1
|
Márquez-Villa JM, Mateos-Díaz JC, Rodríguez-González JA, Camacho-Ruíz RM. Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors. Microorganisms 2022; 10:983. [PMID: 35630427 PMCID: PMC9145298 DOI: 10.3390/microorganisms10050983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 02/05/2023] Open
Abstract
Halophilic microorganisms are potentially capable as platforms to produce low-cost biosurfactants. However, the robustness of bioprocesses is still a challenge and, therefore, it is essential to understand the effects of microbiological culture conditions through bioreactor engineering. Based on a design of experiments (DOE) and a response surface methodology (RSM) tailored and taken from the literature, the present work focuses on the evaluation of a composite central design (CCD) under batch cultures in stirred-tank bioreactors with the halophilic bacteria Salibacterium sp. 4CTb in order to determine the operative conditions that favor mass transfer and optimize the production of a lipopeptide. The results obtained showed profiles highlighting the most favorable culture conditions, which lead to an emulsification index (E24%) higher than 70%. Moreover, through the behavior of dissolved oxygen (DO), it was possible to experimentally evaluate the higher volumetric coefficient of mass transfer in the presence of lipopeptide (kLa = 31 1/h) as a key criterion for the synthesis of the biosurfactant on further cell expansion.
Collapse
Affiliation(s)
| | | | | | - Rosa María Camacho-Ruíz
- Department of Industrial Biotechnology, CIATEJ-CONACyT, Zapopan 45019, Mexico; (J.M.M.-V.); (J.C.M.-D.); (J.A.R.-G.)
| |
Collapse
|
2
|
Martínez-Toledo Á, del Carmen Cuevas-Díaz M, Guzmán-López O, López-Luna J, Ilizaliturri-Hernández C. Evaluation of in situ biosurfactant production by inoculum of P. putida and nutrient addition for the removal of polycyclic aromatic hydrocarbons from aged oil-polluted soil. Biodegradation 2022; 33:135-155. [DOI: 10.1007/s10532-022-09973-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/18/2022] [Indexed: 12/07/2022]
|
3
|
Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms 2021; 9:microorganisms9102030. [PMID: 34683351 PMCID: PMC8540375 DOI: 10.3390/microorganisms9102030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
The lipopeptide produced by microorganisms is one of the representative biosurfactants and is characterized as a series of structural analogues of different families. Thirty-four families covering about 300 lipopeptide compounds have been reported in the last decades, and most of the reported lipopeptides produced by microorganisms were under aerobic conditions. The lipopeptide-producing strains under anaerobic conditions have attracted much attention from both the academic and industrial communities, due to the needs and the challenge of their applications in anaerobic environments, such as in oil reservoirs and in microbial enhanced oil recovery (MEOR). In this review, the fifty-eight reported bacterial strains, mostly isolated from oil reservoirs and dominated by the species Bacillus subtilis, producing lipopeptide biosurfactants, and the species Pseudomonas aeruginosa, producing glycolipid biosurfactants under anaerobic conditions were summarized. The metabolic pathway and the non-ribosomal peptide synthetases (NRPSs) of the strain Bacillus subtilis under anaerobic conditions were analyzed, which is expected to better understand the key mechanisms of the growth and production of lipopeptide biosurfactants of such kind of bacteria under anaerobic conditions, and to expand the industrial application of anaerobic biosurfactant-producing bacteria.
Collapse
|
4
|
França ÍWL, Oliveira DWF, Giro MEA, Melo VMM, Gonçalves LRB. Production of surfactin by
Bacillus subtilis
LAMI005
and evaluation of its potential as tensoactive and emulsifier. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Vânia Maria Maciel Melo
- Departamento de Biologia ‐ LemBiotech ‐ Laboratório de Ecologia Microbiana e Biotecnologia Universidade Federal do Ceará Fortaleza Brazil
| | | |
Collapse
|
5
|
Influence of the Medium Composition and the Culture Conditions on Surfactin Biosynthesis by a Native Bacillus subtilis natto BS19 Strain. Molecules 2021; 26:molecules26102985. [PMID: 34069825 PMCID: PMC8157257 DOI: 10.3390/molecules26102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
An effective microbial synthesis of surfactin depends on the composition of the culture medium, the culture conditions and the genetic potential of the producer strain. The aim of this study was to evaluate the suitability of various medium components for the surfactin producing strain and to determine the impact of the culture conditions on the biosynthesis of surfactin isoforms by the newly isolated native strain Bacillus subtilis natto BS19. The efficiency of surfactin biosynthesis was determined by measuring the surface tension of the medium before and after submerged culture (SmF) and by qualitative and quantitative analysis of the obtained compound by high performance liquid chromatography. The highest efficiency of surfactin biosynthesis was achieved using starch as the carbon source and yeast extract as the nitrogen source at pH 7.0 and 37 °C. Potato peelings were selected as an effective waste substrate. It was shown that the increase in the percentage of peel extract in the culture medium enhanced the biosynthesis of surfactin (mg/L) (2-30.9%; 4-46.0% and 6-58.2%), while reducing surface tension of the medium by about 50%. The obtained results constitute a promising basis for further research on biosynthesis of surfactin using potato peelings as a cheap alternative to synthetic medium components.
Collapse
|
6
|
Mei Y, Yang Z, Kang Z, Yu F, Long X. Enhanced surfactin fermentation via advanced repeated fed-batch fermentation with increased cell density stimulated by EDTA–Fe (II). FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Ganesan NG, Rangarajan V. A kinetics study on surfactin production from Bacillus subtilis MTCC 2415 for application in green cosmetics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Hoffmann M, Braig A, Fernandez Cano Luna DS, Rief K, Becker P, Treinen C, Klausmann P, Morabbi Heravi K, Henkel M, Lilge L, Hausmann R. Evaluation of an oxygen-dependent self-inducible surfactin synthesis in B. subtilis by substitution of native promoter P srfA by anaerobically active P narG and P nasD. AMB Express 2021; 11:57. [PMID: 33876328 PMCID: PMC8055807 DOI: 10.1186/s13568-021-01218-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023] Open
Abstract
A novel approach targeting self-inducible surfactin synthesis under oxygen-limited conditions is presented. Because both the nitrate (NarGHI) and nitrite (NasDE) reductase are highly expressed during anaerobic growth of B. subtilis, the native promoter PsrfA of the surfactin operon in strain B. subtilis JABs24 was replaced by promoters PnarG and PnasD to induce surfactin synthesis anaerobically. Shake flask cultivations with varying oxygen availabilities indicated no significant differences in native PsrfA expression. As hypothesized, activity of PnarG and PnasD increased with lower oxygen levels and surfactin was not produced by PsrfA::PnarG as well as PsrfA::PnasD mutant strains under conditions with highest oxygen availability. PnarG showed expressions similar to PsrfA at lowest oxygen availability, while maximum value of PnasD was more than 5.5-fold higher. Although the promoter exchange PsrfA::PnarG resulted in a decreased surfactin titer at lowest oxygen availability, the strain carrying PsrfA::PnasD reached a 1.4-fold increased surfactin concentration with 696 mg/L and revealed an exceptional high overall YP/X of 1.007 g/g. This value also surpassed the YP/X of the reference strain JABs24 at highest and moderate oxygen availability. Bioreactor cultivations illustrated that significant cell lysis occurred when the process of "anaerobization" was performed too fast. However, processes with a constantly low agitation and aeration rate showed promising potential for process improvement, especially by employing the strain carrying PsrfA::PnasD promoter exchange. Additionally, replacement of other native promoters by nitrite reductase promoter PnasD represents a promising tool for anaerobic-inducible bioprocesses in Bacillus.
Collapse
Affiliation(s)
- Mareen Hoffmann
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Alina Braig
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Diana Stephanie Fernandez Cano Luna
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Katharina Rief
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Philipp Becker
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Chantal Treinen
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Peter Klausmann
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany.
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| |
Collapse
|
9
|
Multi-Scale Biosurfactant Production by Bacillus subtilis Using Tuna Fish Waste as Substrate. Catalysts 2021. [DOI: 10.3390/catal11040456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As one of the most effective biosurfactants reported to date, lipopeptides exhibit attractive surface and biological activities and have the great potential to serve as biocatalysts. Low yield, high cost of production, and purification hinder the large-scale applications of lipopeptides. Utilization of waste materials as low-cost substrates for the growth of biosurfactant producers has emerged as a feasible solution for economical biosurfactant production. In this study, fish peptone was generated through enzyme hydrolyzation of smashed tuna (Katsuwonus pelamis). Biosurfactant (mainly surfactin) production by Bacillus subtilis ATCC 21332 was further evaluated and optimized using the generated fish peptone as a comprehensive substrate. The optimized production conduction was continuously assessed in a 7 L batch-scale and 100 L pilot-scale fermenter, exploring the possibility for a large-scale surfactin production. The results showed that Bacillus subtilis ATCC 21332 could effectively use the fish waste peptones for surfactin production. The highest surfactin productivity achieved in the pilot-scale experiments was 274 mg/L. The experimental results shed light on the further production of surfactins at scales using fish wastes as an economical substrate.
Collapse
|
10
|
Park T, Yoon S, Jung J, Kwon TH. Effect of Fluid-Rock Interactions on In Situ Bacterial Alteration of Interfacial Properties and Wettability of CO 2-Brine-Mineral Systems for Geologic Carbon Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15355-15365. [PMID: 33186009 DOI: 10.1021/acs.est.0c05772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study explored the feasibility of biosurfactant amendment in modifying the interfacial characteristics of carbon dioxide (CO2) with rock minerals under high-pressure conditions for GCS. In particular, while varying the CO2 phase and the rock mineral, we quantitatively examined the production of biosurfactants by Bacillus subtilis and their effects on interfacial tension (IFT) and wettability in CO2-brine-mineral systems. The results demonstrated that surfactin produced by B. subtilis caused the reduction of CO2-brine IFT and modified the wettability of both quartz and calcite minerals to be more CO2-wet. The production yield of surfactin was substantially greater with the calcite mineral than with the quartz mineral. The calcite played the role of a pH buffer, consistently maintaining the brine pH above 6. By contrast, an acidic condition in CO2-brine-quartz systems caused the precipitation of surfactin, and hence surfactin lost its ability as a surface-active agent. Meanwhile, the CO2-driven mineral dissolution and precipitation in CO2-brine-calcite systems under a non-equilibrium system altered the solid substrates, produced surface roughness, and caused contact angle variations. These results provide unique experimental data on biosurfactant-mediated interfacial properties and wettability in GCS-relevant conditions, which support the exploitation of in situ biosurfactant production for biosurfactant-aided CO2 injection.
Collapse
Affiliation(s)
- Taehyung Park
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jongwon Jung
- School of Civil Engineering, Chungbuk National University, Chungbuk 28644, Korea
| | - Tae-Hyuk Kwon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
11
|
Hoffmann M, Fernandez Cano Luna DS, Xiao S, Stegemüller L, Rief K, Heravi KM, Lilge L, Henkel M, Hausmann R. Towards the Anaerobic Production of Surfactin Using Bacillus subtilis. Front Bioeng Biotechnol 2020; 8:554903. [PMID: 33324620 PMCID: PMC7726195 DOI: 10.3389/fbioe.2020.554903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
The anaerobic growth of B. subtilis to synthesize surfactin poses an alternative strategy to conventional aerobic cultivations. In general, the strong foam formation observed during aerobic processes represents a major obstacle. Anaerobic processes have, amongst others, the distinct advantage that the total bioreactor volume can be exploited as foaming does not occur. Recent studies also reported on promising product per biomass yields. However, anaerobic growth in comparison to aerobic processes has several disadvantages. For example, the overall titers are comparably low and cultivations are time-consuming due to low growth rates. B. subtilis JABs24, a derivate of strain 168 with the ability to synthesize surfactin, was used as model strain in this study. Ammonium and nitrite were hypothesized to negatively influence anaerobic growth. Ammonium with initial concentrations up to 0.2 mol/L was shown to have no significant impact on growth, but increasing concentrations resulted in decreased surfactin titers and reduced nitrate reductase expression. Anaerobic cultivations spiked with increasing nitrite concentrations resulted in prolonged lag-phases. Indeed, growth rates were in a similar range after the lag-phase indicating that nitrite has a neglectable effect on the observed decreasing growth rates. In bioreactor cultivations, the specific growth rate decreased with increasing glucose concentrations during the time course of both batch and fed-batch processes to less than 0.05 1/h. In addition, surfactin titers, overall Y P/X and Y P/S were 53%, ∼42%, and ∼57% lower than in serum flask with 0.190 g/L, 0.344 g/g and 0.015 g/g. The Y X/S, on the contrary, was 30% lower in the serum flask with 0.044 g/g. The productivities q were similar with ∼0.005 g/(g⋅h). However, acetate strongly accumulated during cultivation and was posed as further metabolite that might negatively influence anaerobic growth. Acetate added to anaerobic cultivations in a range from 0 g/L up to 10 g/L resulted in a reduced maximum and overall growth rate μ by 44% and 30%, respectively. To conclude, acetate was identified as a promising target for future process enhancement and strain engineering. Though, the current study demonstrates that the anaerobic cultivation to synthesize surfactin represents a reasonable perspective and feasible alternative to conventional processes.
Collapse
Affiliation(s)
- Mareen Hoffmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | | | - Shengbin Xiao
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Lars Stegemüller
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Katharina Rief
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Marius Henkel
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Zang H, Dai Y, Sun Y, Jia T, Song Q, Li X, Jiang X, Sui D, Han Z, Li D, Hou N. Mechanism of the biodemulsifier-enhanced biodegradation of phenanthrene by Achromobacter sp. LH-1. Colloids Surf B Biointerfaces 2020; 195:111253. [DOI: 10.1016/j.colsurfb.2020.111253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
|
13
|
Rocha PM, Dos Santos Mendes AC, de Oliveira Júnior SD, de Araújo Padilha CE, de Sá Leitão ALO, da Costa Nogueira C, de Macedo GR, Dos Santos ES. Kinetic study and characterization of surfactin production by Bacillus subtilis UFPEDA 438 using sugarcane molasses as carbon source. Prep Biochem Biotechnol 2020; 51:300-308. [PMID: 32914662 DOI: 10.1080/10826068.2020.1815055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study evaluated the surfactin production by Bacillus subtilis UFPEDA 438 using sugarcane molasses as a substrate. The effects of the cultivation conditions (temperature, agitation and aeration ratio) on the biosurfactant production and kinetic parameters were investigated. Characteristics of the biosurfactant were obtained after analyses of the emulsification index (EI) and critical micellar concentration (CMC) of the fermentation broth. The results showed that in relation to the product its formation kinetics is strongly affected by operational conditions. It was also observed that surfactin production can be partially dependent or fully independent on microbial growth. The maximum values of surfactin concentration (199.45 ± 0.13 mg/L) and productivity (8,187 mg/L.h) were obtained in the culture under cultivation time of 24 h, temperature of 36 °C, agitation of 100 rpm and aeration ratio of 0.4. Under optimal conditions, the fermentation broth achieved good emulsification capacity (EI >40%) and CMC value of 20.73 mg/L. The results revealed that Bacillus subtilis UFPEDA 438 is a good producer of biosurfactant and that sugarcane molasses is a viable substrate for the production of surfactin.
Collapse
Affiliation(s)
- Patrícia Maria Rocha
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana Carmen Dos Santos Mendes
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Sérgio Dantas de Oliveira Júnior
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Carlos Eduardo de Araújo Padilha
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana Laura Oliveira de Sá Leitão
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Cleitiane da Costa Nogueira
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Gorete Ribeiro de Macedo
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Everaldo Silvino Dos Santos
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
14
|
Cazals F, Huguenot D, Crampon M, Colombano S, Betelu S, Galopin N, Perrault A, Simonnot MO, Ignatiadis I, Rossano S. Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136143. [PMID: 31884277 DOI: 10.1016/j.scitotenv.2019.136143] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Biosurfactants are surface-active agents produced by microorganisms whose use in soil remediation processes is increasingly discussed as a more environmentally friendly alternative than chemically produced surfactants. In this work, we report the production of a biosurfactant by a bacterial community extracted from a polluted soil, mainly impacted by PAHs, in order to use it in a soil-washing process coupled with bioremediation. Nutrient balance was a critical parameter to optimize the production. Best conditions for biosurfactant production were found to be 20 g/L of glucose, 2 g/L of NH4NO3, and 14.2 g/L of Na2HPO4, corresponding to a C/N/P molar ratio equal to 13/1/2. Purification of the produced biosurfactant by acidification and double extraction with dichloromethane as a solvent allowed measuring the Critical Micellar Concentration (CMC) as equal to 42 mg/L. The capacity of the purified biosurfactant to increase the apparent solubility of four reference PAHs (naphthalene, phenanthrene, pyrene and benzo[a]pyrene) was completed. The solubilisation ratios, in mg of PAH/g of biosurfactant for phenanthrene, pyrene and benzo[a]pyrene are 0.214, 0.1204 and 0.0068, respectively. Identification of the bacteria found in the colony producing the biosurfactant showed the presence of bacteria able to produce biosurfactant (Enterobacteriaceae, Pseudomonas), as well as, others able to degrade PAHs (Microbacterium, Pseudomonas, Rhodanobacteraceae).
Collapse
Affiliation(s)
- Florian Cazals
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France; Colas Environnement, France; Bureau de Recherches Géologiques et Minières (BRGM), France.
| | - David Huguenot
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France.
| | - Marc Crampon
- Bureau de Recherches Géologiques et Minières (BRGM), France.
| | | | | | | | | | - Marie-Odile Simonnot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 54000 Nancy, France.
| | | | - Stéphanie Rossano
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France.
| |
Collapse
|
15
|
Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J Biotechnol 2020; 313:1-10. [PMID: 32151643 DOI: 10.1016/j.jbiotec.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/29/2022]
Abstract
The endophyte Burkholderia sp. WYAT7 isolated from the medicinal plant Artemisia nilagirica (Clarke) Pamp. was analyzed for its ability to produce biosurfactant. The evaluation of biosurfactant production was conducted using different screening methods which confirmed the presence of biosurfactant in the culture supernatant. CTAB- methylene blue agar plate method was used for the screening of glycolipid biosurfactant production. The biosurfactant produced by the bacteria effectively metabolized hydrocarbons present in the bacterial culture media. Fourier transform infrared spectroscopic (FTIR) analysis of biosurfactant provided the details regarding OH stretching, stretching vibrations of acyl chain, CO stretching, stretching vibrations of ether and vibrations of glycosidic linkages in the biosurfactant. The stretching vibrations of glycosidic linkage in the fingerprint regions of FTIR spectrum (1200 cm-1 to 800 cm-1 regions) confirms that the biosurfactant produced was a glycolipid. The GC-MS analysis confirmed the methyl and ethyl esters of fatty acids. The biosurfactant from the bacteria exhibited antibacterial activity against bacterial pathogens such as Pseudomonas aeruginosa (MTCC 2453), Escherichia coli (MTCC 1610), Salmonella paratyphi and Bacillus subtilis. The glycolipid biosurfactant had antibiofilm activity as evidenced in Staphylococcus aureus (MTCC 1430). All these results indicated the beneficial effect of the biosurfactant in plant-endophyte interactions. The properties exhibited by the biosurfactant suggest that it can be exploited commercially for the production of novel antibiotics.
Collapse
|
16
|
Zahović I, Rončević Z, Đuran J, Mitrović I, Grahovac J, Dodić S. Production of biobactericides for crucifers Black rot control: Effect of nitrogen sources. FOOD AND FEED RESEARCH 2020. [DOI: 10.5937/ffr2001013z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
17
|
Ramchandran R, Ramesh S, A A, Thakur R, Chakrabarti A, Roy U. Improved Production of Two Anti- Candida Lipopeptide Homologues Co- Produced by the Wild-Type Bacillus subtilis RLID 12.1 under Optimized Conditions. Curr Pharm Biotechnol 2019; 21:438-450. [PMID: 31804165 DOI: 10.2174/1389201020666191205115008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antifungal cyclic lipopeptides, bioactive metabolites produced by many species of the genus Bacillus, are promising alternatives to synthetic fungicides and antibiotics for the biocontrol of human pathogenic fungi. In a previous study, the co- production of five antifungal lipopeptides homologues (designated as AF1, AF2, AF3, AF4 and AF5) by the producer strain Bacillus subtilis RLID 12.1 using unoptimized medium was reported; though the two homologues AF3 and AF5 differed by 14 Da and in fatty acid chain length were found effective in antifungal action, the production/ yield rate of these two lipopeptides determined by High-Performance Liquid Chromatography was less in the unoptimized media. METHODS In this study, the production/yield enhancement of the two compounds AF3 and AF5 was specifically targeted. Following the statistical optimization (Plackett-Burman and Box-Behnken designs) of media formulation, temperature and growth conditions, the production of AF3 and AF5 was improved by about 25.8- and 7.4-folds, respectively under static conditions. RESULTS To boost the production of these two homologous lipopeptides in the optimized media, heat-inactivated Candida albicans cells were used as a supplement resulting in 34- and 14-fold increase of AF3 and AF5, respectively. Four clinical Candida auris isolates had AF3 and AF5 MICs (100 % inhibition) ranging between 4 and 16 μg/ml indicating the lipopeptide's clinical potential. To determine the in vitro pharmacodynamic potential of AF3 and AF5, time-kill assays were conducted which showed that AF3 (at 4X and 8X concentrations) at 48h exhibited mean log reductions of 2.31 and 3.14 CFU/ml of C. albicans SC 5314, respectively whereas AF5 at 8X concentration showed a mean log reduction of 2.14 CFU/ml. CONCLUSION With the increasing threat of multidrug-resistant yeasts and fungi, these antifungal lipopeptides produced by optimized method promise to aid in the development of novel antifungal that targets disease-causing fungi with improved efficacy.
Collapse
Affiliation(s)
- Ramya Ramchandran
- Department of Biological Sciences, BITS Pilani K.K Birla Goa Campus, Goa 403726, India
| | - Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K Birla Goa Campus, Goa 403726, India
| | - Anviksha A
- Department of Biological Sciences, BITS Pilani K.K Birla Goa Campus, Goa 403726, India
| | - RamLal Thakur
- Department of Microbiology, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science & Research, Balawala, Dehradun, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K Birla Goa Campus, Goa 403726, India
| |
Collapse
|
18
|
Barbachano‐Torres A, López‐Ortega MA, Delgado‐García M, González‐García Y, Rodríguez JA, Kirchmayr MR, Camacho‐Ruíz RM. Production and Characterization of Surface‐Active Lipopeptides by Haloalkaliphilic Bacteria
Salibacterium
sp. 4CTb. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alejandra Barbachano‐Torres
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco Avenida Normalistas 800, 44270 Guadalajara Jal Mexico
| | - Mayra A. López‐Ortega
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e IngenieríasUniversidad de Guadalajara Km 15.5, Carretera Guadalajara‐Nogales, 45220 Zapopan Jal Mexico
| | - Mariana Delgado‐García
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco Avenida Normalistas 800, 44270 Guadalajara Jal Mexico
| | - Yolanda González‐García
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e IngenieríasUniversidad de Guadalajara Km 15.5, Carretera Guadalajara‐Nogales, 45220 Zapopan Jal Mexico
| | - Jorge A. Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco Avenida Normalistas 800, 44270 Guadalajara Jal Mexico
| | - Manuel R. Kirchmayr
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco Avenida Normalistas 800, 44270 Guadalajara Jal Mexico
| | - Rosa M. Camacho‐Ruíz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco Avenida Normalistas 800, 44270 Guadalajara Jal Mexico
| |
Collapse
|
19
|
Mg-Fe Layered Double Hydroxides Enhance Surfactin Production in Bacterial Cells. CRYSTALS 2019. [DOI: 10.3390/cryst9070355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, four additives—montmorillonite, activated carbon, and the layered double hydroxides (LDHs), Mg2Fe–LDH and Mg2Al–LDH—were tested for their ability to promote surfactin production in a Bacillus subtilis ATCC 21332 culture. Among these tested materials, the addition of 4 g/L of the Mg-Fe LDH, which featured an Mg/Fe molar ratio of 2:1, produced the highest surfactin yield of 5280 mg/L. During the time course of B. subtilis cultivation with the added LDH, two phases of cell growth were evident: Growth and decay. In the growth phase, the cells grew slowly and secreted a high amount of surfactin; in the decay phase, the cells degraded rapidly. The production in the presence of the Mg2Fe–LDH had three characteristics: (i) High surfactin production at low biomass, indicating a high specific surfactin yield of 3.19 g/g DCW; (ii) rapid surfactin production within 24 h, inferring remarkably high productivity (4660 mg/L/d); and (iii) a lower carbon source flux to biomass, suggesting an efficient carbon flux to surfactin, giving a high carbon yield of 52.8%. The addition of Mg2Fe–LDH is an effective means of enhancing surfactin production, with many potential applications and future industrial scale-up.
Collapse
|
20
|
Geissler M, Kühle I, Morabbi Heravi K, Altenbuchner J, Henkel M, Hausmann R. Evaluation of surfactin synthesis in a genome reduced Bacillus subtilis strain. AMB Express 2019; 9:84. [PMID: 31190306 PMCID: PMC6562014 DOI: 10.1186/s13568-019-0806-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/05/2019] [Indexed: 11/10/2022] Open
Abstract
Strain engineering is often a method of choice towards increasing the yields of the biosurfactant surfactin which is naturally synthesized by many Bacillus spp., most notably Bacillus subtilis. In the current study, a genome reduced B. subtilis 168 strain lacking 10% of the genome was established and tested for its suitability to synthesize surfactin under aerobic and anaerobic conditions at 25 °C, 30 °C, 37 °C and 40 °C. This genome reduced strain was named IIG-Bs20-5-1 and lacks, amongst others, genes synthesizing the lipopeptide plipastatin, the antibiotic bacilysin, toxins and prophages, as well as genes involved in sporulation. Amongst all temperatures tested, 37 °C was overall superior. In comparison to the reference strain JABs24, a surfactin synthesizing variant of B. subtilis 168, strain IIG-Bs20-5-1 was both aerobically and anaerobically superior with respect to specific growth rates µ and yields YX/S. However, in terms of surfactin production, strain JABs24 reached higher absolute concentrations with up to 1147.03 mg/L and 296.37 mg/L under aerobic and anaerobic conditions, respectively. Concomitant, strain JABs24 reached higher YP/S and YP/X. Here, an outstanding YP/X of 1.541 g/g was obtained under anaerobic conditions at 37 °C. The current study indicates that the employed genome reduced strain IIG-Bs20-5-1 has several advantages over the strain JABs24 such as better conversion from glucose into biomass and higher growth rates. However, regarding surfactin synthesis and yields, the strain was overall inferior at the investigated temperatures and oxygen conditions. Further studies addressing process development and strain engineering should be performed combining the current observed advantages of the genome reduced strain to increase the surfactin yields and to construct a tailor-made genome reduced strain to realize the theoretically expected advantages of such genome reduced strains.
Collapse
|
21
|
Ding L, Guo W, Chen X. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Appl Microbiol Biotechnol 2019; 103:5367-5377. [PMID: 31053917 DOI: 10.1007/s00253-019-09792-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 01/23/2023]
Abstract
The bacterium, Bacillus amyloliquefaciens Pc3, was previously isolated from Antarctic seawater and has been found to show antagonistic activity against the fungus, Rhizoctonia solani ACCC 36316, which causes a severe disease known as Sclerotinia sclerotiorum in rapeseed plants. Bacillus lipopeptides had been widely used as biocontrol agents for plant diseases. In this study, we isolated 11 lipopeptide compounds from B. amyloliquefaciens Pc3 culture broth via reversed-phase high-performance liquid chromatography (RP-HPLC) and used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to identify these as iturin A (C14, C15, C16, C17), fengycin B (C14, C15, C16, C17), and surfactin (C14, C15, C16). We further found that the addition of exogenous alkanoic acids, including myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, octadecanoic acid, and nonadecanoic acid, to the bacterial growth media could promote lipopeptide production and enhance the antifungal activities of crude lipopeptide extracts from B. amyloliquefaciens Pc3. In addition, the transcriptional levels of three lipopeptide synthesis genes, ituD, fenA, and srfA-A, and two fatty acid metabolism-related genes, FabI, which encodes enoyl-ACP reductase, and FadB, which encodes enoyl-CoA hydratase, were found to be upregulated in cells grown with exogenous alkanoic acids. Among the six alkanoic acids tested, those with odd carbon chain lengths had a greater effect on lipopeptide production, antifungal activity, and target gene upregulation than those with even carbon chain lengths. These results provide a practical approach for the efficient production of lipopeptides in Bacillus amyloliquefaciens Pc3.
Collapse
Affiliation(s)
- Lianshuai Ding
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, People's Republic of China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, People's Republic of China. .,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, People's Republic of China. .,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China. .,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
22
|
Guimarães CR, Pasqualino IP, da Mota FF, de Godoy MG, Seldin L, de Castilho LVA, Freire DMG. Surfactin fromBacillus velezensisH2O‐1: Production and Physicochemical Characterization for Postsalt Applications. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Ilson Paranhos Pasqualino
- Departamento de Engenharia OceânicaUniversidade Federal do Rio de Janeiro COPPE, Rio de Janeiro RJ Brazil
| | | | - Mateus Gomes de Godoy
- Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Livia Vieira Araujo de Castilho
- Instituto de QuímicaUniversidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
- Departamento de Engenharia OceânicaUniversidade Federal do Rio de Janeiro COPPE, Rio de Janeiro RJ Brazil
| | | |
Collapse
|
23
|
Tripathi L, Irorere VU, Marchant R, Banat IM. Marine derived biosurfactants: a vast potential future resource. Biotechnol Lett 2018; 40:1441-1457. [PMID: 30145666 PMCID: PMC6223728 DOI: 10.1007/s10529-018-2602-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023]
Abstract
Surfactants and emulsifiers are surface-active compounds (SACs) which play an important role in various industrial processes and products due to their interfacial properties. Many of the chemical surfactants in use today are produced from non-renewable petrochemical feedstocks, while biosurfactants (BS) produced by microorganisms from renewable feedstocks are considered viable alternatives to petroleum based surfactants, due to their biodegradability and eco-friendly nature. However, some well-characterised BS producers are pathogenic and therefore, not appropriate for scaled-up production. Marine-derived BS have been found to be produced by non-pathogenic organisms making them attractive possibilities for exploitation in commercial products. Additionally, BS produced from marine bacteria may show excellent activity at extreme conditions (temperature, pH and salinity). Despite being non-pathogenic, marine-derived BS have not been exploited commercially due to their low yields, insufficient structural elucidation and uncharacterised genes. Therefore, optimization of BS production conditions in marine bacteria, characterization of the compounds produced as well as the genes involved in the biosynthesis are necessary to improve cost-efficiency and realise the industrial demands of SACs.
Collapse
Affiliation(s)
- Lakshmi Tripathi
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Victor U Irorere
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Roger Marchant
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
24
|
Wang Q, Yu H, Wang M, Yang H, Shen Z. Enhanced biosynthesis and characterization of surfactin isoforms with engineered Bacillus subtilis through promoter replacement and Vitreoscilla hemoglobin co-expression. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Ramachandran R, Ramesh S, Ramkumar S, Chakrabarti A, Roy U. Calcium Alginate Bead-mediated Enhancement of the Selective Recovery of a Lead Novel Antifungal Bacillomycin Variant. Appl Biochem Biotechnol 2018; 186:917-936. [PMID: 29797296 DOI: 10.1007/s12010-018-2778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
In the pursuit of new antifungal compounds, five coproduced lipopeptide variants (AF1 to AF5) from wild-type Bacillus subtilis RLID 12.1 were identified in our previous study. Out of five, AF4 was identified as a novel lead molecule belonging to the bacillomycin family showing less cytotoxicity at its respective minimum inhibitory concentrations (MIC) evaluated against 81 strains of Candida and Cryptococcus species (including clinical isolates); besides this, AF4 purified in the present study exhibited encouraging MIC values against 10 clinical mycelial fungi. Aiming for a selective production augmentation of AF4 lipopeptide variant, a new fermentation media comprising malt extract (1.01%), dextrose (0.55%), peptone (1.79%), MnSO4 (2 mM), and NaCl (0.5%) was formulated. Maximum production of 954.8 ± 10.8 mg/L was achieved with 44% selectivity at 30 °C compared to unoptimized conditions (186.4 ± 6.1 mg/L). Use of calcium alginate beads in the formulated media during the onset of lipopeptide production resulted in an augmentation in the selectivity of the most efficacious AF4 variant to about 72% presumably due to attenuation of other coproduced lipopeptide variants AF1 and AF2. Difference in yield of lipopeptides varied with bead size, bead preparation ratios, and sodium alginate concentrations. Use of Ca-alginate beads in the upstream production process of the lead AF4 variant may be considered as a novel strategy to address the potential challenge that may arise during the scale-up and downstream processing steps. Another significant finding derived from the study is that the proportion of bacillomycin variants of B. subtilis RLID 12.1 could be controlled by temperature and metal ions under static and shaking conditions.
Collapse
Affiliation(s)
- Ramya Ramachandran
- Department of Biological Sciences, Birla Institute of Technology And Science Pilani KK Birla Goa Campus, Goa, 403726, India
| | - Swetha Ramesh
- Department of Biological Sciences, Birla Institute of Technology And Science Pilani KK Birla Goa Campus, Goa, 403726, India
| | - Srinath Ramkumar
- Department of Biological Sciences, Birla Institute of Technology And Science Pilani KK Birla Goa Campus, Goa, 403726, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology And Science Pilani KK Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
26
|
Kan SC, Lee CC, Hsu YC, Peng YH, Chen CC, Huang JJ, Huang JW, Shieh CJ, Juang TY, Liu YC. Enhanced surfactin production via the addition of layered double hydroxides. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Yaseen Y, Gancel F, Béchet M, Drider D, Jacques P. Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production. Arch Microbiol 2017; 199:1371-1382. [PMID: 28735377 DOI: 10.1007/s00203-017-1406-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/01/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
This work aimed to rely expression of the fengycin promoter to fengycin production under different culture conditions. To this end, Bacillus subtilis BBG208, derived from BBG21, which is a fengycin overproducing strain carrying the green fluorescent protein (GFP) under the control of fengycin promoter, was used to assess the effects of different carbon and nitrogen sources on surfactin and fengycin production and the fengycin promoter expression. The data showed that some carbon sources oriented synthesis of one family of lipopeptides, while most of the nitrogen sources allowed high co-production of fengycin and surfactin. High expressions of promoter Pfen and fengycin synthesis were obtained with urea or urea + ammonium mixture as nitrogen source and mannitol as carbon source. Moreover, temperature, pH and oxygenation influenced their biosynthesis based on the nutrition conditions. Optimization of the production medium increased the fengycin production to 768 mg L-1, which is the highest level reported for this strain. This study defines the suitable nutrient conditions allowing as well the highest expression of the fengycin promoter and portrays the conditions relying on the fengycin and surfactin production.
Collapse
Affiliation(s)
- Yazen Yaseen
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France.,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium
| | - Frédérique Gancel
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France.,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium
| | - Max Béchet
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France.,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium
| | - Djamel Drider
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France.,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium
| | - Philippe Jacques
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France. .,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium.
| |
Collapse
|
28
|
Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600561] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
|
29
|
Heryani H, Putra MD. Kinetic study and modeling of biosurfactant production using Bacillus sp. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci Rep 2017; 7:40976. [PMID: 28112210 PMCID: PMC5256033 DOI: 10.1038/srep40976] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/13/2016] [Indexed: 11/23/2022] Open
Abstract
Natural Bacillus isolates generate limited amounts of surfactin (<10% of their biomass), which functions as an antibiotic or signalling molecule in inter-/intra-specific interactions. However, overproduction of surfactin in Bacillus amyloliquefaciens MT45 was observed at a titre of 2.93 g/l, which is equivalent to half of the maximum biomass. To systemically unravel this efficient biosynthetic process, the genome and transcriptome of this bacterium were compared with those of B. amyloliquefaciens type strain DSM7T. MT45 possesses a smaller genome while containing more unique transporters and resistance-associated genes. Comparative transcriptome analysis revealed notable enrichment of the surfactin synthesis pathway in MT45, including central carbon metabolism and fatty acid biosynthesis to provide sufficient quantities of building precursors. Most importantly, the modular surfactin synthase overexpressed (9 to 49-fold) in MT45 compared to DSM7T suggested efficient surfactin assembly and resulted in the overproduction of surfactin. Furthermore, based on the expression trends observed in the transcriptome, there are multiple potential regulatory genes mediating the expression of surfactin synthase. Thus, the results of the present study provide new insights regarding the synthesis and regulation of surfactin in high-producing strain and enrich the genomic and transcriptomic resources available for B. amyloliquefaciens.
Collapse
|
31
|
Motta Dos Santos LF, Coutte F, Ravallec R, Dhulster P, Tournier-Couturier L, Jacques P. An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. BIORESOURCE TECHNOLOGY 2016; 218:944-52. [PMID: 27447921 DOI: 10.1016/j.biortech.2016.07.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 05/12/2023]
Abstract
Culture medium elements were analysed by a screening DoE to identify their influence in surfactin specific production by a surfactin constitutive overproducing Bacillus subtilis strain. Statistics pointed the major enhancement caused by high glutamic acid concentrations, as well as a minor positive influence of tryptophan and glucose. Successively, a central composite design was performed in microplate bioreactors using a BioLector®, in which variations of these impressive parameters, glucose, glutamic acid and tryptophan concentrations were selected for optimization of product-biomass yield (YP/X). Results were exploited in combination with a RSM. In absolute terms, experiments attained an YP/X 3.28-fold higher than those obtained in Landy medium, a usual culture medium used for lipopeptide production by B. subtilis. Therefore, two medium compositions for enhancing biomass and surfactin specific production were proposed and tested in continuous regime in a bubbleless membrane bioreactor. An YP/X increase of 2.26-fold was observed in bioreactor scale.
Collapse
Affiliation(s)
- Luiz Fernando Motta Dos Santos
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France; L'Oréal Research & Innovation, Advanced Research, Aulnay-sous-Bois, France
| | - François Coutte
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France.
| | - Rozenn Ravallec
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France
| | - Pascal Dhulster
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France
| | | | - Philippe Jacques
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France
| |
Collapse
|
32
|
Etchegaray A, Coutte F, Chataigné G, Béchet M, Dos Santos RHZ, Leclère V, Jacques P. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination. Can J Microbiol 2016; 63:46-60. [PMID: 27912317 DOI: 10.1139/cjm-2016-0288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biosurfactants are important in many areas; however, costs impede large-scale production. This work aimed to develop a global sustainable strategy for the production of biosurfactants by a novel strain of Bacillus amyloliquefaciens. Initially, Bacillus sp. strain 0G was renamed B. amyloliquefaciens subsp. plantarum (syn. Bacillus velezensis) after analysis of the gyrA and gyrB DNA sequences. Growth in modified Landy's medium produced 3 main recoverable metabolites: surfactin, fengycin, and acetoin, which promote plant growth. Cultivation was studied in the presence of renewable carbon (as glycerol) and nitrogen (as arginine) sources. While diverse kinetics of acetoin production were observed in different media, similar yields (6-8 g·L-1) were obtained after 72 h of growth. Glycerol increased surfactin-specific production, while arginine increased the yields of surfactin and fengycin and increased biomass significantly. The specific production of fengycin increased ∼10 times, possibly due to a connecting pathway involving arginine and ornithine. Adding value to crude extracts and biomass, both were shown to be useful, respectively, for the removal of p-xylene from contaminated water and for biodiesel production, yielding ∼70 mg·g-1 cells and glycerol, which could be recycled in novel media. This is the first study considering circular bioeconomy to lower the production costs of biosurfactants by valorisation of both microbial cells and their primary and secondary metabolites.
Collapse
Affiliation(s)
- Augusto Etchegaray
- a Pontifical Catholic University of Campinas, Rodovia Dom Pedro I, km 136, Campinas, SP, 13086-900, Brazil
| | - François Coutte
- b ICV-Université Lille, EA 7394-ICV Institut Charles Viollette, F-59000 Lille, France
| | - Gabrielle Chataigné
- b ICV-Université Lille, EA 7394-ICV Institut Charles Viollette, F-59000 Lille, France
| | - Max Béchet
- b ICV-Université Lille, EA 7394-ICV Institut Charles Viollette, F-59000 Lille, France
| | - Ramon H Z Dos Santos
- a Pontifical Catholic University of Campinas, Rodovia Dom Pedro I, km 136, Campinas, SP, 13086-900, Brazil
| | - Valérie Leclère
- b ICV-Université Lille, EA 7394-ICV Institut Charles Viollette, F-59000 Lille, France
| | - Philippe Jacques
- b ICV-Université Lille, EA 7394-ICV Institut Charles Viollette, F-59000 Lille, France
| |
Collapse
|
33
|
Rangarajan V, Clarke KG. Process development and intensification for enhanced production ofBacilluslipopeptides. Biotechnol Genet Eng Rev 2016; 31:46-68. [DOI: 10.1080/02648725.2016.1166335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Chen WC, Juang RS, Wei YH. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.07.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
de França ÍWL, Lima AP, Lemos JAM, Lemos CGF, Melo VMM, de Sant’ana HB, Gonçalves LRB. Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal Today 2015. [DOI: 10.1016/j.cattod.2015.01.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Rangarajan V, Dhanarajan G, Sen R. Bioprocess design for selective enhancement of fengycin production by a marine isolate Bacillus megaterium. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Willenbacher J, Rau JT, Rogalla J, Syldatk C, Hausmann R. Foam-free production of Surfactin via anaerobic fermentation of Bacillus subtilis DSM 10(T). AMB Express 2015; 5:21. [PMID: 25852998 PMCID: PMC4385232 DOI: 10.1186/s13568-015-0107-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/04/2015] [Indexed: 11/11/2022] Open
Abstract
Surfactin is one of the most popular biosurfactants due to its numerous potential applications. The usually aerobic production via fermentation of Bacillus subtilis is accompanied by vigorous foaming which leads to complex constructions and great expense. Therefore it is reasonable to search for alternative foam-free production processes. The current study introduces a novel approach to produce Surfactin in a foam-free process applying a strictly anaerobic bioreactor cultivation. The process was performed several times with different glucose concentrations in mineral salt medium. The fermentations were analyzed regarding specific (qSurfactin, vol. qSurfactin) and overall product yields (YP/X, YP/S) as well as substrate utilization (YX/S). Fermentations in which 2.5 g/L glucose were employed proofed to be the most effective, reaching product yields of YP/X = 0.278 g/g. Most interesting, the product yields exceeded classical aerobic fermentations, in which foam fractionation was applied. Additionally, values for specific production rate qSurfactin (0.005 g/(g∙h)) and product yield per consumed substrate (YP/S = 0.033 g/g) surpass results of comparable foam-free processes. The current study introduces an alternative to produce a biosurfactant that overcomes the challenges of severe foaming and need for additional constructions.
Collapse
|
38
|
Huang X, Liu J, Wang Y, Liu J, Lu L. The positive effects of Mn 2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332. BIOTECHNOL BIOTEC EQ 2015; 29:381-389. [PMID: 26019656 PMCID: PMC4433937 DOI: 10.1080/13102818.2015.1006905] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/16/2014] [Indexed: 11/24/2022] Open
Abstract
Surfactin, one of the most effective biosurfactants, has great potential in commercial applications. Studies on effective methods to reduce surfactin's production cost are always a hotspot in the research field of biosurfactants. The aim of this study was to reveal the role of Mn2+ in promoting the biosynthesis of surfactin by Bacillus subtilis ATCC 21332, which could arise more targeted suggestions on surfactin yield promotion. In this study, B.subtilis was cultivated in media containing different Mn2+ concentrations. The obtained results showed that the yield of surfactin gradually increased upon Mn2+ addition (0.001 to 0.1 mmol/L) and achieved the maximal production of 1500 mg/L, which reached 6.2-fold of the yield obtained in media without Mn2+ addition. Correspondingly, the usage ratios of ammonium nitrate were improved. When the Mn2+ concentration was higher than 0.05 mmol/L, nitrate became the main nitrogen source, instead of ammonium, indicating that the nitrogen utilization pattern was also changed. An increase in nitrate reductase activity was observed and the increase upon Mn2+ dosage had a positive correlate with nitrate use, and then stimulated secondary metabolic activity and surfactin synthesis. On the other hand, Mn2+ enhanced the glutamate synthase activity, which increased nitrogen absorption and transformation and provided more free amino acids for surfactin synthesis.
Collapse
Affiliation(s)
- Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of the Ministry of Education, the Collaborative Innovation Center of Advanced Technology and Equipment for Water Pollution Control, the Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai, China
| | - Jia'nan Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of the Ministry of Education, the Collaborative Innovation Center of Advanced Technology and Equipment for Water Pollution Control, the Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai, China
| | - Yihan Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of the Ministry of Education, the Collaborative Innovation Center of Advanced Technology and Equipment for Water Pollution Control, the Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of the Ministry of Education, the Collaborative Innovation Center of Advanced Technology and Equipment for Water Pollution Control, the Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai, China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of the Ministry of Education, the Collaborative Innovation Center of Advanced Technology and Equipment for Water Pollution Control, the Collaborative Innovation Center for Regional Environmental Quality, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Pretorius D, van Rooyen J, Clarke KG. Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. N Biotechnol 2014; 32:243-52. [PMID: 25541516 DOI: 10.1016/j.nbt.2014.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
Food security to sustain increasing populations is a global concern. A major factor threatening food security is crop spoilage during postharvest storage. Reduction of postharvest spoilage has mainly been addressed by the application of synthetic chemicals. Bacillus lipopeptides, specifically lipopeptide homologues exhibiting antifungal efficacy, offer an alternative environmentally benign protocol for reduction of postharvest phytopathogens. This work is directed towards Bacillus lipopeptide production for biocontrol of postharvest phytopathogens in general and fungal phytopathogens in particular. Bacillus amyloliquefaciens DSM 23117 was identified as an organism with superior potential for lipopeptide production, via screening of 4 Bacillus candidates, in terms of antifungal lipopeptide concentration, yield, productivity and preferred homologue ratio. Efficacy of B. amyloliquefaciens lipopeptides against Botrytis cinerea substantiated appropriateness of this Bacillus species. Subsequent process modification of B. amyloliquefaciens cultures demonstrated that the concentration and ratio of the lipopeptides were significantly influenced by process conditions and further, distinguished nitrate and oxygen availability as key parameters defining optimal lipopeptide production. Discrete B. amyloliquefaciens cultures supplied with 4, 8, 10 and 12 g/L NH4NO3 demonstrated optimal lipopeptide concentration, yield and productivity, with respect to both total and antifungal lipopeptides, in the culture containing 8 g/L NH4NO3. Enhancement of total and antifungal lipopeptide kinetics similar to those quantified on increasing the nitrate from 4 to 8 g/L NH4NO3 were exhibited in B. amyloliquefaciens cultures when the oxygen in the sparge gas was increased from 21 to 30 mol%. The enhancement of lipopeptide production under conditions of increased nitrate and increased oxygen supply is explained in terms of increased availability of nitrogen for synthesis. This work has highlighted key parameters for maximisation of Bacillus lipopeptide production and manipulation of antifungal/surfactin ratios for optimum efficacy and informs on future development of process strategies towards production optimisation of antifungal lipopeptides as a green alternative to synthetic chemicals.
Collapse
Affiliation(s)
- D Pretorius
- Department of Process Engineering, University of Stellenbosch, South Africa
| | - J van Rooyen
- Department of Process Engineering, University of Stellenbosch, South Africa
| | - K G Clarke
- Department of Process Engineering, University of Stellenbosch, South Africa.
| |
Collapse
|
40
|
Sousa M, Dantas IT, Feitosa FX, Alencar AEV, Soares SA, Melo VMM, Gonçalves LRB, Sant'ana HB. Performance of a biosurfactant produced by Bacillus subtilis LAMI005 on the formation of oil / biosurfactant / water emulsion: study of the phase behaviour of emulsified systems. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2014. [DOI: 10.1590/0104-6632.20140313s00002766] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M. Sousa
- Universidade Federal do Ceará, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
A combined artificial neural network modeling–particle swarm optimization strategy for improved production of marine bacterial lipopeptide from food waste. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Amani H, Müller MM, Syldatk C, Hausmann R. Production of Microbial Rhamnolipid by Pseudomonas Aeruginosa MM1011 for Ex Situ Enhanced Oil Recovery. Appl Biochem Biotechnol 2013; 170:1080-93. [DOI: 10.1007/s12010-013-0249-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
|
43
|
Zhao P, Quan C, Jin L, Wang L, Wang J, Fan S. Effects of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibiting excellent biosurfactant properties. World J Microbiol Biotechnol 2013; 29:401-9. [PMID: 23329061 DOI: 10.1007/s11274-012-1180-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022]
Abstract
In this study, influence of three critical parameters nitrogen sources, initial pH and metal ions was discussed in the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426. The results revealed that lipopeptide biosynthesis might have relations with the population density of strain Q-426 and some special amino acids. Also, the alkali-resistant strain Q-426 could grow well in the presence of Fe(2+) ions below 0.8 M l(-1) and still maintain the competitive advantage below 0.2 M l(-1). Moreover, lipopeptides exhibited significant inhibitory activities against Curvularia lunata (Walk) Boed even at the extreme conditions of temperature, pH and salinity. Finally, biosurfactant properties of lipopeptides mixture were evaluated by use with totally six different methods including bacterial adhesion to hydrocarbons assay, lipase activity, hemolytic activity, emulsification activity, oil displacement test and surface tension measurement. The research suggested that B. amyloliquefaciens Q-426 may have great potential in agricultural and environmental fields.
Collapse
Affiliation(s)
- Pengchao Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhong-shan Road, Dalian 116023, China.
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Freitas de Oliveira DW, Lima França ÍW, Nogueira Félix AK, Lima Martins JJ, Aparecida Giro ME, Melo VMM, Gonçalves LRB. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf B Biointerfaces 2013; 101:34-43. [DOI: 10.1016/j.colsurfb.2012.06.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/02/2012] [Accepted: 06/12/2012] [Indexed: 11/30/2022]
|
46
|
Sousa M, Melo VMM, Rodrigues S, Sant'ana HB, Gonçalves LRB. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess Biosyst Eng 2012; 35:897-906. [PMID: 22218992 DOI: 10.1007/s00449-011-0674-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 12/21/2011] [Indexed: 12/01/2022]
Abstract
Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8 ± 0.0 and 27.1 ± 0.1 mN m(-1), respectively. Additionally, at 72 h of cultivation, 441.06 and 267.56 mg L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.
Collapse
Affiliation(s)
- M Sousa
- Department of Chemical Engineering, Federal University of Ceara, Fortaleza, Brazil
| | | | | | | | | |
Collapse
|
47
|
Xia WJ, Dong HP, Yu L, Yu DF. Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.09.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
48
|
Behary N, Perwuelz A, Campagne C, Lecouturier D, Dhulster P, Mamede AS. Adsorption of surfactin produced from Bacillus subtilis using nonwoven PET (polyethylene terephthalate) fibrous membranes functionalized with chitosan. Colloids Surf B Biointerfaces 2011; 90:137-43. [PMID: 22056081 DOI: 10.1016/j.colsurfb.2011.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
Abstract
This article deals with an alternative method for bio-separation of surfactin produced by Bacillus subtilis using sorption method on nonwoven PET (polyethylene terephthalate) fibrous membranes functionalized with chitosan. In the first part of the study, surface functionalization of the PET nonwoven fibrous membranes is carried out with aqueous 65% deacetylated chitosan solution with or without a prior surface activation using air-atmospheric plasma treatment. Very small modification of the PET fibrous nonwoven air-permeability confirms the functionalization of PET fibre surface with little reduction of membrane porosity. The functionalized membranes are then characterized by physico-chemical methods: X-ray Photoelectron Spectroscopy (XPS), Wettability and zeta potential. Chitosan increases drastically the zeta potential of PET at all pH values though a prior plasma treatment of the PET membrane reduces slightly the increase in zeta potential values. Sorption of surfactin quantified by HPLC shows that the extent of surfactin sorption on PET nonwovens depends on the surface functionalization method. Surface functionalization with chitosan results in immediate sorption of the entire quantity of surfactin. A prior surface activation by air atmospheric plasma treatment of the PET membranes before chitosan application retards the sorption of entire surfactin which takes place after 1.5h, only. Increased zeta potential and increased hydrophobic behavior in the presence of chitosan without plasma activation would explain the interesting surfactin sorption results.
Collapse
Affiliation(s)
- N Behary
- Ecole Nationale Supérieure des Arts et Industrie Textiles (ENSAIT), Laboratoire de Génie et Matériaux Textiles (GEMTEX), Roubaix, France.
| | | | | | | | | | | |
Collapse
|
49
|
Prediction of proton exchange and bacterial growth on various substrates using constraint-based modeling approach. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-011-0115-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl Microbiol Biotechnol 2011; 91:1083-93. [DOI: 10.1007/s00253-011-3326-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
|