1
|
Mousavi SS, Keshvari H, Daemi H. Partial sulfation of gellan gum produces cytocompatible, body temperature-responsive hydrogels. Int J Biol Macromol 2023; 235:123525. [PMID: 36841392 DOI: 10.1016/j.ijbiomac.2023.123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Gellan gum (GG) is a biodegradable polysaccharide and forms thermosensitive hydrogels by a helix-mediated mechanism. Unfortunately, the wide use of GG in tissue engineering has been restricted due to its dramatically higher gelation temperature than normal body temperature. Here, we show that partial sulfation of GG affords a cytocompatible body temperature-responsive hydrogel with an interesting thermoreversibility at 42 °C. The partial sulfation of GG was confirmed by FTIR, EDX and elemental analyses. The sulfated GGs (SGGs) had a higher swelling ratio and degradation in PBS compared to the neat GG. Based on the results of rheometry analysis, the SGG with a degree of sulfation of 0.27 (H3 sample) showed a gelation temperature close to the physiological temperature. In addition, the drop in mechanical properties of SGGs was compensated by a further calcium-mediated ionic crosslinking, where Young's modulus of H3 increased from 10.6 ± 1.9 kPa up to 38.4 ± 5.5 kPa. Finally, we showed that the partial sulfation reaction of GG is a simple and mild strategy to modify chemical structure of GG, and to produce a cytocompatible, body temperature-responsive hydrogel compared to other modifying reactions such as oxidation reaction.
Collapse
Affiliation(s)
- Seyed Saeed Mousavi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan institute, Tehran, Iran
| | - Hamid Keshvari
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Hamed Daemi
- Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan institute, Tehran, Iran.
| |
Collapse
|
2
|
Zayed A, Mansour MK, Sedeek MS, Habib MH, Ulber R, Farag MA. Rediscovering bacterial exopolysaccharides of terrestrial and marine origins: novel insights on their distribution, biosynthesis, biotechnological production, and future perspectives. Crit Rev Biotechnol 2021; 42:597-617. [PMID: 34320886 DOI: 10.1080/07388551.2021.1942779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bacteria exist in colonies as aggregates or associated with surfaces forming biofilms rather than planktonic cells. Living in such a unique manner is always mediated via a matrix of extracellular polymeric substances, which are composed mainly of polysaccharides or specifically exopolysaccharides (EPS). Biofilm formation and hence EPS production are affected by biotic and abiotic factors inducing/inhibiting several involved genes and other molecules. In addition, various aspects of bacterial EPS regarding: physiological functions, molecular weight, and chemical composition were demonstrated. Recent investigations have revealed a wide spectrum of EPS chemical and physicochemical properties showing promising applications in different industrial sectors. For instance, lactic acid bacteria (LAB)- and marine-derived EPS exhibit: immunomodulatory, antioxidant, antitumor, bioremediation of heavy metals, as well as thickening and viscosity modifiers in the food industry. However, bacterial EPS have not yet been commercially implemented, in contrast to plant-derived analogues. The current review aims to rediscover the EPS structural and biosynthetic features derived from marine and terrestrial bacteria, and applications as well.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt.,Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mai K Mansour
- Department of Medicinal Plants and Natural Products, National Organization for Drug Control and Research, Giza, Egypt
| | - Mohamed S Sedeek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed H Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
3
|
Miura Y, Tanemura H, Fujimoto M, Hamada K, Miyamoto K, Toma N, Imanaka-Yoshida K, Matsushima S, Yoshida T, Taki W, Suzuki H. Aneurysm Organization Effects of Gellan Sulfate Core Platinum Coil with Tenascin-C in a Simulated Clinical Setting and the Possible Mechanism. J Stroke Cerebrovasc Dis 2016; 25:771-80. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 12/01/2022] Open
|
4
|
Roca C, Alves VD, Freitas F, Reis MAM. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiol 2015; 6:288. [PMID: 25914689 PMCID: PMC4392319 DOI: 10.3389/fmicb.2015.00288] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022] Open
Abstract
Microbial extracellular polysaccharides (EPS), produced by a wide range of bacteria, are high molecular weight biopolymers, presenting an extreme diversity in terms of chemical structure and composition. They may be used in many applications, depending on their chemical and physical properties. A rather unexplored aspect is the presence of rare sugars in the composition of some EPS. Rare sugars, such as rhamnose or fucose, may provide EPS with additional biological properties compared to those composed of more common sugar monomers. This review gives a brief overview of these specific EPS and their producing bacteria. Cultivation conditions are summarized, demonstrating their impact on the EPS composition, together with downstream processing. Finally, their use in different areas, including cosmetics, food products, pharmaceuticals, and biomedical applications, are discussed.
Collapse
Affiliation(s)
- Christophe Roca
- Research Unit on Applied Molecular Biosciences, Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Caparica, Portugal
| | - Vitor D Alves
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa , Lisboa, Portugal
| | - Filomena Freitas
- Research Unit on Applied Molecular Biosciences, Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Caparica, Portugal
| | - Maria A M Reis
- Research Unit on Applied Molecular Biosciences, Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Caparica, Portugal
| |
Collapse
|
5
|
Ikemura S, Hasegawa M, Iino T, Miyamoto K, Imanaka-Yoshida K, Yoshida T, Sudo A. Effect of tenascin-C on the repair of full-thickness osteochondral defects of articular cartilage in rabbits. J Orthop Res 2015; 33:563-71. [PMID: 25428773 DOI: 10.1002/jor.22794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/24/2014] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to examine the effect of tenascin-C (TNC) on the repair of full-thickness osteochondral defects of articular cartilage in vivo. We used a gellan-gellan-sulfate sponge (Gellan-GS) to maintain a TNC-rich environment in the cartilage defects. We implanted Gellan-GS soaked in PBS only (Group 1), Gellan-GS soaked in 10 µg/ml of TNC (Group 2), and Gellan-GS soaked in 100 µg/ml of TNC (Group 3) into a full-thickness osteochondral defect of the patellar groove of rabbits. The defect area was examined grossly and histologically 4-12 weeks after surgery. Sections of synovium were also immunohistochemically investigated. Histologically as well as macroscopically, the defects in Group 2 showed better repair than the other groups at 8 and 12 weeks after surgery. Inflammation of the synovium tended to diminish over time in all groups, and the degree of synovitis was the same for all three groups at each time point. In conclusion, Gellan-GS soaked in TNC can be used as a novel scaffold for the repair of articular cartilage defects. This study also indicates that TNC promotes the repair of full-thickness osteochondral defects in vivo.
Collapse
Affiliation(s)
- Shigeto Ikemura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Ertürk G, Mattiasson B. Cryogels-versatile tools in bioseparation. J Chromatogr A 2014; 1357:24-35. [DOI: 10.1016/j.chroma.2014.05.055] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022]
|
7
|
Hamada K, Miura Y, Toma N, Miyamoto K, Imanaka-Yoshida K, Matsushima S, Yoshida T, Taki W, Suzuki H. Gellan sulfate core platinum coil with tenascin-C promotes intra-aneurysmal organization in rats. Transl Stroke Res 2014; 5:595-603. [PMID: 24939607 DOI: 10.1007/s12975-014-0352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
The aims of this study were to develop a new coil, gellan sulfate core platinum coil (GSCC), that delivers tenascin-C (TNC) to an aneurysm (GSCC-TNC) and to evaluate the effects on intra-aneurysmal organization. We performed in vitro adsorption tests of TNC to gellan sulfate (GS). GSCC-TNC was produced by immersing GSCC in TNC solution under the following conditions (TNC concentration 10, 50, or 100 μg/mL; TNC immersion time 15, 30, or 60 min) by monitoring intra-aneurysmal organization in a rat blind-ended aneurysm model. In addition, 20 rats randomly underwent implantation of a platinum coil or the GSCC-TNC produced under optimum conditions into an aneurysm, whose organization effects were compared in a blind fashion at 2 weeks post-surgery. GS demonstrated a high affinity to TNC in a dose-dependent fashion (affinity constant = 1.79 × 10(10) (M(-1))). GSCC immersed in 10 μg/mL of TNC solution for 30 and 60 min induced similar and better organization of aneurysmal cavity compared with that for 15 min (the ratio of the organized areas in an aneurysmal cavity-15 min, 27.2 ± 11.8 %; 30 min, 75.6 ± 11.9 %; 60 min, 82.6 ± 19.7 %, respectively) with the preservation of the aneurysmal wall structure, while higher TNC concentrations caused the destruction of the aneurysmal wall. GSCC-TNC produced under 10 μg/mL of TNC solution for 30 min showed a significantly better organization of aneurysms compared with bare platinum coils in rats. A newly developed coil, GSCC-TNC, may be effective for improving intra-aneurysmal organization after coil embolization.
Collapse
Affiliation(s)
- Kazuhide Hamada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Application of gellan gum in pharmacy and medicine. Int J Pharm 2014; 466:328-40. [DOI: 10.1016/j.ijpharm.2014.03.038] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/01/2023]
|
9
|
Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro. Sci Rep 2014; 4:4723. [PMID: 24740150 PMCID: PMC3989555 DOI: 10.1038/srep04723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/01/2014] [Indexed: 11/08/2022] Open
Abstract
Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity.
Collapse
|
10
|
Miyamoto K, Sato I, Tsutsui M, Uchino M, Takasaki S, Takebayashi T, Shimizu Y, Nobori T, Abe Y, Horiuchi T. Gellan sulfate selectively suppresses the activation of hemocoagulation factors XI and XII. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2009.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Yamamoto H, Ohkawa K, Nakamura E, Miyamoto K, Komai T. Preparation of Polyion Complex Capsule and Fiber of Chitosan and Gellan-Sulfate at Aqueous Interface. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2003. [DOI: 10.1246/bcsj.76.2053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Miyamoto K, Kobayashi D, Maeda R, Ito T, Komai T. Inhibition of cryogelation by the novel synthetic peptide (Gly-Arg-Lys-Lys-Thr): recognition site of extra domain A containing fibronectin for heparin in cryogelation. Int J Biol Macromol 2003; 31:207-15. [PMID: 12568929 DOI: 10.1016/s0141-8130(02)00083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cryogel is a physical gel formed by the heterophilic aggregation of extra domain A (EDA) containing fibronectin [EDA(+)FN], plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep) in the blood of rheumatoid arthritis (RA) patients. In cryogelation EDA(+)FN cross-links to form an interaggregate of cryogel with Hep. In the present study, we determined the recognition structure of Hep for EDA(+)FN by using oligo- and desulfonated-Hep. The affinity constant (KA) (1.2 x 10(8) per M) of oligo-Hep for EDA(+)FN did not change with a decrease in number-average molecular weight (4.9 x 10(4)-->6.0 x 10(3)). The KA-value of desulfonated-Hep for EDA(+)FN decreased from 3.2 x 10(8) to 1.0 x 10(7) per M with a decrease in the sulfonation ratio (7.0-->4.3%). We also determined the recognition structure of EDA(+)FN for Hep by an inhibition experiment on the heparin binding domain II (HepII) in EDA(+)FN with the synthetic peptides, Arg-Arg-Ala-Arg (RRAR), Asp-Gln-Ala-Arg (DNAR), Ile-Lys-Tyr-Glu-Lys (IKYEK), and Gly-Arg-Lys-Lys-Try (GRKKT). The GRKKT sequence clearly inhibited bonding between EDA(+)FN and Heps containing oligo- and desulfonated-Hep. The amount of cryogel formed in the RA-patient model plasma corresponded to the EDA(+)FN concentration in cryogel (36.7%) normalized by the EDA(+)FN concentration in plasma. When GRKKT was added to plasma, the EDA(+)FN concentration fell to 10.5%. These results demonstrated that inhibition of cryogelation in plasma could progress to a novel treatment for RA.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan.
| | | | | | | | | |
Collapse
|
13
|
Abstract
We have assembled references of 700 articles published in 2001 that describe work performed using commercially available optical biosensors. To illustrate the technology's diversity, the citation list is divided into reviews, methods and specific applications, as well as instrument type. We noted marked improvements in the utilization of biosensors and the presentation of kinetic data over previous years. These advances reflect a maturing of the technology, which has become a standard method for characterizing biomolecular interactions.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
14
|
Miyamoto K, Sugihara K, Abe Y, Nobori T, Tokita M, Komai T. Novel plasma-separation dilayer gellan-gellan-sulfate adsorber for direct removal of extra domain A containing fibronectin from the blood of rheumatoid arthritis patients. Int J Biol Macromol 2002; 30:197-204. [PMID: 12063122 DOI: 10.1016/s0141-8130(02)00020-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rheumatoid arthritis (RA) patients, in whom cryogelation occurs in the presence of heparin, exhibit abnormally high concentrations of extra domain A containing fibronectin [EDA(+)FN] in their plasma. The selective removal of EDA(+)FN from patient blood is therefore of potential therapeutic benefit. Gellan-sulfate is a candidate ligand for the removal of EDA(+)FN due to its high affinity for FN. In this study, we prepare a novel adsorber for the direct removal of EDA(+)FN from patient blood. The adsorber has both a plasma separation function and EDA(+)FN trapping zones, and is prepared by cross-linking gellan-sulfate with epichlorohydrine. The ratio of gellan-sulfate to gellan in the adsorber is 48%. The surface and internal structure of gellan beads were observed by a range of microscopic techniques, and the beads were found to have a dilayer structure, consisting of a porous outer layer and an underlying gellan-sulfate phase as the adsorber. The affinity constants of the gellan-sulfate beads for EDA(+)FN were almost the same in blood as in buffer because the porous gellan coating acts to separate plasma from the cellular fraction of the blood. The removal rate of plasma proteins and blood cells from mock RA blood was measured for coated and uncoated gellan-sulfate beads. Removal rates were 30-32% for EDA(+)FN, 6-10% for fibrinogen, 10-14% for antithrombin III, 8% for C3, 4-7% for C4, and 0% for albumin. The removal rates of uncoated beads were 11% for white blood cells, 0% for red blood cells and 33% for platelets, whereas removal rates of 0% for white blood cells, 0% for red blood cells and 20% for platelets were achieved for coated beads. The coating effectively inhibits the adsorption of white blood cells and platelets. Existing problems with direct adsorbers, including selectivity and plasma separation, have been solved by this material.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Chou, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Miyamoto K, Kanemoto A, Hashimoto K, Tokita M, Komai T. Immobilized gellan sulfate surface for cell adhesion and multiplication: development of cell-hybrid biomaterials using self-produced fibronectin. Int J Biol Macromol 2002; 30:75-80. [PMID: 11911896 DOI: 10.1016/s0141-8130(02)00013-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new concept for cell-hybrid biomaterial is proposed in which human unbilical vein endothelial cells (HUVEC) are adhered to an immobilized gellan sulfate (GS) surface. Extra domain A containing fibronectin (EDA(+)FN) released from HUVEC is necessary for cell adhesion and multiplication. The material design in this study is based on these self-released cell adhesion proteins. The interaction between GS and EDA(+)FN was evaluated using the affinity constant (KA); the value obtained was 1.03x10(8) (M(-1)). These results suggest that the adhesion of HUVEC to GS may be supported by the adhesion of EDA(+)FN to GS. We also found that this new material adheres to HUVEC, allowing the reintroduction of EDA(+)FN, which is self-produced by the cell. This material is relatively easy to produce, not requiring the usual coating of adhesion proteins in pretreatment.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Tsu, Japan.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Cryogel, prevalent in the plasma of rheumatoid arthritis patients, is a plasma fibronectin (pFN)-extra domain A containing FN [EDA(+)FN]-fibrinogen (Fbg) aggregate formed by the addition of heparin (Hep) at low temperature. Although EDA(+)FN is not usually present in normal plasma, its prevalence in rheumatic patients induces cryogelation. In this study, we determined the hydrodynamic radius (R(h)) ratio (R(h)/R(h30)) of the cryogel component by dynamic light scattering in vitro. R(h)/R(h30) was normalized to R(h) at 30 degrees C (R(h30)) at several temperatures. The R(h)/R(h30) of Fbg was found to increase only by self-aggregation, whereas the R(h)/R(h30) of FNs does not increase in response to temperature changes. The R(h)/R(h30) of the Fbg/FN aggregate is increased by the addition of Hep, and the R(h)/R(h30) (12.5) of the Hep-induced EDA(+)FN/Fbg aggregate is greater than that (2.5) of the pFN/Fbg aggregate. These results suggest that cryogelation requires Fbg self-aggregation and the interaction between EDA(+)FN and Hep.
Collapse
Affiliation(s)
- K Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Chou, Tsu, 514-8507, Mie, Japan.
| | | | | | | |
Collapse
|