1
|
The Role of Preservatives and Multifunctionals on the Oxidation of Cosmetic O/W Emulsions. COSMETICS 2022. [DOI: 10.3390/cosmetics9030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Preservatives are typically used to protect cosmetic products from microbial spoilage. However, there is evidence that some preservatives can increase oxidation in O/W emulsions. This could have disadvantages for product quality, efficacy, and consumer health and well-being. Therefore, the impact of preservatives or multifunctionals on oxidation should be quantified. For this purpose, five O/W emulsions with different preservatives were prepared and stored. During storage, the oxygen concentration in the headspace of the samples was studied. The samples showed significant differences in their oxygen uptake and daily oxygen consumption rate. Thus, the preservatives used in this study had an influence on oxidation.
Collapse
|
2
|
He Y, Xie Z, Zhang H, Liebl W, Toyama H, Chen F. Oxidative Fermentation of Acetic Acid Bacteria and Its Products. Front Microbiol 2022; 13:879246. [PMID: 35685922 PMCID: PMC9171043 DOI: 10.3389/fmicb.2022.879246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acetic acid bacteria (AAB) are a group of Gram-negative, strictly aerobic bacteria, including 19 reported genera until 2021, which are widely found on the surface of flowers and fruits, or in traditionally fermented products. Many AAB strains have the great abilities to incompletely oxidize a large variety of carbohydrates, alcohols and related compounds to the corresponding products mainly including acetic acid, gluconic acid, gulonic acid, galactonic acid, sorbose, dihydroxyacetone and miglitol via the membrane-binding dehydrogenases, which is termed as AAB oxidative fermentation (AOF). Up to now, at least 86 AOF products have been reported in the literatures, but no any monograph or review of them has been published. In this review, at first, we briefly introduce the classification progress of AAB due to the rapid changes of AAB classification in recent years, then systematically describe the enzymes involved in AOF and classify the AOF products. Finally, we summarize the application of molecular biology technologies in AOF researches.
Collapse
Affiliation(s)
- Yating He
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhen Xie
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Hirohide Toyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
3
|
Abstract
Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is possible. In this contribution, we outline the current state-of-the-art and discuss current limitations and promising solutions.
Collapse
|
4
|
Modified liquid–liquid interface cultivation system with floating microspheres and binder micro-pieces for slow-growing or unicellular microorganisms: Application to interfacial bioconversions with an actinomycete and yeasts. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
de Almeida TP, van Schie MMCH, Ma A, Tieves F, Younes SHH, Fernández-Fueyo E, Arends IWCE, Riul A, Hollmann F. Efficient Aerobic Oxidation of trans
-2-Hexen-1-ol using the Aryl Alcohol Oxidase from Pleurotus eryngii. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- T. P. de Almeida
- Department of Biotechnology; Delft University of Technology, The; Netherlands
| | | | - A. Ma
- Department of Biotechnology; Delft University of Technology, The; Netherlands
| | - F. Tieves
- Department of Biotechnology; Delft University of Technology, The; Netherlands
| | - S. H. H. Younes
- Department of Biotechnology; Delft University of Technology, The; Netherlands
- Department of Chemistry, Faculty of Science; Sohag University; Sohag 82524 Egypt
| | - E. Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology, The; Netherlands
| | | | - A. Riul
- Department of Applied Physics, “Gleb Wataghin” Institute of Physics (IFGW); University of Campinas (UNICAMP), SP; Brazil
| | - F. Hollmann
- Department of Biotechnology; Delft University of Technology, The; Netherlands
| |
Collapse
|
6
|
Mihaľ M, Červeňanský I, Markoš J. Investigation of membrane bioreactor for in situ product removal based on silicone rubber membrane module. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-018-00672-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Ye Y, Guo H, Sun X. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 2018; 126:389-404. [PMID: 30469077 DOI: 10.1016/j.bios.2018.10.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Food quality and safety has become a subject of major concern for authorities and professionals in the food supply chain. Rapid methods, particularly biosensors, have exceptional specificity and sensitivity, rapid response times, low cost, relatively compact size, and are user friendly to operate. Cell-based biosensors are portable, and provide the biological activity of the analyte suitable for an initial screening of food. In this overview, the utilization of cell-based biosensors for food safety and quality analyses, such as detecting toxins, foodborne pathogens, allergens, and evaluating toxicity and function are summarized. Our results will promote the future development of cell-based biosensors in the food field.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
8
|
Dynamics and Biodiversity of Bacterial and Yeast Communities during Fermentation of Cocoa Beans. Appl Environ Microbiol 2018; 84:AEM.01164-18. [PMID: 30054357 DOI: 10.1128/aem.01164-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 11/20/2022] Open
Abstract
Forastero hybrid cocoa bean fermentations have been carried out in a box (B) and in a heap (H), with or without the inoculation of Saccharomyces cerevisiae and Torulaspora delbrueckii as starter cultures. The bacteria, yeasts, and microbial metabolites (volatile and nonvolatile organic compounds) were monitored during fermentation to assess the connection between microbiota and the release of metabolites during this process. The presence of starter cultures was detected, by means of culture-dependent analysis, during the first 2 days of both fermentations. However, no statistical difference was observed in any of the physicochemical or microbiological analyses. Plate counts revealed the dominance of yeasts at the beginning of both fermentations, and these were followed by acetic acid bacteria (AAB) and lactic acid bacteria (LAB). Hanseniaspora opuntiae, S. cerevisiae, Pichia pijperi, Acetobacter pasteurianus, and Lactobacillus fermentum were the most abundant operational taxonomic units (OTUs) during both fermentation processes (B and H), although different relative abundances were observed. Only the diversity of the fungal species indicated a higher level of complexity in the B fermentations than in the H fermentations (P < 0.05), as well as a statistically significant difference between the initially inoculated starter cultures (P < 0.01). However, the microbial metabolite analysis indicated different distributions of the volatile and nonvolatile compounds between the two procedures, that is, B and H (P < 0.05), rather than between the inoculated and noninoculated fermentations. The box fermentations showed faster carbohydrate metabolism and greater production of organic acid compounds, which boosted the formation of alcohols and esters, than did the heap fermentations. Overall, the microbial dynamics and associations between the bacteria, yeasts, and metabolites were found to depend on the type of fermentation.IMPORTANCE In spite of the limited effectiveness of the considered inoculated starter strains, this study provides new information on the microbial development of box and heap cocoa fermentations, under inoculated and noninoculated conditions, as we coupled yeast/bacterial amplicon-based sequencing data with microbial metabolite detection. The information so far available suggests that microbial communities have played an important role in the evolution of aroma compounds. Understanding the pathways that microorganisms follow during the formation of aromas could be used to improve the fermentation processes and to enhance chocolate quality.
Collapse
|
9
|
Oelschlägel M, Richter L, Stuhr A, Hofmann S, Schlömann M. Heterologous production of different styrene oxide isomerases for the highly efficient synthesis of phenylacetaldehyde. J Biotechnol 2017; 252:43-49. [PMID: 28472670 DOI: 10.1016/j.jbiotec.2017.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022]
Abstract
The styrene oxide isomerase (SOI, StyC) represents a key enzyme of the styrene-degrading pathway and has been discussed as promising biocatalyst during recent studies. The enzyme enables the synthesis of pure phenylacetaldehyde from styrene oxide. In this study the native as well as the corresponding codon-optimized genes of three different SOIs from Rhodococcus opacus 1CP (StyC-1CP), Sphingopyxis fribergensis Kp5.2 (StyC-Kp5.2), and Pseudomonas fluorescens ST (StyC-ST) were investigated for the expression in Escherichia coli BL21(DE3)pLysS. Specific enzyme activities of 61.9±7.5Umg-1, 23.2±2.8Umg-1, and 10.9±1.2Umg-1 were achieved after 6-9h for the codon-optimized gene of strain 1CP and the native genes of Kp5.2 and ST, respectively. Afterwards, these enzymes were enriched and applied for biotransformation studies. A complete conversion of 150mM styrene oxide to phenylacetaldehyde was observed for the enzyme StyC-Kp5.2 indicating a significantly improved stability towards product inactivation. Remarkably, more than 300mM product (>36gL-1, yield of about 80%) were finally synthesized from 400mM substrate with 150U of this enzyme within 60-120min. This represents the highest product concentration which has been reached with this type of enzymes, so far.
Collapse
Affiliation(s)
- Michel Oelschlägel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Lysann Richter
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Anna Stuhr
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Sarah Hofmann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Michael Schlömann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| |
Collapse
|
10
|
Selective gas phase isomerization of styrene oxide to phenylacetaldehyde in a steel tube reactor. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-016-1115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Bioproduction of phenylacetic acid in airlift reactor by immobilized Gluconobacter oxydans. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0062-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Bertóková A, Vikartovská A, Bučko M, Gemeiner P, Tkáč J, Chorvát D, Štefuca V, Neděla V. Biooxidation of 2-phenylethanol to phenylacetic acid by whole-cellGluconobacter oxydansbiocatalyst immobilized in polyelectrolyte complex capsules. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1053470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Production of a recombinant membrane protein in an Escherichia coli strain for the whole cell biosynthesis of phenylacetic acids. ACTA ACUST UNITED AC 2015. [PMID: 28626713 PMCID: PMC5466041 DOI: 10.1016/j.btre.2015.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The styrene oxide isomerase (SOI) represents a membrane-bound enzyme of the microbial styrene degradation pathway and has been discussed as promising biocatalyst. It catalyzes the isomerization of styrene oxide to phenylacetaldehyde. In this study a styC gene, which encodes the SOI of Rhodococcus opacus 1CP, was optimized for optimal expression in Escherichia coli BL21(DE3) pLysS. The expression of this synthetic styC was investigated and subsequently optimized. Highly active biomass was obtained yielding an SOI activity of 44.5 ± 8.7 U mg−1 after 10 h. This represents the highest SOI activity reported for crude cell extracts of SOI-containing bacterial strains. Remarkably, this biomass can be applied as whole cell biocatalyst for the production of phenylacetic acids from styrene oxides. In the case of non-substituted styrene oxide, nearly 730 mg l−1 phenylacetic acid (∼85% yield) was formed over a period of 20 days.
Collapse
|
14
|
Schenkmayerová A, Bertóková A, Šefčovičová J, Štefuca V, Bučko M, Vikartovská A, Gemeiner P, Tkáč J, Katrlík J. Whole-cell Gluconobacter oxydans biosensor for 2-phenylethanol biooxidation monitoring. Anal Chim Acta 2015; 854:140-4. [DOI: 10.1016/j.aca.2014.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/26/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
15
|
|
16
|
|
17
|
Kara S, Spickermann D, Schrittwieser JH, Weckbecker A, Leggewie C, Arends IWCE, Hollmann F. Access to Lactone Building Blocks via Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactonization. ACS Catal 2013. [DOI: 10.1021/cs400535c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Selin Kara
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | - Joerg H. Schrittwieser
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | - Isabel W. C. E. Arends
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| |
Collapse
|
18
|
|
19
|
Churakova E, Arends IWCE, Hollmann F. Increasing the Productivity of Peroxidase-Catalyzed Oxyfunctionalization: A Case Study on the Potential of Two-Liquid-Phase Systems. ChemCatChem 2012. [DOI: 10.1002/cctc.201200490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Contente M, Granato T, Remelli W, Zambelli P, Raimondi S, Rossi M, Romano D. Complementary microbial approaches for the preparation of optically pure aromatic molecules. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0557-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
|
22
|
Fragnelli MC, Hoyos P, Romano D, Gandolfi R, Alcántara AR, Molinari F. Enantioselective reduction and deracemisation using the non-conventional yeast Pichia glucozyma in water/organic solvent biphasic systems: preparation of (S)-1,2-diaryl-2-hydroxyethanones (benzoins). Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 2011; 29:654-60. [DOI: 10.1016/j.biotechadv.2011.05.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/25/2011] [Accepted: 05/01/2011] [Indexed: 11/21/2022]
|
24
|
Highly Selective Oxidation of Benzyl Alcohol Using Engineered Gluconobacter Oxydans in Biphasic System. Curr Microbiol 2010; 62:1123-7. [DOI: 10.1007/s00284-010-9831-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 11/22/2010] [Indexed: 11/25/2022]
|
25
|
Wu J, Wang JL, Li MH, Lin JP, Wei DZ. Optimization of immobilization for selective oxidation of benzyl alcohol by Gluconobacter oxydans using response surface methodology. BIORESOURCE TECHNOLOGY 2010; 101:8936-8941. [PMID: 20667717 DOI: 10.1016/j.biortech.2010.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 05/29/2023]
Abstract
This study used the Box-Behnken design and response surface methodology to optimize immobilization of Gluconobacter oxydans in Ca-alginate gel for the production of benzaldehyde in a biphasic system. Immobilization parameters, such as Na-alginate concentration, cell load, and bead diameter, were optimized. The mathematical model developed was validated and proven to be statistically adequate and accurate in predicting the response. For both activity and stability responses, the best results were achieved at alginate concentration of 2.55% (w/v), cell load of 49.26 mg/ml, and 2.2 mm bead diameter. Under these conditions, retention activity of 87.6% could be attained for the immobilized cell. In addition, the oxidative activity of immobilized cells was retained at 53.2% compared with that of free cells after 10 repeated batch reactions, while only 15.7% of activity remained in free cells.
Collapse
Affiliation(s)
- Jian Wu
- New World Institute of Biotechnology, State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
26
|
Xing Y, Wang S, Mao X, Zhao X, Wei D. An Easy and Efficient Fluorescent Method for Detecting Aldehydes and Its Application in Biotransformation. J Fluoresc 2010; 21:587-94. [DOI: 10.1007/s10895-010-0746-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/05/2010] [Indexed: 11/30/2022]
|
27
|
Gao K, Song Q, Wei D. Coupling of enantioselective biooxidation of dl-1,2-propanediol and bioreduction of pinacolone via regeneration cycle of coenzyme. Appl Microbiol Biotechnol 2006; 71:819-23. [PMID: 16489454 DOI: 10.1007/s00253-005-0231-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/21/2005] [Accepted: 10/22/2005] [Indexed: 10/25/2022]
Abstract
Enantioselective biotransformation of DL-1,2-propanediol to D-2-hydroxypropanic acid was first reported by the authors. In the biooxidation process, there were some by-product formed and thus influenced the e.e. value and output of the acid. Restricting oxygen in the reaction system and offering additional proton receptor to the system displayed approving effect. The latter method constructed regeneration cycle system of coenzyme. In the article, the bioreduction of pinacolone was coupled to the enantioselective oxidation. Yield of the acid was increased by 36% and e.e. value of the product approached 99%.
Collapse
Affiliation(s)
- Keliang Gao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | | | | |
Collapse
|
28
|
du Toit WJ, Pretorius IS, Lonvaud-Funel A. The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J Appl Microbiol 2005; 98:862-71. [PMID: 15752332 DOI: 10.1111/j.1365-2672.2004.02549.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The objective of this study was to investigate the effects of free molecular and bound forms of sulphur dioxide and oxygen on the viability and culturability of a selected strain of Acetobacter pasteurianus and a selected strain of Brettanomyces bruxellensis in wine. METHODS AND RESULTS Acetic acid bacteria and Brettanomyces/Dekkera yeasts associated with wine spoilage were isolated from bottled commercial red wines. One bacterium, A. pasteurianus strain A8, and one yeast, B. bruxellensis strain B3a, were selected for further study. The resistance to sulphur dioxide and the effect of oxygen addition on these two selected strains were determined by using plating and epifluorescence techniques for monitoring cell viability in wine. Acetobacter pasteurianus A8 was more resistant to sulphur dioxide than B. bruxellensis B3a, with the latter being rapidly affected by a short exposure time to free molecular form of sulphur dioxide. As expected, neither of these microbial strains was affected by the bound form of sulphur dioxide. The addition of oxygen negated the difference observed between plate and epifluorescence counts for A. pasteurianus A8 during storage, while it stimulated growth of B. bruxellensis B3a. CONCLUSIONS Acetobacter pasteurianus A8 can survive under anaerobic conditions in wine in the presence of sulphur dioxide. Brettanomyces bruxellensis B3a is more sensitive to sulphur dioxide than A. pasteurianus A8, but can grow in the presence of oxygen. Care should be taken to exclude oxygen from contact with wine when it is being transferred or moved. SIGNIFICANCE AND IMPACT OF THE STUDY Wine spoilage can be avoided by preventing growth of undesirable acetic acid bacteria and Brettanomyces/Dekkera yeasts through the effective use of sulphur dioxide and the management of oxygen throughout the winemaking process.
Collapse
Affiliation(s)
- W J du Toit
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, 7602 Maitland (Stellenbosch), South Africa.
| | | | | |
Collapse
|
29
|
Gandolfi R, Cavenago K, Gualandris R, Sinisterra Gago JV, Molinari F. Production of 2-phenylacetic acid and phenylacetaldehyde by oxidation of 2-phenylethanol with free immobilized cells of Acetobacter aceti. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00185-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Çelik D, Bayraktar E, Mehmetoğlu Ü. Biotransformation of 2-phenylethanol to phenylacetaldehyde in a two-phase fed-batch system. Biochem Eng J 2004. [DOI: 10.1016/s1369-703x(03)00119-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Stark D, von Stockar U. In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 80:149-75. [PMID: 12747544 DOI: 10.1007/3-540-36782-9_5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review sums up the activity in the field of in situ product removal in whole cell bioprocesses over the last 20 years. It gives a complete summary of ISPR operations with microbial cells and cites a series of interesting ISPR applications in plant and animal cell technology. All the ISPR projects with microbial cells are categorized according to their products, their ISPR techniques, and their applied configurations of the ISPR set-up. Research on ISPR application has primarily increased in the field of microbial production of aromas and organic acids such lactic acid over the last ten years. Apart from the field of de novo formation of bioproducts, ISPR is increasingly applied to microbial bioconversion processes. However, despite of the large number of microbial whole cell ISPR projects (approximately 250), very few processes have been transferred to an industrial scale. The proposed processes have mostly been too complex and consequently not cost effective. Therefore, this review emphasizes that the planning of a successful whole cell ISPR process should not only consider the choice of ISPR technique according to the physicochemical properties of the product, but also the potential configuration of the whole process set-up. Furthermore, additional process aspects, biological and legal constraint need to be considered from the very beginning for the design of an ISPR project. Finally, future trends of new, modified or improved ISPR techniques are given.
Collapse
Affiliation(s)
- Daniel Stark
- Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | | |
Collapse
|
32
|
Fernandes P, Prazeres DMF, Cabral JMS. Membrane-assisted extractive bioconversions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 80:115-48. [PMID: 12747543 DOI: 10.1007/3-540-36782-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This chapter summarizes the use of membrane reactors in extractive bioconversions as process integration systems leading to in situ product recovery. Several membrane reactor configurations are analyzed, taking into account the type of bioconversion, biocatalyst type and location (either in the aqueous phase or in the membrane), membrane chemistry and morphology, solvent (extractant) type and its biocompatibility. Modeling of liquid-liquid extractive membrane bioreactors operation is also analyzed considering kinetics and mass-transfer aspects. The chapter includes examples from the authors' laboratory as well as other published in the field. Both enzyme and whole cell-based bioconversions are considered. Relevant aspects related to the solvent (extractant) toxicity and how the membrane could protect the biocatalytic activity are analyzed. Trends in this field are also given.
Collapse
Affiliation(s)
- Pedro Fernandes
- Center for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais,1049-001 Lisboa, Portugal
| | | | | |
Collapse
|
33
|
Villa R, Romano A, Gandolfi R, Sinisterra Gago JV, Molinari F. Chemoselective oxidation of primary alcohols to aldehydes with Gluconobacter oxydans. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)01221-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Gandolfi R, Ferrara N, Molinari F. An easy and efficient method for the production of carboxylic acids and aldehydes by microbial oxidation of primary alcohols. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(00)02008-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|