlakh
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Tatiana B. Tennikova
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| |
Collapse
|
5
|
Hu Z, Xu L, Wen X. Mesoporous silicas synthesis and application for lignin peroxidase immobilization by covalent binding method. J Environ Sci (China) 2013; 25:181-187. [PMID: 23586313 DOI: 10.1016/s1001-0742(12)60008-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Immobilization of enzymes on mesoporous silicas (MS) allows for good reusability. MS with two-dimensional hexagonal pores in diameter up to 14.13 nm were synthesized using Pluronic P123 as template and 1,3,5-triisopropylbenzene as a swelling agent in acetate buffer. The surface of MS was modified by the silanization reagents 3-aminopropyltriethoxysilane. Lignin peroxidase (LiP) was successfully immobilized on the modified MS through covalent binding method by four agents: glutaraldehyde, 1,4-phenylene diisothiocyanate, cyanotic chloride and water-soluble carbodiimide. Results showed that cyanotic chloride provided the best performance for LIP immobilization. The loaded protein concentration was 12.15 mg/g and the immobilized LiP activity was 812.9 U/L. Immobilized LiP had better pH stability. Acid Orange II was used to examine the reusability of immobilized LiP, showing more than 50% of the dye was decolorized at the fifth cycle.
Collapse
Affiliation(s)
- Zunfang Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| | | | | |
Collapse
|
6
|
Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. Immobilised enzymes in biorenewables production. Chem Soc Rev 2013; 42:6491-533. [DOI: 10.1039/c3cs00004d] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Çelebi B, Bayraktar A, Tuncel A. Synthesis of a monolithic, micro-immobilised enzyme reactor via click-chemistry. Anal Bioanal Chem 2012; 403:2655-63. [DOI: 10.1007/s00216-012-6075-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
|
8
|
Joo H, Lee JH. Polyaniline nanofiber coated monolith reactor for enzymatic bioconversion. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Ponomareva E, Kartuzova V, Vlakh E, Tennikova T. Monolithic bioreactors: Effect of chymotrypsin immobilization on its biocatalytic properties. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:567-74. [DOI: 10.1016/j.jchromb.2010.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
|
10
|
Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
García Jiménez JF, Valencia MC, Capitán-Vallvey LF. Intense Sweetener Mixture Resolution by Flow Injection Method with On-Line Monolithic Element. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070902841885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- J. F. García Jiménez
- a Faculty of Sciences, Solid Phase Spectrometry Research Group, Department of Analytical Chemistry , Campus Fuentenueva, University of Granada , Granada, Spain
| | - M. C. Valencia
- a Faculty of Sciences, Solid Phase Spectrometry Research Group, Department of Analytical Chemistry , Campus Fuentenueva, University of Granada , Granada, Spain
| | - L. F. Capitán-Vallvey
- a Faculty of Sciences, Solid Phase Spectrometry Research Group, Department of Analytical Chemistry , Campus Fuentenueva, University of Granada , Granada, Spain
| |
Collapse
|
12
|
Urban J, Jandera P. Polymethacrylate monolithic columns for capillary liquid chromatography. J Sep Sci 2008; 31:2521-40. [DOI: 10.1002/jssc.200800182] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Delattre C, Michaud P, Vijayalakshmi MA. New monolithic enzymatic micro-reactor for the fast production and purification of oligogalacturonides. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 861:203-8. [PMID: 17870676 DOI: 10.1016/j.jchromb.2007.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/20/2007] [Accepted: 08/26/2007] [Indexed: 10/22/2022]
Abstract
Fast production and purification of alpha-(1,4)-oligogalacturonides was investigated using a new enzymatic reactor composed of a monolithic matrix. Pectin lyase from Aspergillus japonicus (Sigma) was immobilized on CIM-disk epoxy monolith. Studies were performed on free pectin lyase and immobilized pectin lyase to compare the optimum temperature, optimum pH, and thermal stability. It was determined that optimum temperature for free pectin lyase and immobilized pectin lyase on monolithic support is 30 degrees C, and optimum pH is 5. Monolithic CIM-disk chromatography is one of the fastest liquid chromatographic method used for separation and purification of biomolecules due to high mass transfer rate. In this context, online one step production and purification of oligogalacturonides was investigated associating CIM-disk pectin lyase and CIM-disk DEAE. This efficient enzymatic bioreactor production of uronic oligosaccharides from polygalacturonic acid (PGA) constitutes an original fast process to generate bioactive oligouronides.
Collapse
Affiliation(s)
- C Delattre
- Centre for BioSeparation Technology, Vellore Institute of Technology, University, Vellore 632014, Tamil Nadu, India.
| | | | | |
Collapse
|
14
|
Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochem Soc Trans 2007; 35:1593-601. [DOI: 10.1042/bst0351593] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multipoint covalent immobilization of enzymes (through very short spacer arms) on support surfaces promotes a very interesting ‘rigidification’ of protein molecules. In this case, the relative positions of each residue of the enzyme involved in the immobilization process have to be preserved unchanged during any conformational change induced on the immobilized enzyme by any distorting agent (heat, organic solvents etc.). In this way, multipoint covalent immobilization should induce a very strong stabilization of immobilized enzymes. Epoxy-activated supports are able to chemically react with all nucleophile groups placed on the protein surface: lysine, histidine, cysteine, tyrosine etc. Besides, epoxy groups are very stable. This allows the performance of very long enzyme–support reactions, enabling us to get very intense multipoint covalent attachment. In this way, these epoxy supports seem to be very suitable to stabilize industrial enzymes by multipoint covalent attachment. However, epoxy groups exhibit a low intermolecular reactivity towards nucleophiles and hence the enzymes are not able to directly react with the epoxy supports. Thus a rapid physical adsorption of enzymes on the supports becomes a first step, followed by an additional rapid ‘intramolecular’ reaction between the already adsorbed enzyme and the activated support. In this situation, a suitable first orientation of the enzyme on the support (e.g. through regions that are very rich in nucleophiles) is obviously necessary to get a very intense additional multipoint covalent immobilization. The preparation of different ‘generations’ of epoxy supports and the design of different protocols to fully control the first interaction between enzymes and epoxy supports will be reviewed in this paper. Finally, the possibilities of a directed immobilization of mutated enzymes (change of an amino acid by cysteine on specific points of the protein surface) on tailor-made disulfide-epoxy supports will be discussed as an almost-ideal procedure to achieve very intense and very efficient rigidification of a desired region of industrial enzymes.
Collapse
|
15
|
Zacharis CK, Kalaitzantonakis EA, Podgornik A, Theodoridis G. Sequential injection affinity chromatography utilizing an albumin immobilized monolithic column to study drug–protein interactions. J Chromatogr A 2007; 1144:126-34. [PMID: 17227676 DOI: 10.1016/j.chroma.2006.12.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/13/2006] [Accepted: 12/18/2006] [Indexed: 11/17/2022]
Abstract
In this study, sequential injection affinity chromatography was used for drug-protein interactions studies. The analytical system used consisted of a sequential injection analysis (SIA) manifold directly connected with convective interaction media (CIM) monolithic epoxy disks modified by ligand-immobilization of protein. A non-steroidal, anti-inflammatory drug, naproxen (NAP) and bovine serum albumin (BSA) were selected as model drug and protein, respectively. The SIA system was used for sampling, introduction and propulsion of drug towards to the monolithic column. Association equilibrium constants, binding capacity at various temperatures and thermodynamic parameters (free energy DeltaG, enthalpy DeltaH) of the binding reaction of naproxen are calculated by using frontal analysis mathematics. The variation of incubation time and its effect in on-line binding mode was also studied. The results indicated that naproxen had an association equilibrium constant of 2.90 x 10(6)M(-1) at pH 7.4 and 39 degrees C for a single binding site. The associated change in enthalpy (DeltaH) was -27.36 kcal mol(-1) and the change in entropy (DeltaS) was -73 cal mol(-1)K(-1) for a single type of binding sites. The location of the binding region was examined by competitive binding experiments using a biphosphonate drug, alendronate (ALD), as a competitor agent. It was found that the two drugs occupy the same class of binding sites on BSA. All measurements were performed with fluorescence (lambda(ext)=230 nm, lambda(em)=350 nm) and spectrophotometric detection (lambda=280 nm).
Collapse
Affiliation(s)
- Constantinos K Zacharis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece
| | | | | | | |
Collapse
|
16
|
Svec F. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis 2006; 27:947-61. [PMID: 16470758 DOI: 10.1002/elps.200500661] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This review summarizes the recent contributions to the rapidly growing area of immobilized enzymes employing both silica and synthetic polymer-based monoliths as supports. Focus is mainly on immobilized proteolytic enzyme reactors designed for studies in proteomics. Porous monoliths emerged first as a new class of stationary phases for HPLC in the early 1990s. Soon thereafter, they were also used as supports for immobilization of proteins and preparation of both stationary phases for bioaffinity chromatography and enzymatic reactors. Organic polymer-based monoliths are typically prepared using a simple molding process carried out within the confines of a "mold" such as chromatographic column or capillary. Polymerization of a mixture comprising monomers, initiator, and porogenic solvent affords macroporous materials. In contrast, silica-based monoliths are first formed as a rigid rod from tetraalkoxysilane in the presence of PEG and subsequently encased with a plastic tube. Both types of monolith feature large through-pores that enable a rapid flow-through. Since all the solutions must flow through the monolith, the convection considerably accelerates mass transfer within the monolith. As a result, reactors including enzyme immobilized on monolithic support exhibit much higher activity compared to the reactions in solution.
Collapse
Affiliation(s)
- Frantisek Svec
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
17
|
Bencina M, Bencina K, Strancar A, Podgornik A. Immobilization of deoxyribonuclease via epoxy groups of methacrylate monoliths. Use of deoxyribonuclease bioreactor in reverse transcription-polymerase chain reaction. J Chromatogr A 2005; 1065:83-91. [PMID: 15782954 DOI: 10.1016/j.chroma.2004.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A deoxyribonuclease bioreactor was prepared by immobilization of deoxyribonuclease I through epoxy groups inherently present on poly (glycidyl methacrylate-co-ethylene dimethacrylate) monoliths. Columns with various levels of DNase activity were prepared varying immobilization temperature, pH, time and method. The apparent Michaelis-Menten constant, Km(app), and turnover number, k3app, for immobilized DNase determined by on-line frontal analysis method were, respectively, 0.28 g of DNA l(-1) and 16 dA260nm min(-1) mg(-1) of immobilized DNase. The highest activity of immobilized DNase was detected at 1 mM calcium ions concentration and mirrored properties of free enzyme; however, reaction temperature in the range from 25 to 37 degrees C has no significant effect on activity of immobilized DNase in contrary to free enzyme. The CIM DNase bioreactor was used for elimination of DNA contaminants in RNA samples prior to reverse transcription followed by PCR.
Collapse
Affiliation(s)
- Mojca Bencina
- Laboratory of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
18
|
Podgornik A, Strancar A. Convective Interaction Media (CIM)--short layer monolithic chromatographic stationary phases. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:281-333. [PMID: 16216781 DOI: 10.1016/s1387-2656(05)11009-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Modern downstream processing requires fast and highly effective methods to obtain large quantities of highly pure substances. Commonly applied method for this purpose is chromatography. However, its main drawback is its throughput since purification, especially of large molecules, requires long process time. To overcome this problem several new stationary phases were introduced, among which short layer monoliths show superior properties for many applications. The purpose of this review is to give an overview about short methacrylate monolithic columns commercialised under the trademark Convective Interaction Media (CIM). Their unique properties are described from different perspectives, explaining reasons for their application on various areas. Approaches to prepare large volume methacrylate monolithic column are discussed and optimal solutions are given. Different examples of CIM monolithic column implementation are summarised in the last part of the article to give the reader an idea about their advantages.
Collapse
Affiliation(s)
- Ales Podgornik
- BIA Separations d.o.o., Teslova 30, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
19
|
Jungbauer A, Hahn R. Monoliths for fast bioseparation and bioconversion and their applications in biotechnology. J Sep Sci 2004; 27:767-78. [PMID: 15354554 DOI: 10.1002/jssc.200401812] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monoliths have consolidated their position in bioseparation. More than 200 different applications have been reported in the past two decades and their advantages compared to conventional chromatography demonstrated. These include the high mass transfer efficiency due to the convective flow enabled by the macroporous character of the matrix. Recently plasmid DNA and viruses were separated with high efficiency and cryogels and monolithic superporous agarose were developed for capture of proteins from crude homogenates and separation of microorganisms or lymphocytes. Currently four companies manufacture monoliths mainly for analytical applications although monoliths with a volume of 0.8 liter are commercially available and 8 L are available as prototypes. A book entitled "Monolithic materials: preparation, properties and applications" was published in 2003 and became standard reference of the status of this area. This review focuses on the progress in monoliths that goes beyond the scope of this reference book. Less progress has been made in the field of bioconversions in spite of the fact that monolithic supports exhibit better performance than beads in enzymatic processing of macromolecules. It appears that the scientific community has not yet realized that supports for these applications are readily available. In addition, monoliths will further substantially advance bioseparations of both small and large molecules in the future.
Collapse
Affiliation(s)
- Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | |
Collapse
|
20
|
Bencina K, Podgornik A, Strancar A, Bencina M. Enzyme immobilization on epoxy- and 1,1′-carbonyldiimidazole-activated methacrylate-based monoliths. J Sep Sci 2004; 27:811-8. [PMID: 15354558 DOI: 10.1002/jssc.200401800] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monolithic Convective Interaction Media (CIM) have been activated with epoxide and imidazole carbamate functionalities and used as supports for covalent immobilization of protein A, deoxyribonuclease I, and trypsin. The efficiency of immobilization for these proteins was determined from the amount of bound IgG, degradation of DNA, and hydrolysis of Nalpha-benzoyl-L-arginine ethyl ester, respectively. The respective biological activities of trypsin and the binding capacity of protein A immobilized via imidazole carbamate groups were 11.45 and 2.25 times higher than those obtained for epoxide matrix while they were practically equal for deoxyribonuclease I. The kinetics of immobilization was studied in detail for trypsin under dynamic conditions and revealed that the enzyme immobilized via imidazole carbamate groups already reached its highest activity in 5 min. In contrast, a much longer time was required for immobilization via epoxy groups.
Collapse
Affiliation(s)
- Katja Bencina
- BIA Separations doo, Teslova 30, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
21
|
Abstract
Rigid porous polymer monoliths are a new class of materials that emerged in the early 1990s. These monolithic materials are typically prepared using a simple molding process carried out within the confines of a closed mold. For example, polymerization of a mixture comprising monomers, free-radical initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. The versatility of the preparation technique is demonstrated by its use with hydrophobic, hydrophilic, ionizable, and zwitterionic monomers. Several system variables can be used to control the porous properties of the monolith over a broad range and to mediate the hydrodynamic properties of the monolithic devices. A variety of methods such as direct copolymerization of functional monomers, chemical modification of reactive groups, and grafting of pore surface with selected polymer chains is available for the control of surface chemistry. Since all the mobile phase must flow through the monolith, the convection considerably accelerates mass transport within the molded material, and the monolithic devices perform well, even at very high flow rates. The applications of polymeric monolithic materials are demonstrated mostly on the separations in the HPLC mode, although CEC, gas chromatography, enzyme immobilization, molecular recognition, advanced detection systems, and microfluidic devices are also mentioned.
Collapse
Affiliation(s)
- Frantisek Svec
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA.
| |
Collapse
|
22
|
Vodopivec M, Podgornik A, Berovic M, Strancar A. Characterization of CIM monoliths as enzyme reactors. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 795:105-13. [PMID: 12957174 DOI: 10.1016/s1570-0232(03)00551-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis-Menten constant K(m) and the turnover number k(3) of the immobilized enzymes were found to be flow-unaffected. Furthermore, the K(m) values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.
Collapse
Affiliation(s)
- Martina Vodopivec
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|