1
|
Janbaz P, Behzadpour F, Ghanadan K. Evaluation of the Structural, Biological, and Bone Induction Properties of Sol-Gel-Derived Lithium-Doped 68S Bioactive Glass-An in Vitro Study on Human Dental Pulp Stem Cells. Clin Exp Dent Res 2025; 11:e70139. [PMID: 40304308 PMCID: PMC12042117 DOI: 10.1002/cre2.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVES Calcium silicate-based bioactive glass shows enhanced ion release capabilities and promotes the formation of hydroxyapatite (HA). This study aimed to synthesize a sol-gel-derived 68S bioactive glass (BAG) incorporating lithium (Li) and evaluate its structural, biological, and osteoinductive properties using human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS Two types of 68S BAG were synthesized using the sol-gel method: one containing 5 mol.% lithium nitrate (BGLi5) and a lithium-free control (BG). Structural characterization and HA formation were assessed using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FTIR) before and after immersion in simulated body fluid (SBF) on Days 1, 3, and 7. The dissolution rates of the specimens were evaluated using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and pH analysis. Biological activities were investigated through cell viability (MTT assay), alkaline phosphatase (ALP) enzyme activity, and alizarin red staining to assess mineralization. Additionally, the antimicrobial efficacy of the materials was tested against Streptococcus mutans (SM). RESULTS FTIR and FESEM analyses confirmed the formation of HA crystals in BGLi5 specimens by Day 3 and in BG specimens by Day 7. The MTT assay demonstrated enhanced cell viability in both BG and BGLi5 compared to the control group. ALP activity, a marker of cell differentiation, was significantly elevated in the BGLi5-DM group by Day 14. Alizarin red staining on Day 21 revealed a marked increase in mineralization in both BG and BGLi5, with the BGLi5-DM group showing the highest mineralization levels. Furthermore, both BG and BGLi5 demonstrated significant antimicrobial activity against SM. CONCLUSION The sol-gel-derived 68S BAG containing 5 mol.% Li is a biocompatible material that enhances cell proliferation, differentiation, and mineralization. The combination of BGLi5 with differentiation-specific culture medium synergistically promotes osteogenic differentiation and mineralization, making it a promising candidate for dental and bone tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Janbaz
- Department of Oral and Maxillofacial Surgery, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| | - Faeze Behzadpour
- Department of pediatric, School of dentistry, Dental Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research InstituteHamadan University of Medical SciencesHamadanIran
| | - Kiana Ghanadan
- Dental Caries Prevention Research CenterQazvin University of Medical SciencesQazvinIran
- Department of Operative Dentistry, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
2
|
Hammami I, Fernandes Graça MP, Gavinho SR, Regadas JS, Jakka SK, Pádua AS, Silva JC, Sá-Nogueira I, Borges JP. Influence of zirconium dioxide (ZrO 2) and magnetite (Fe 3O 4) additions on the structural, electrical, and biological properties of Bioglass ® for metal implant coatings. Front Bioeng Biotechnol 2025; 13:1537856. [PMID: 40114850 PMCID: PMC11922838 DOI: 10.3389/fbioe.2025.1537856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Background The growing need for durable implants, driven by aging populations and increased trauma cases, highlights challenges such as limited osseointegration and biofilm formation. 45S5 Bioglass® has shown promise due to its bioactivity, antimicrobial properties, and ability to enhance osseointegration through electrical polarization. This study investigates the effects of incorporating different concentrations of ZrO2 and Fe3O4 into 45S5 Bioglass® to enhance its electrical and biological properties. Methods Raman analysis was used to evaluate how these oxides influenced the amount of non-bridging oxygens (NBOs) and glass network connectivity. Electrical characterization was performed using impedance spectroscopy to measure conductivity and ion mobility. Antibacterial activity was assessed using the agar diffusion method, and bioactivity was evaluated through simulated body fluid (SBF) immersion tests. Results The results revealed that bioglasses containing ZrO2 exhibited higher NBO content compared to Fe3O4, leading to improved electrical and biological properties. ZrO2, particularly at 2 mol%, significantly enhanced conductivity, antibacterial activity, and bioactivity. In contrast, Fe3O4 reduced both antibacterial activity and bioactivity. Conclusion The findings demonstrate that ZrO2 addition improves the electrical and biological performance of 45S5 Bioglass®, making it a promising candidate for durable implants. Fe3O4, however, showed limited benefits.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, Aveiro, Portugal
| | | | | | | | | | - Ana Sofia Pádua
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
3
|
Martelli A, Bellucci D, Cannillo V. An Enhanced Bioactive Glass Composition with Improved Thermal Stability and Sinterability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6175. [PMID: 39769775 PMCID: PMC11677950 DOI: 10.3390/ma17246175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The development of new bioactive glasses (BGs) with enhanced bioactivity and improved resistance to crystallization is crucial for overcoming the main challenges faced by commercial BGs. Most shaping processes require thermal treatments, which can induce partial crystallization, negatively impacting the biological and mechanical properties of the final product. In this study, we present a novel bioactive glass composition, S53P4_MSK, produced by a melt-quench route. This novel composition includes magnesium and strontium, known for their therapeutic effects, and potassium, recognized for improving the thermal properties of bioactive glasses. The thermal properties were investigated through differential thermal analysis, heating microscopy and sintering tests from 600 °C to 900 °C. These characterizations, combined with X-ray diffraction analysis, demonstrated the high sinterability without crystallization of S53P4_MSK, effectively mitigating related issues. The mechanical properties-elastic modulus, hardness and fracture toughness-were evaluated on the sintered sample by micro-indentation, showing high elastic modulus and hardness. The bioactivity of the novel BG was assessed following Kokubo's protocol and confirmed by scanning electron microscopy, X-ray energy dispersive spectroscopy, and Raman spectroscopy. The novel bioactive glass composition has shown high sinterability without crystallization at 700 °C, along with good mechanical properties and bioactivity.
Collapse
|
4
|
Nowotnick AG, Xi Z, Jin Z, Khalatbarizamanpoor S, Brauer DS, Löffler B, Jandt KD. Antimicrobial Biomaterials Based on Physical and Physicochemical Action. Adv Healthc Mater 2024; 13:e2402001. [PMID: 39301968 DOI: 10.1002/adhm.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Developing effective antimicrobial biomaterials is a relevant and fast-growing field in advanced healthcare materials. Several well-known (e.g., traditional antibiotics, silver, copper etc.) and newer (e.g., nanostructured, chemical, biomimetic etc.) approaches have been researched and developed in recent years and valuable knowledge has been gained. However, biomaterials associated infections (BAIs) remain a largely unsolved problem and breakthroughs in this area are sparse. Hence, novel high risk and potential high gain approaches are needed to address the important challenge of BAIs. Antibiotic free antimicrobial biomaterials that are largely based on physical action are promising, since they reduce the risk of antibiotic resistance and tolerance. Here, selected examples are reviewed such antimicrobial biomaterials, namely switchable, protein-based, carbon-based and bioactive glass, considering microbiological aspects of BAIs. The review shows that antimicrobial biomaterials mainly based on physical action are powerful tools to control microbial growth at biomaterials interfaces. These biomaterials have major clinical and application potential for future antimicrobial healthcare materials without promoting microbial tolerance. It also shows that the antimicrobial action of these materials is based on different complex processes and mechanisms, often on the nanoscale. The review concludes with an outlook and highlights current important research questions in antimicrobial biomaterials.
Collapse
Affiliation(s)
- Adrian G Nowotnick
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhongqian Xi
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhaorui Jin
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Sadaf Khalatbarizamanpoor
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Delia S Brauer
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Bettina Löffler
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| |
Collapse
|
5
|
Caland JP, Baptista J, Peiter GC, de Aguiar KMFR, Coelho-Júnior H, Sinnecker JP, Felix JF, Schneider R. Nanostructured Glass-Ceramic Materials from Glass Waste with Antimicrobial Activity. Molecules 2024; 29:3212. [PMID: 38999164 PMCID: PMC11243445 DOI: 10.3390/molecules29133212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Modern consumption patterns have led to a surge in waste glass accumulating in municipal landfills, contributing to environmental pollution, especially in countries that do not have well-established recycling standards. While glass itself is 100% recyclable, the logistics and handling involved present significant challenges. Flint and amber-colored glass, often found in high quantities in municipal waste, can serve as valuable sources of raw materials. We propose an affordable route that requires just a thermal treatment of glass waste to obtain glass-based antimicrobial materials. The thermal treatment induces crystallized nanoregions, which are the primary factor responsible for the bactericidal effect of waste glass. As a result, coarse particles of flint waste glass that undergo thermal treatment at 720 °C show superior antimicrobial activity than amber waste glass. Glass-ceramic materials from flint waste glass, obtained by thermal treatment at 720 °C during 2 h, show antimicrobial activity against Escherichia coli after just 30 min of contact time. Laser-induced breakdown spectroscopy (LIBS) was employed to monitor the elemental composition of the glass waste. The obtained glass-ceramic material was structurally characterized by transmission electron microscopy, enabling the confirmation of the presence of nanocrystals embedded within the glass matrix.
Collapse
Affiliation(s)
- Juliani P Caland
- Núcleo de Física Aplicada, Instituto de Física, Brasília, Universidade de Brasília-UnB, Brasilia 70910-900, DF, Brazil
| | - João Baptista
- Group of Polymers and Nanostructures, Universidade Tecnológica Federal do Paraná-UTFPR, Toledo 85902-490, PR, Brazil
| | - Gabrielle Caroline Peiter
- Group of Polymers and Nanostructures, Universidade Tecnológica Federal do Paraná-UTFPR, Toledo 85902-490, PR, Brazil
| | - Kelen M F Rossi de Aguiar
- Group of Polymers and Nanostructures, Universidade Tecnológica Federal do Paraná-UTFPR, Toledo 85902-490, PR, Brazil
| | | | - João P Sinnecker
- Brazilian Center for Physics Research, Rio de Janeiro 22290-180, RJ, Brazil
| | - Jorlandio F Felix
- Núcleo de Física Aplicada, Instituto de Física, Brasília, Universidade de Brasília-UnB, Brasilia 70910-900, DF, Brazil
| | - Ricardo Schneider
- Group of Polymers and Nanostructures, Universidade Tecnológica Federal do Paraná-UTFPR, Toledo 85902-490, PR, Brazil
| |
Collapse
|
6
|
Hammami I, Jakka SK, Sá-Nogueira I, Borges JP, Graça MPF. The Effect of Iron Oxide Insertion on the In Vitro Bioactivity, and Antibacterial Properties of the 45S5 Bioactive Glass. Biomimetics (Basel) 2024; 9:325. [PMID: 38921205 PMCID: PMC11201570 DOI: 10.3390/biomimetics9060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The aging population and increasing incidence of trauma among younger age groups have heightened the increasing demand for reliable implant materials. Effective implant materials must demonstrate rapid osseointegration and strong antibacterial properties to ensure optimal patient outcomes and decrease the chance of implant rejection. This study aims to enhance the bone-implant interface by utilizing 45S5 bioglass modified with various concentrations of Fe3O4 as a coating material. The effect of the insertion of Fe3O4 into the bioglass structure was studied using Raman spectroscopy which shows that with the increase in Fe3O4 concentration, new vibration bands associated with Fe-related structural units appeared within the sample. The bioactivity of the prepared glasses was evaluated using immersion tests in simulated body fluid, revealing the formation of a calcium phosphate-rich layer within 24 h on the samples, indicating their potential for enhanced tissue integration. However, the sample modified with 8 mol% of Fe3O4 showed low reactivity, developing a calcium phosphate-rich layer within 96 h. All the bioglasses showed antibacterial activity against the Gram-positive and Gram-negative bacteria. The modified bioglass did not present significant antibacterial properties compared to the bioglass base.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (I.H.); (S.K.J.)
| | - Suresh Kumar Jakka
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (I.H.); (S.K.J.)
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, Nova University Lisbon, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
7
|
Karacic J, Ruf M, Herzog J, Astasov-Frauenhoffer M, Sahrmann P. Effect of Dentifrice Ingredients on Volume and Vitality of a Simulated Periodontal Multispecies Biofilm. Dent J (Basel) 2024; 12:141. [PMID: 38786539 PMCID: PMC11120121 DOI: 10.3390/dj12050141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this in vitro study was to investigate the effect of different toothpaste ingredients on biofilm volume and vitality in an established non-contact biofilm removal model. A multi-species biofilm comprising Porphyromonas gingivalis, Streptococcus sanguinis, and Fusobacterium nucleatum was grown on protein-coated titanium disks. Six disks per group were exposed to 4 seconds non-contact brushing using a sonic toothbrush. Four groups assessed slurries containing different ingredients, i.e., dexpanthenol (DP), peppermint oil (PO), cocamidopropyl betaine (CB), and sodium hydroxide (NaOH), one positive control group with the slurry of a toothpaste (POS), and a negative control group with physiological saline (NEG). Biofilm volume and vitality were measured using live-dead staining and confocal laser scanning microscopy. Statistical analysis comprised descriptive statistics and inter-group differences. In the test groups, lowest vitality and volume were found for CB (50.2 ± 11.9%) and PO (3.6 × 105 ± 1.8 × 105 µm3), respectively. Significant differences regarding biofilm vitality were found comparing CB and PO (p = 0.033), CB and NEG (p = 0.014), NaOH and NEG (p = 0.033), and POS and NEG (p = 0.037). However, no significant inter-group differences for biofilm volume were observed. These findings suggest that CB as a toothpaste ingredient had a considerable impact on biofilm vitality even in a non-contact brushing setting, while no considerable impact on biofilm volume was found.
Collapse
Affiliation(s)
- Jelena Karacic
- Department of Periodontology, Endodontology and Cariology, University Center for Dental Medicine Basel UZB, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland; (M.R.); (P.S.)
| | - Moritz Ruf
- Department of Periodontology, Endodontology and Cariology, University Center for Dental Medicine Basel UZB, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland; (M.R.); (P.S.)
| | - Johannes Herzog
- Department of Periodontology, Endodontology and Cariology, University Center for Dental Medicine Basel UZB, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland; (M.R.); (P.S.)
| | - Monika Astasov-Frauenhoffer
- Department Research, University Center for Dental Medicine Basel UZB, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland;
| | - Philipp Sahrmann
- Department of Periodontology, Endodontology and Cariology, University Center for Dental Medicine Basel UZB, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland; (M.R.); (P.S.)
| |
Collapse
|
8
|
Singh I, Shakya K, Gupta P, Rani P, Kong I, Verma V, Balani K. Multifunctional 58S Bioactive Glass/Silver/Cerium Oxide-Based Biocomposites with Effective Antibacterial, Cytocompatibility, and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18327-18343. [PMID: 38588343 DOI: 10.1021/acsami.3c17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
58S bioactive glass (BG) has effective biocompatibility and bioresorbable properties for bone tissue engineering; however, it has limitations regarding antibacterial, antioxidant, and mechanical properties. Therefore, we have developed BGAC biocomposites by reinforcing 58S BG with silver and ceria nanoparticles, which showed effective bactericidal properties by forming inhibited zones of 2.13 mm (against Escherichia coli) and 1.96 mm (against Staphylococcus aureus; evidenced by disc diffusion assay) and an increment in the antioxidant properties by 39.9%. Moreover, the elastic modulus, hardness, and fracture toughness were observed to be increased by ∼84.7% (∼51.9 GPa), ∼54.5% (∼3.4 GPa), and ∼160% (∼1.3 MPam1/2), whereas the specific wear rate was decreased by ∼55.2% (∼1.9 × 10-11 m3/Nm). X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy confirmed the fabrication of biocomposites and the uniform distribution of the nanomaterials in the BG matrix. The addition of silver nanoparticles in the 58S BG matrix (in BGA) increased mechanical properties by composite strengthening and bactericidal properties by damaging the cytoplasmic membrane of bacterial cells. The addition of nanoceria in 58S BG (BGC) increased the antioxidant properties by 44.5% (as evidenced by the 2,2-diphenyl-1-picrylhydrazyl assay). The resazurin reduction assay and MTT assay confirmed the effective cytocompatibility for BGAC biocomposites against mouse embryonic fibroblast cells (NIH3T3) and mouse bone marrow stromal cells. Overall, BGAC resulted in mechanical properties comparable to those of cancellous bone, and its effective antibacterial and cytocompatibility properties make it a good candidate for bone healing.
Collapse
Affiliation(s)
- Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3552, Australia
| | - Kaushal Shakya
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pankaj Gupta
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pooja Rani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ing Kong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3552, Australia
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
9
|
Abd El-Hamid HK, Farag MM, Abdelraof M, Elwan RL. Regulation of the antibiotic elution profile from tricalcium phosphate bone cement by addition of bioactive glass. Sci Rep 2024; 14:2804. [PMID: 38307930 PMCID: PMC10837204 DOI: 10.1038/s41598-024-53319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
This work aimed at tailoring of different properties of antibacterial drug delivery Ca-phosphate cements by incorporation of bioactive glass (BG). The cements were prepared from beta-tricalcium phosphate cement (β-TCP) and BG based on 50 SiO2-20 CaO-15 Na2O-7 B2O3-4 P2O5-4 Al2O3 wt% with different percentages of BG [5, 10, 15, and 20% (w/w)]. The composite cements were characterized by XRD, FTIR, and TEM. Moreover, in vitro bioactivity and biodegradation were evaluated in the simulated body fluid (SBF) at 37 °C. In addition, physical properties and mechanical strength were determined. Also, the effect of glass addition on the drug release profile was examined using gentamicin. Finally, the antimicrobial activity was studied against Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumonia bacteria, one unicellular fungal strain (Candida albicans), and one multicellular fungal strain (Mucor racemosus). The results showed that after soaking in SBF, the compression strength values ranged from 14 to 36 MPa, the bulk densities and porosities were within 1.35 to 1.49 g/cm3 and 51.3 to 44.71%, respectively. Furthermore, gentamicin was released in a sustained manner, and BG decreased the released drug amount from ~ 80% (in pure β-TCP) to 47-53% in the composite cements. A drug release profile that is sustained by all samples was achieved. The antimicrobial test showed good activity of gentamicin-conjugated cements against bacteria and fungi used in this study. Additionally, cytotoxicity results proved that all samples were safe on MG-63 cells up to 50 µg/mL with no more than 7-12% dead cells. From the view of the physico-mechanical properties, bioactivity, biodegradation, and drug release rate, 20BG/β-TCP sample was nominated for practical bone grafting material, where it showed appropriate setting time and a relatively high mechanical strength suitable for cancellous bone.
Collapse
Affiliation(s)
- H K Abd El-Hamid
- Refractories, Ceramics and Building Materials Department, National Research Centre (NRC), El-Buhouth St., Dokki, 12622, Cairo, Egypt.
| | - Mohammad M Farag
- Glass Research Department, National Research Centre (NRC), El-Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre (NRC), El-Buhouth St., Dokki, 12622, Cairo, Egypt
| | - R L Elwan
- Glass Research Department, National Research Centre (NRC), El-Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
10
|
Ranganathan P, Sugumaran V, Purushothaman B, Rajendran AR, Subramanian B. Rapidly derived equimolar Ca: P phasic bioactive glass infused flexible gelatin multi-functional scaffolds - A promising tissue engineering. J Mech Behav Biomed Mater 2024; 150:106264. [PMID: 38029463 DOI: 10.1016/j.jmbbm.2023.106264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
The study aims to design and fabricate an ultra-easier multi-functional biomedical polymeric scaffold loaded with unique equimolar Ca:P phasic bioactive glass material (BG). Gelatin (G) - 45S5 bioactive glass (BG) scaffolds were synthesized via a simple laboratory refrigerator with higher biocompatibility and cytocompatibility. The results proved that BG has enhanced bio-mineralization of the scaffolds and results support that the G: BG (1:2) ratio is the more appropriate composition. Brunauer-Emmett-Teller (BET) study confirms the higher surface area for pure Gelatin and G: BG (1:2). Scanning Electron Microscopic images display the precipitation of hydroxycarbonate apatite layer over the scaffolds on immersing it in simulated body fluid. Alkaline phosphate activity proved that G: BG (1:2) scaffold could induce mitogenesis in MG-63 osteoblast cells, thus helping in hard tissue regeneration. Sirius red collagen deposition showed that higher content bioactive glass incorporated Gelatin polymeric scaffold G: BG (1:2) could induce rapid collagen secretion of NIH 3T3 fibroblast cell line that could help in soft tissue regeneration and earlier wound healing. The scaffolds were also tested for cell viability using NIH 3T3 fibroblast cell lines and MG 63 osteoblastic cell lines through methyl thiazolyl tetrazolium (MTT) assay. Thus, the study shows a scaffold of appropriate composition G: BG (1:2) can be a multifunctional material to regenerate hard and soft tissues.
Collapse
Affiliation(s)
- Priya Ranganathan
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India; Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Vijayakumari Sugumaran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Bargavi Purushothaman
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Vellapanchavadi, Chennai 600077, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
11
|
Abushahba F, Kylmäoja E, Areid N, Hupa L, Vallittu PK, Tuukkanen J, Närhi T. Osteoblast Attachment on Bioactive Glass Air Particle Abrasion-Induced Calcium Phosphate Coating. Bioengineering (Basel) 2024; 11:74. [PMID: 38247951 PMCID: PMC10813256 DOI: 10.3390/bioengineering11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Air particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against Streptococcus mutans. Square-shaped 10 mm diameter Ti substrates (n = 136) were SA by grit blasting with aluminum oxide particles, then acid-etching in an HCl-H2SO4 mixture. The SA substrates (n = 68) were used as non-coated controls (NC-SA). The test group (n = 68) was further subjected to APA using experimental zinc-containing BG (Zn4) and then mineralized in SBF for 14 d (Zn4-CaP). Surface roughness, contact angle, and surface free energy (SFE) were calculated on test and control surfaces. In addition, the topography and chemistry of substrate surfaces were also characterized. Osteoblastic cell viability and focal adhesion were also evaluated and compared to glass slides as an additional control. The antibacterial effect of Zn4-CaP was also assessed against S. mutans. After immersion in SBF, a mineralized zinc-containing Ca-P coating was formed on the SA substrates. The Zn4-CaP coating resulted in a significantly lower Ra surface roughness value (2.565 μm; p < 0.001), higher wettability (13.35°; p < 0.001), and higher total SFE (71.13; p < 0.001) compared to 3.695 μm, 77.19° and 40.43 for the NC-SA, respectively. APA using Zn4 can produce a zinc-containing calcium phosphate coating that demonstrates osteoblast cell viability and focal adhesion comparable to that on NC-SA or glass slides. Nevertheless, the coating had no antibacterial effect against S. mutans.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Libyan International Medical University (LIMU), Benghazi 339P+62Q, Libya
| | - Elina Kylmäoja
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Leena Hupa
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland;
| | - Pekka K. Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Timo Närhi
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| |
Collapse
|
12
|
Koutroulis A, Valen H, Ørstavik D, Kapralos V, Camilleri J, Sunde PT. Antibacterial Activity of Root Repair Cements in Contact with Dentin-An Ex Vivo Study. J Funct Biomater 2023; 14:511. [PMID: 37888176 PMCID: PMC10607193 DOI: 10.3390/jfb14100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This study assessed the antibacterial characteristics of the dentin/material interface and dentin surfaces exposed to experimental hydraulic calcium silicate cement (HCSC) with or without bioactive glass (BG) replacement (20% or 40%) or mixed with a silver nanoparticle (SNP) solution (1 or 2 mg/mL), and Biodentine, TotalFill BC RRM putty and Intermediate Restorative Material (IRM). Human root dentin segments with test materials were assessed at 1 or 28 days. In one series, the specimens were split to expose the dentin and material surfaces. A 24 h direct contact test was conducted against three-day established Enterococcus faecalis and Pseudomonas aeruginosa monospecies biofilms. In another series, the dentin/material interface of intact specimens was exposed to biofilm membranes for 3 days and the antibacterial activity was assessed via confocal microscopy. The interface was additionally characterised. All one-day material and dentin surfaces were antibacterial. Dentin surfaces exposed to HCSC with 40% BG-replacement, Biodentine and IRM had decreased antibacterial properties compared to those of the other cements. The HCSC mixed with a 2 mg/mL SNP solution had the highest antimicrobial effect in the confocal assay. The interfacial characteristics of HCSCs were similar. The test materials conferred antibacterial activity onto the adjacent dentin. The BG reduced the antibacterial effect of dentin exposed to HCSC; a 2 mg/mL SNP solution increased the antibacterial potential for longer interaction periods (three-day exposure).
Collapse
Affiliation(s)
- Andreas Koutroulis
- Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (D.Ø.); (V.K.)
| | - Håkon Valen
- Nordic Institute of Dental Materials (NIOM), 0855 Oslo, Norway;
| | - Dag Ørstavik
- Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (D.Ø.); (V.K.)
| | - Vasileios Kapralos
- Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (D.Ø.); (V.K.)
| | - Josette Camilleri
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Pia Titterud Sunde
- Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (D.Ø.); (V.K.)
| |
Collapse
|
13
|
Saracini J, de Assis ICM, Peiter GC, Busso C, de Oliveira RJ, Felix JF, Bini RA, Schneider R. Borophosphate glasses as active agents for antimicrobial hydrogels. Int J Pharm 2023; 644:123323. [PMID: 37597596 DOI: 10.1016/j.ijpharm.2023.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Herein we report the synthesis of transition-metal-free potassium borophosphate glasses and their application as bactericidal and bacteriostatic material. The antimicrobial activity was achieved through a simple change in the molar ratio of boron and phosphorus atoms, making borophosphate glass soluble in water. The glasses were analyzed by X-ray powder diffraction, Raman spectroscopy, laser-induced breakdown spectroscopy, and water absorption. The addition of a boron compound is required to obtain potassium-based phosphate glasses. Moreover, the change in the phosphorus and boron molar ratio (P/B), 2, 1 or 0.5 affects the glass solubilization in water, which increases with the phosphorus content. The glass materials were submitted to tests of biological activity against the bacteria Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These water-soluble borophosphate glasses were employed in the development of hydrogel formulations using Carbopol®. Phosphorous-rich samples at a concentration of 15 % (w/w) in hydrogel showed better antimicrobial activity against S. aureus and E. coli, when compared to other samples, including commercial alcohol hand sanitizer gel, with an average size of the inhibition halo of 24.02±1.43 and 19.24±1.63mm, respectively.
Collapse
Affiliation(s)
- Jaqueline Saracini
- Universidade Estadual do Oeste do Paraná, Centro de Engenharias e Ciências Exatas-CECE, 85903-000, Toledo, PR, Brazil
| | - Iago C M de Assis
- Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil
| | - Gabrielle Caroline Peiter
- Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil
| | - Cleverson Busso
- Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil
| | - Rodrigo J de Oliveira
- Universidade Estadual da Paraíba, Physical Chemistry of Materials Group, 58429-500, Campina Grande, PB, Brazil
| | - Jorlandio F Felix
- Universidade de Brasília, Instituto de Física-Núcleo de Física Aplicada, 70910-900, Brasília, DF, Brazil
| | - Rafael A Bini
- Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil
| | - Ricardo Schneider
- Universidade Estadual do Oeste do Paraná, Centro de Engenharias e Ciências Exatas-CECE, 85903-000, Toledo, PR, Brazil; Federal University of Technology - Paraná, Group of Polymers and Nanostructures, 85902-490, Toledo, PR, Brazil.
| |
Collapse
|
14
|
Liang Z, Chen D, Jiang Y, Su Z, Pi Y, Luo T, Jiang Q, Yang L, Guo L. Multifunctional Lithium-Doped Mesoporous Nanoparticles for Effective Dentin Regeneration in vivo. Int J Nanomedicine 2023; 18:5309-5325. [PMID: 37746049 PMCID: PMC10516199 DOI: 10.2147/ijn.s424930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Effective infection control without irritating the pulp tissue is the key to successful vital pulp therapy. Developing a novel antibacterial biomaterial that promotes dentin regeneration for pulp capping is thus a promising strategy for enhancing vital pulp therapy. Methods Lithium-doped mesoporous nanoparticles (Li-MNPs) were synthesized using an alkali-catalyzed sol-gel method. The particle size, elemental distribution, surface morphology, pore structure, and ion release from Li-MNPs were measured. Human dental pulp stem cells (hDPSCs) and Streptococcus mutans (S. mutans) were used to evaluate the biological effects of Li-MNPs. In addition, a dental pulp exposure mouse model was used to evaluate the regenerative effects of Li-MNPs. Results Li-MNPs had a larger surface area (221.18 m2/g), a larger pore volume (0.25 cm3/g), and a smaller particle size (520.92 ± 35.21 nm) than MNPs. The in vitro investigation demonstrated that Li-MNPs greatly enhanced the biomineralization and odontogenic differentiation of hDPSCs through the Wnt/β-catenin signaling pathway. Li-MNPs showed a strong antibacterial effect on S. mutans. As expected, Li-MNPs significantly promoted dentin regeneration in situ and in vivo. Conclusion Li-MNPs promoted dentin regeneration and inhibited S. mutans growth, implying a possible application as a pulp capping agent in vital pulp therapy.
Collapse
Affiliation(s)
- Zitian Liang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Ding Chen
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Ye Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Zhikang Su
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Yixing Pi
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Tao Luo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Li Yang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, People’s Republic of China
| |
Collapse
|
15
|
Alambiaga-Caravaca AM, López-Castellano A, Chou YF, Luzi A, Núñez JM, Banerjee A, Jovani Sancho MDM, Sauro S. Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphates. Pharmaceutics 2023; 15:1948. [PMID: 37514133 PMCID: PMC10386182 DOI: 10.3390/pharmaceutics15071948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This study analyse the type of release kinetic of specific monomers from dental resin composites containing various fluoride-doped calcium phosphates. The release behavior of urethane dimethacrylate (UDMA), ethoxylated bisphenol-A dimethacrylate (bis-EMA) and 1.6-hexanediol ethoxylate diacrylate (HEDA) was evaluated over a period of 35 days. Two tailored calcium phosphates doped with different concentrations of fluoride salts (VS10% and VS20%) were prepared and incorporated in the dimethacrylate matrix at various concentrations to generate a range of experimental composites. The release kinetics were characterized using mathematical models such as zero-order, first-order, Peppas and Higuchi models. The results showed that the first-order model best described the release kinetics. UDMA and HEDA exhibited significant differences in release compared to bis-EMA from day 1, while no significant differences were observed between UDMA and HEDA, except on day 35, when UDMA exhibited a higher release rate than HEDA. When comparing the release of each monomer, VS20-R20% had the highest total release percentage, with 3.10 ± 0.25%, whereas the composite VS10-R5% showed the lowest release percentage, with a total of 1.66 ± 0.08%. The release kinetics were influenced by the composition of the resin composites and the presence of calcium fluoride and sodium fluoride in the calcium phosphate played a role in the maximum amounts of monomer released. In conclusion, the release of monomers from the tested resin composites followed a first-order kinetic behaviour, with an initial rapid release that decreased over time. The composition of the resin monomers and the presence of fluoride salts influenced the release kinetics. The VS10-R5% and VS10-R10% resin composites exhibited the lowest total monomer release, suggesting its potential favourable composition with reduced monomer elution. These findings contribute to understanding the release behavior of dental resin composites and provide insights for the development of resin-based bioactive dental materials.
Collapse
Affiliation(s)
- Adrián M Alambiaga-Caravaca
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Alicia López-Castellano
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Yu Fu Chou
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Arlinda Luzi
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Juan Manuel Núñez
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Avijit Banerjee
- Research Centre for Oral & Clinical Translational Sciences, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - María Del Mar Jovani Sancho
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Salvatore Sauro
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
16
|
Hammami I, Gavinho SR, Jakka SK, Valente MA, Graça MPF, Pádua AS, Silva JC, Sá-Nogueira I, Borges JP. Antibacterial Biomaterial Based on Bioglass Modified with Copper for Implants Coating. J Funct Biomater 2023; 14:369. [PMID: 37504864 PMCID: PMC10381177 DOI: 10.3390/jfb14070369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Biofilm-related implant infections pose a substantial threat to patients, leading to inflammation in the surrounding tissue, and often resulting in implant loss and the necessity for additional surgeries. Overcoming this implantology challenge is crucial to ensure the success and durability of implants. This study shows the development of antibacterial materials for implant coatings by incorporating copper into 45S5 Bioglass®. By combining the regenerative properties of Bioglass® with the antimicrobial effects of copper, this material has the potential to prevent infections, enhance osseointegration and improve the long-term success of implants. Bioglasses modified with various concentrations of CuO (from 0 to 8 mol%) were prepared with the melt-quenching technique. Structural analysis using Raman and FTIR spectroscopies did not reveal significant alterations in the bioglasses structure with the addition of Cu. The antibacterial activity of the samples was assessed against Gram-positive and Gram-negative bacteria, and the results demonstrated significant inhibition of bacterial growth for the bioglass with 0.5 mol% of CuO. Cell viability studies indicated that the samples modified with up to 4 mol% of CuO maintained good cytocompatibility with the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the bioactivity assessment demonstrated the formation of a calcium phosphate (CaP)-rich layer on the surfaces of all bioglasses within 24 h. Our findings show that the inclusion of copper in the bioglass offers a significant enhancement in its potential as a coating material for implants, resulting in notable advancements in both antibacterial efficacy and osteointegration properties.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | - Suresh Kumar Jakka
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | | | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
Hammami I, Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Valente MA, Graça MPF. Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applications: Fabrication, Structural, Electrical, and Biological Analysis. Int J Mol Sci 2023; 24:10571. [PMID: 37445749 DOI: 10.3390/ijms241310571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Implantology is crucial for restoring aesthetics and masticatory function in oral rehabilitation. Despite its advantages, certain issues, such as bacterial infection, may still arise that hinder osseointegration and result in implant rejection. This work aims to address these challenges by developing a biomaterial for dental implant coating based on 45S5 Bioglass® modified by zirconium insertion. The structural characterization of the glasses, by XRD, showed that the introduction of zirconium in the Bioglass network at a concentration higher than 2 mol% promotes phase separation, with crystal phase formation. Impedance spectroscopy was used, in the frequency range of 102-106 Hz and the temperature range of 200-400 K, to investigate the electrical properties of these Bioglasses, due to their ability to store electrical charges and therefore enhance the osseointegration capacity. The electrical study showed that the presence of crystal phases, in the glass ceramic with 8 mol% of zirconium, led to a significant increase in conductivity. In terms of biological properties, the Bioglasses exhibited an antibacterial effect against Gram-positive and Gram-negative bacteria and did not show cytotoxicity for the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the results of the bioactivity test revealed that within 24 h, a CaP-rich layer began to form on the surface of all the samples. According to our results, the incorporation of 2 mol% of ZrO2 into the Bioglass significantly improves its potential as a coating material for dental implants, enhancing both its antibacterial and osteointegration properties.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
18
|
Shearer A, Montazerian M, Sly JJ, Hill RG, Mauro JC. Trends and perspectives on the commercialization of bioactive glasses. Acta Biomater 2023; 160:14-31. [PMID: 36804821 DOI: 10.1016/j.actbio.2023.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
At least 25 bioactive glass (BG) medical devices have been approved for clinical use by global regulatory agencies. Diverse applications include monolithic implants, bone void fillers, dentin hypersensitivity agents, wound dressing, and cancer therapeutics. The morphology and delivery systems of bioactive glasses have evolved dramatically since the first devices based on 45S5 Bioglass®. The particle size of these devices has generally decreased with the evolution of bioactive glass technology but primarily lies in the micron size range. Morphologies have progressed from glass monoliths to granules, putties, and cements, allowing medical professionals greater flexibility and control. Compositions of these commercial materials have primarily relied on silicate-based systems with varying concentrations of sodium, calcium, and phosphorus. Furthermore, therapeutic ions have been investigated and show promise for greater control of biological stimulation of genetic processes and increased bioactivity. Some commercial products have exploited the borate and phosphate-based compositions for soft tissue repair/regeneration. Mesoporous BGs also promise anticancer therapies due to their ability to deliver drugs in combination with radiotherapy, photothermal therapy, and magnetic hyperthermia. The objective of this article is to critically discuss all clinically approved bioactive glass products. Understanding essential regulatory standards and rules for production is presented through a review of the commercialization process. The future of bioactive glasses, their promising applications, and the challenges are outlined. STATEMENT OF SIGNIFICANCE: Bioactive glasses have evolved into a wide range of products used to treat various medical conditions. They are non-equilibrium, non-crystalline materials that have been designed to induce specific biological activity. They can bond to bone and soft tissues and contribute to their regeneration. They are promising in combating pathogens and malignancies by delivering drugs, inorganic therapeutic ions, and heat for magnetic-induced hyperthermia or laser-induced phototherapy. This review addresses each bioactive glass product approved by regulatory agencies for clinical use. A review of the commercialization process is also provided with insight into critical regulatory standards and guidelines for manufacturing. Finally, a critical evaluation of the future of bioactive glass development, applications, and challenges are discussed.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials, Department of Materials Engineering, Federal University of Campina Grande, PB, Brazil
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert G Hill
- Institute of Dentistry, Dental Physical Sciences Unit, Queen Mary University of London, London, United Kingdom
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
19
|
Abushahba F, Algahawi A, Areid N, Hupa L, Närhi T. Bioactive Glasses in Periodontal Regeneration
A Systematic Review
. Tissue Eng Part C Methods 2023; 29:183-196. [PMID: 37002888 DOI: 10.1089/ten.tec.2023.0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Bioactive glasses (BAGs) are surface-active ceramic materials that can be used in bone regeneration due to their known osteoconductive and osteoinductive properties. This systematic review aimed to study the clinical and radiographic outcomes of using BAGs in periodontal regeneration. The selected studies were collected from PubMed and Web of Science databases, and included clinical studies investigating the use of BAGs on periodontal bone defect augmentation between January 2000 and February 2022. The identified studies were screened using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A total of 115 full-length peer-reviewed articles were identified. After excluding duplicate articles between the databases and applying the inclusion and exclusion criteria, 14 studies were selected. The Cochrane risk of bias tool for randomized trials was used to assess the selected studies. Five studies compared using BAGs with open flap debridement (OFD) without grafting materials. Two of the selected studies were performed to compare the use of BAGs with protein-rich fibrin, one of which also included an additional OFD group. Also, one study evaluated BAG with biphasic calcium phosphate and used a third OFD group. The remaining six studies compared BAG filler with hydroxyapatite, demineralized freeze-dried bone allograft, autogenous cortical bone graft, calcium sulfate β-hemihydrate, enamel matrix derivatives, and guided tissue regeneration. This systematic review showed that using BAG to treat periodontal bone defects has beneficial effects on periodontal tissue regeneration. OSF Registration No.: 10.17605/OSF.IO/Y8UCR.
Collapse
Affiliation(s)
- Faleh Abushahba
- University of Turku, 8058, Department of Prosthetic Dentistry and Stomatognathic Physiology, Turku, Varsinais-Suomi, Finland,
| | - Ahmed Algahawi
- University of Turku, 8058, Department of Periodontology, Turku, Varsinais-Suomi, Finland,
| | - Nagat Areid
- University of Turku, 8058, Department of Prosthetic Dentistry and Stomatognathic Physiology Institute of Dentistry, University of Turku, Turku, Finland,
| | - Leena Hupa
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Turku, Finland,
| | - Timo Närhi
- University of Turku Faculty of Medicine, 60654, Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, Turku, Finland,
| |
Collapse
|
20
|
Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implant. Int J Mol Sci 2023; 24:ijms24065244. [PMID: 36982320 PMCID: PMC10049186 DOI: 10.3390/ijms24065244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Dental implants have emerged as one of the most consistent and predictable treatments in the oral surgery field. However, the placement of the implant is sometimes associated with bacterial infection leading to its loss. In this work, we intend to solve this problem through the development of a biomaterial for implant coatings based on 45S5 Bioglass® modified with different amounts of niobium pentoxide (Nb2O5). The structural feature of the glasses, assessed by XRD and FTIR, did not change in spite of Nb2O5 incorporation. The Raman spectra reveal the Nb2O5 incorporation related to the appearance of NbO4 and NbO6 structural units. Since the electrical characteristics of these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were studied by impedance spectroscopy, in the frequency range of 102–106 Hz and temperature range of 200–400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line. The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative bacteria revealed that the samples loaded with 2 mol% Nb2O5 had the highest bioactivity and greatest antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to mammalian cells.
Collapse
|
21
|
Zhang H, Saberi A, Heydari Z, Baltatu MS. Bredigite-CNTs Reinforced Mg-Zn Bio-Composites to Enhance the Mechanical and Biological Properties for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1681. [PMID: 36837310 PMCID: PMC9965178 DOI: 10.3390/ma16041681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Magnesium (Mg) and its compounds have been investigated as biodegradable metals for bone implants. However, high corrosion rates and low bioactivity that cause loss of mechanical properties are factors that have limited their biomedical applications. The purpose of this work is to remedy the weaknesses of the Mg-Zn (MZ) alloy matrix. For this purpose, we have synthesized Mg-based composites with different concentrations of bredigite (Br; Ca7MgSi4O16)-carbon nanotubes (CNTs) using mechanical alloying and semi-powder metallurgy processes with spark plasma sintering. Then, we studied the effect of the simultaneous addition of Br-CNTs on in vitro degradation, as well as its effect on the composites' mechanical and antibacterial properties. Increases of 57% and 72% respectively were observed in the microhardness and compressive strength of the MZ/Br-CNTs composite in comparison to the MZ alloy. In addition, the rate of degradation of Mg-based composites in simulated body fluids (SBF) was almost 2 times lower. An assessment of antibacterial behavior disclosed that the simultaneous adding of Br-CNTs to Mg can meaningfully prevent the growth and invasion of E. coli and S. aureus. These research findings demonstrate the potential application of MZ/Br-CNTs composites to implants and the treatment of bone infections.
Collapse
Affiliation(s)
- Hongwei Zhang
- School of Mechanical Engineering, Xijing University, Xi’an 710123, China
| | - Abbas Saberi
- Department of Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
| | - Zahra Heydari
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| |
Collapse
|
22
|
Safety and Efficacy of Stand-Alone Bioactive Glass Injectable Putty or Granules in Posterior Vertebral Fusion for Adolescent Idiopathic and Non-Idiopathic Scoliosis. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020398. [PMID: 36832526 PMCID: PMC9955925 DOI: 10.3390/children10020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Posterior spinal fusion (PSF) is the standard procedure for the treatment of severe scoliosis. PSF is a standard procedure that combines posterior instrumentation with bone grafting and/or bone substitutes to enhance fusion. The aim of this retrospective study was to evaluate and compare the post-operative safety and efficiency of stand-alone bioactive glass putty and granules in posterior spine fusion for scoliosis in a paediatric cohort. A total of 43 children and adolescents were included retrospectively. Each patient's last follow-up was performed at 24 months and included clinical and radiological evaluations. Pseudarthrosis was defined as a loss of correction measuring >10° of Cobb angle between the pre-operative and last follow-up measurements. There was no significant loss of correction between the immediate post-operative timepoint and the 24-month follow-up. There was no sign of non-union, implant displacement or rod breakage. Bioactive glass in the form of putty or granules is an easily handled biomaterial but still a newcomer on the market. This study shows that the massive use of bioactive glass in posterior fusion, when combined with proper surgical planning, hardware placement and correction, is effective in providing good clinical and radiological outcomes.
Collapse
|
23
|
Pajares-Chamorro N, Lensmire JM, Hammer ND, Hardy JW, Chatzistavrou X. Unraveling the mechanisms of inhibition of silver-doped bioactive glass-ceramic particles. J Biomed Mater Res A 2022; 111:975-994. [PMID: 36583930 DOI: 10.1002/jbm.a.37482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Infections are a major concern in orthopedics. Antibacterial agents such as silver ions are of great interest as broad-spectrum biocides and have been incorporated into bioactive glass-ceramic particles to control the release of ions within a therapeutic concentration and provide tissue regenerative properties. In this work, the antibacterial capabilities of silver-doped bioactive glass (Ag-BG) microparticles were explored to reveal the unedited mechanisms of inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial properties were not limited to the delivery of silver ions but rather a combination of antibacterial degradation by-products. For example, nano-sized debris punctured holes in bacteria membranes, osmotic effects, and reactive oxygen species causing oxidative stress and almost 40% of the inhibition. Upon successive Ag-BG treatments, MRSA underwent phenotypic and genomic mutations which were not only insufficient to develop resistance but instead, the clones became more sensitive as the treatment was re-delivered. Additionally, the unprecedented restorative functionality of Ag-BG allowed the effective use of antibiotics that MRSA resists. The synergy mechanism was mainly identified for combinations targeting cell-wall activity and their action was proven in biofilm-like and virulent conditions. Unraveling these mechanisms may offer new insights into how to tailor healthcare materials to prevent or debilitate infections and join the fight against antibiotic resistance in clinical cases.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Josh M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jonathan W Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.,Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
24
|
Periodontal Therapy Using Bioactive Glasses: A Review. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper reviews the use of bioactive glasses as materials for periodontal repair. Periodontal disease causes bone loss, resulting in tooth loosening and eventual tooth loss. However, it can be reversed using bioactive glass, typically the original 45S5 formulation (Bioglass®) at the defect site. This is done either by plcing bioactive glass granules or a bioactive glass putty at the defect. This stimulates bone repair and causes the defect to disappear. Another use of bioactive glass in periodontics is to repair so-called furcation defects, i.e., bone loss due to infection at the intersection of the roots in multi-rooted teeth. This treatment also gives good clinical outcomes. Finally, bioactive glass has been used to improve outcomes with metallic implants. This involves either placing bioactive glass granules into the defect prior to inserting the metal implant, or coating the implant with bioactive glass to improve the likelihood of osseointegration. This needs the glass to be formulated so that it does not crack or debond from the metal. This approach has been very successful, and bioactive glass coatings perform better than those made from hydroxyapatite.
Collapse
|
25
|
Yun J, Burrow MF, Matinlinna JP, Wang Y, Tsoi JKH. A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites. J Funct Biomater 2022; 13:jfb13040208. [PMID: 36412849 PMCID: PMC9680275 DOI: 10.3390/jfb13040208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
This review aims to provide a comprehensive analysis of the characterizations of bioactive glass (BAG)-loaded dental resin-based composite materials. Online databases (Web of Science, PubMed, and Science Direct) were used to collect data published from January 2011 to January 2022. Only BAG-containing resin adhesive and resin restorative composites are discussed in this narrative review. BAG-loaded resin composites exhibit excellent mineralization ability reflecting enhanced ion release, pH elevation, and apatite formation, especially regarding high BAG loading. This aids the anti-demineralization and remineralization of teeth. Furthermore, BAG-loaded resin composites demonstrated in vitro biocompatibility and antibacterial performance. It has been suggested that BAG fillers with small particle sizes and no more than 20 wt% in terms of loading amount should be used to guarantee the appropriate mechanical properties of resin composites. However, most of these studies focused on one or some aspects using different resin systems, BAG types, and BAG amounts. As such, this makes the comparison difficult, and it is essential to find an optimal balance between different properties. BAG-loaded resin composites can be regarded as bioactive materials, which present major benefits in dentistry, especially their capability in the bacterial inhibition, cell biocompatibility, anti-demineralization, and remineralization of teeth.
Collapse
Affiliation(s)
- Jiaojiao Yun
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Francis Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - James Kit Hon Tsoi
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-28590515
| |
Collapse
|
26
|
Jafari N, Habashi MS, Hashemi A, Shirazi R, Tanideh N, Tamadon A. Application of bioactive glasses in various dental fields. Biomater Res 2022; 26:31. [PMID: 35794665 PMCID: PMC9258189 DOI: 10.1186/s40824-022-00274-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractBioactive glasses are a group of bioceramic materials that have extensive clinical applications. Their properties such as high biocompatibility, antimicrobial features, and bioactivity in the internal environment of the body have made them useful biomaterials in various fields of medicine and dentistry. There is a great variation in the main composition of these glasses and some of them whose medical usage has been approved by the US Food and Drug Administration (FDA) are called Bioglass. Bioactive glasses have appropriate biocompatibility with the body and they are similar to bone hydroxyapatite in terms of calcium and phosphate contents. Bioactive glasses are applied in different branches of dentistry like periodontics, orthodontics, endodontics, oral and maxillofacial surgery, esthetic and restorative dentistry. Also, some dental and oral care products have bioactive glasses in their compositions. Bioactive glasses have been used as dental implants in the human body in order to repair and replace damaged bones. Other applications of bioactive glasses in dentistry include their usage in periodontal disease, root canal treatments, maxillofacial surgeries, dental restorations, air abrasions, dental adhesives, enamel remineralization, and dentin hypersensitivity. Since the use of bioactive glasses in dentistry is widespread, there is a need to find methods and extensive resources to supply the required bioactive glasses. Various techniques have been identified for the production of bioactive glasses, and marine sponges have recently been considered as a rich source of it. Marine sponges are widely available and many species have been identified around the world, including the Persian Gulf. Marine sponges, as the simplest group of animals, produce different bioactive compounds that are used in a wide range of medical sciences. Numerous studies have shown the anti-tumor, anti-viral, anti-inflammatory, and antibiotic effects of these compounds. Furthermore, some species of marine sponges due to the mineral contents of their structural skeletons, which are made of biosilica, have been used for extracting bioactive glasses.
Collapse
|
27
|
Lewis G. Antibiotic-free antimicrobial poly (methyl methacrylate) bone cements: A state-of-the-art review. World J Orthop 2022; 13:339-353. [PMID: 35582158 PMCID: PMC9048499 DOI: 10.5312/wjo.v13.i4.339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/30/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Prosthetic joint infection (PJI) is the most serious complication following total joint arthroplasty, this being because it is associated with, among other things, high morbidity and low quality of life, is difficult to prevent, and is very challenging to treat/manage. The many shortcomings of antibiotic-loaded poly (methyl methacrylate) (PMMA) bone cement (ALBC) as an agent for preventing and treating/managing PJI are well-known. One is that microorganisms responsible for most PJI cases, such as methicillin-resistant S. aureus, have developed or are developing resistance to gentamicin sulfate, which is the antibiotic in the vast majority of approved ALBC brands. This has led to many research efforts to develop cements that do not contain gentamicin (or, for that matter, any antibiotic) but demonstrate excellent antimicrobial efficacy. There is a sizeable body of literature on these so-called "antibiotic-free antimicrobial" PMMA bone cements (AFAMBCs). The present work is a comprehensive and critical review of this body. In addition to summaries of key trends in results of characterization studies of AFAMBCs, the attractive features and shortcomings of the literature are highlighted. Shortcomings provide motivation for future work, with some ideas being formulation of a new generation of AFAMBCs by, example, adding a nanostructured material and/or an extract from a natural product to the powder and/or liquid of the basis cement, respectively.
Collapse
Affiliation(s)
- Gladius Lewis
- Department of Mechanical Engineering, University of Memphis, Memphis, TN 38152, United States
| |
Collapse
|
28
|
Wei YW, Sayed SM, Zhu WW, Xu KF, Wu FG, Xu J, Nie HP, Wang YL, Lu XL, Ma Q. Antibacterial and Fluorescence Staining Properties of an Innovative GTR Membrane Containing 45S5BGs and AIE Molecules In Vitro. NANOMATERIALS 2022; 12:nano12040641. [PMID: 35214970 PMCID: PMC8874606 DOI: 10.3390/nano12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to add two functional components-antibacterial 45S5BGs particles and AIE nanoparticles (TPE-NIM+) with bioprobe characteristics-to the guided tissue regeneration (GTR) membrane, to optimize the performance. The PLGA/BG/TPE-NIM+ membrane was synthesized. The static water contact angle, morphologies, and surface element analysis of the membrane were then characterized. In vitro biocompatibility was tested with MC3T3-E1 cells using CCK-8 assay, and antibacterial property was evaluated with Streptococcus mutans and Porphyromonas gingivalis by the LIVE/DEAD bacterial staining and dilution plating procedure. The fluorescence staining of bacteria was observed by Laser Scanning Confocal Microscope. The results showed that the average water contact angle was 46°. In the cytotoxicity test, except for the positive control group, there was no significant difference among the groups (p > 0.05). The antibacterial effect in the PLGA/BG/TPE-NIM+ group was significantly (p < 0.01), while the sterilization rate was 99.99%, better than that in the PLGA/BG group (98.62%) (p < 0.01). Confocal images showed that the membrane efficiently distinguished G+ bacteria from G- bacteria. This study demonstrated that the PLGA/BG/TPE-NIM+ membrane showed good biocompatibility, efficient sterilization performance, and surface mineralization ability and could be used to detect pathogens in a simple, fast, and wash-free protocol.
Collapse
Affiliation(s)
- Yu-Wen Wei
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Wei-Wen Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Jing Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - He-Peng Nie
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Yu-Li Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Xiao-Lin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
- Correspondence: (Q.M.); (X.-L.L.); Tel.: +86-13770963117 (Q.M.)
| | - Qian Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
- Correspondence: (Q.M.); (X.-L.L.); Tel.: +86-13770963117 (Q.M.)
| |
Collapse
|
29
|
Liu H, Li H, Zhang L, Wang Z, Qian J, Yu M, Shen Y. In vitro evaluation of the antibacterial effect of four root canal sealers on dental biofilms. Clin Oral Investig 2022; 26:4361-4368. [PMID: 35137277 DOI: 10.1007/s00784-022-04399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To dynamically evaluate the effect of four root canal sealers on the killing of biofilms within dentinal tubules. MATERIALS AND METHODS Dentin blocks were prepared for infection of the dentinal tubules. Enterococcus faecalis VP3-181 and multi-species bacteria from two donors were cultured. After 3 days of incubation, the infected dentin specimens were rinsed with sterile water for 1 min and subjected to treatment. Additionally, multi-species bacteria from donor 1 were incubated for 3 weeks to allow biofilm maturation and then the specimens were subjected to treatment. Gutta-percha-treated dentin specimens comprised the control group. A root canal sealer (bioceramic sealers: EndoSequence BC Sealer, ProRoot Endo Sealer, or GuttaFlow Bioseal; and a traditional silicone-based sealer: Guttaflow 2) was spread onto the canal walls of the dentin. The specimens were examined with confocal laser scanning microscopy at 7, 30, or 60 days. RESULTS In the 3-day-old biofilm group, the proportion of killed bacteria decreased significantly from the first 7 days of treatment to 60 days of treatment for all sealers (p < 0.05). In the 3-week-old biofilm group, 60 days of exposure to bioceramic sealers resulted in more significant dead bacteria than 7-day exposures of the biofilms (p < 0.05). Bioceramic sealers were more effective in killing bacteria than the GuttaFlow 2 sealer (p < 0.05). CONCLUSIONS Calcium silicate-based sealers showed good antimicrobial effects against biofilms within dentinal tubules, especially in the first week in young biofilms. There is no substantive antibacterial activity observed for the examined root canal sealers against young dentinal tubule biofilms. CLINICAL RELEVANCE The bioceramic root canal sealers examined demonstrate minimal additional antibacterial effects after long-term exposure to young biofilms.
Collapse
Affiliation(s)
- He Liu
- Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China.,Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Heng Li
- Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Lei Zhang
- Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Junrong Qian
- Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Miao Yu
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, People's Republic of China.
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
30
|
Wu S, Cheng X, Xu X, Wu J, Huang Z, Guo Z, He P, Zhou C, Li H. In vivo and in vitro evaluation of chitosan-modified bioactive glass paste for wound healing. J Mater Chem B 2022; 10:598-606. [PMID: 34988576 DOI: 10.1039/d1tb02083h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the role of chitosan (CS) in improving the properties of bioactive glass (BG) paste for wound healing was studied. Based on in vitro evaluation, it was found that the addition of CS neutralizes the pH value from 11.0 to 7.5, which did not lead to decreasing the bioactivity of BG paste in vitro. The rheological properties showed that the composite paste had higher bio-adhesion and better affinity with the skin surface than either CS or the BG paste. The antibacterial property evaluation showed that the composite paste had stronger antibacterial activity than either CS or BG paste and promoted the proliferation of HUVECs (human umbilical vein endothelial cells) and HaCat (human immortalized keratinocyte cells). Comparatively, the effect of promoting the proliferation of HUVECs is more significant than that of HaCat. The burn-wound model of rat was developed for evaluating in vivo activity, and the addition of CS effectively promoted wound healing without obvious inflammation according to the IL-1β and IL-6 staining. This novel paste is expected to provide a promising alternative for wound healing.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Guangdong Taibao Medical Science and Technology CO., Ltd, Puning, 515345, P. R. China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Xiaoyang Cheng
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Xiaomu Xu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Jiacheng Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Zhiqiang Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Zhenzhao Guo
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China.,Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, P. R. China
| | - Ping He
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China. .,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
31
|
Obeid MF, El-Batouty KM, Aslam M. The effect of using nanoparticles in bioactive glass on its antimicrobial properties. Restor Dent Endod 2021; 46:e58. [PMID: 34909422 PMCID: PMC8636084 DOI: 10.5395/rde.2021.46.e58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives This study addresses the effect of using nanoparticles (np) on the antimicrobial properties of bioactive glass (BAG) when used in intracanal medicaments against Enterococcus faecalis (E. faecalis) biofilms. Materials and Methods E. faecalis biofilms, grown inside 90 root canals for 21 days, were randomly divided into 4 groups according to the antimicrobial regimen followed (n = 20; BAG-np, BAG, calcium hydroxide [CaOH], and saline). After 1 week, residual live bacteria were quantified in terms of colony-forming units (CFU), while dead bacteria were assessed with a confocal laser scanning microscope. Results Although there was a statistically significant decrease in the mean CFU value among all groups, the nano-group performed the best. The highest percentage of dead bacteria was detected in the BAG-np group, with a significant difference from the BAG group. Conclusions The reduction of particle size and use of a nano-form of BAG improved the antimicrobial properties of the intracanal treatment of E. faecalis biofilms
Collapse
Affiliation(s)
- Maram Farouk Obeid
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | | | - Mohammed Aslam
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
32
|
Spirandeli BR, Ribas RG, Amaral SS, Martins EF, Esposito E, Vasconcellos LMR, Campos TMB, Thim GP, Trichês ES. Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112453. [PMID: 34857256 DOI: 10.1016/j.msec.2021.112453] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
In this work, β-TCP (β-tricalcium phosphate) bioresorbable scaffolds were prepared by the gel casting method. Then, they were impregnated with a 45S5 bioglass sol gel solution to improve biocompatibility and promote bioactivity and antimicrobial activity. The β-TCP scaffolds had an apparent porosity of 72%, and after the incorporation of the bioglass, this porosity was maintained. The elements of the bioglass were incorporated into β-TCP matrix and there was a partial transformation from the β-TCP phase to the α-TCP (α-tricalcium phosphate) phase, besides the formation of bioactive calcium and sodium‑calcium silicates. The scaffolds β-TCP with 45S5 bioglass incorporated (β-TCP/45S5) did not show a reduction in their values of mechanical strength and Weibull modulus, despite the partial transformation to the α-TCP phase. Bioactivity, cell viability, and antimicrobial activity improved significantly for the β-TCP/45S5 scaffold comparing to the scaffold without the bioglass. The mineralization of carbonated hydroxyapatite was verified in Simulated Body Fluid (SBF). The cell viability, evaluated by the reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide - MTT in MG63 cells, increased by 178%, and β-TCP/45S5 scaffold also enhanced cell activity and osteoblast differentiation observed by means of total protein contend and alkaline phosphatase activity, respectively. The formation of growth inhibition zones was also observed in the disk diffusion assay for three tested microorganisms: Staphylococcus aureus, Escherichia coli and Candida albicans. To conclude, the vacuum impregnation method in 45S5 bioglass sol gel solution was effective in penetrating all the interconnected macroporosity of the scaffolds and covering the surface of the struts, which improved their biological properties in vitro, bioactivity and antibacterial activity, without reducing mechanical strength and porosity values. Thus, the β-TCP/45S5 scaffolds are shown as potential candidates for use in tissue engineering, mainly in bone tissue regeneration and recovery.
Collapse
Affiliation(s)
- B R Spirandeli
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | - R G Ribas
- Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, 12228-900 São José dos Campos, SP, Brazil
| | - S S Amaral
- São Paulo State University (UNESP), Institute of Science and Technology, 777 Eng. Francisco José Longo Avenue, 12245-000 São José dos Campos, SP, Brazil
| | - E F Martins
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | - E Esposito
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | - L M R Vasconcellos
- São Paulo State University (UNESP), Institute of Science and Technology, 777 Eng. Francisco José Longo Avenue, 12245-000 São José dos Campos, SP, Brazil
| | - T M B Campos
- Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, 12228-900 São José dos Campos, SP, Brazil
| | - G P Thim
- Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, 12228-900 São José dos Campos, SP, Brazil
| | - E S Trichês
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil.
| |
Collapse
|
33
|
Abstract
Diseases or complications that are caused by bone tissue damage affect millions of patients every year. Orthopedic and dental implants have become important treatment options for replacing and repairing missing or damaged parts of bones and teeth. In order to use a material in the manufacture of implants, the material must meet several requirements, such as mechanical stability, elasticity, biocompatibility, hydrophilicity, corrosion resistance, and non-toxicity. In the 1970s, a biocompatible glassy material called bioactive glass was discovered. At a later time, several glass materials with similar properties were developed. This material has a big potential to be used in formulating medical devices, but its fragility is an important disadvantage. The use of bioactive glasses in the form of coatings on metal substrates allows the combination of the mechanical hardness of the metal and the biocompatibility of the bioactive glass. In this review, an extensive study of the literature was conducted regarding the preparation methods of bioactive glass and the different techniques of coating on various substrates, such as stainless steel, titanium, and their alloys. Furthermore, the main doping agents that can be used to impart special properties to the bioactive glass coatings are described.
Collapse
|
34
|
Dhanya K, Chandra P, Anandakrishna L, Karuveettil V. A Comparison of NovaMin ™ and Casein Phosphopeptide-Amorphous Calcium Phosphate Fluoride on Enamel Remineralization - An In vitro Study Using Scanning Electron Microscope and DIAGNOdent ®. Contemp Clin Dent 2021; 12:301-307. [PMID: 34759689 PMCID: PMC8525807 DOI: 10.4103/ccd.ccd_240_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 12/01/2022] Open
Abstract
Aim: The aim of this study was to compare the efficacy of NovaMin™ (SHY-NM) and casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF) (tooth mousse plus™) on enamel remineralization using DIAGNOdent® and scanning electron microscope (SEM). Methodology: Eighty-six natural permanent maxillary first premolars were selected and randomly divided into two groups of 43 each, Group A (NovaMin™) and Group B (CPP-ACPF). All the samples were assessed using DIAGNOdent® (KaVo) at the baseline, after demineralization, and remineralization after 7 days. Two samples were randomly selected from each group after remineralization to evaluate the surface changes using SEM at × 1000 and × 2000. Results: The mean value of remineralization was highest for Group A NovaMin™ (6.56 ± 0.93) compared to Group B, CPP-ACPF (tooth mousse plus™) (6.02 ± 1.09). The maximum demineralization to remineralization value within the groups showed that the mean values in Group B CPP-ACPF (7.02 ± 3.02) was higher than Group A NovaMin™ (6.42 ± 2.21). The difference in remineralizing potential between the groups and demineralization to remineralization value in within-group comparison was not found to be statistically significant. Conclusion: On comparing Group A NovaMin™ and Group B CPP-ACPF, Group B CPP-ACPF showed a higher amount of remineralization than Group A NovaMin™. From the present study, it can be inferred that both the experimental groups have the potential for remineralization.
Collapse
Affiliation(s)
- K Dhanya
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Prakash Chandra
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Latha Anandakrishna
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Vineetha Karuveettil
- Department of Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
35
|
Raimondi S, Zambon A, Ranieri R, Fraulini F, Amaretti A, Rossi M, Lusvardi G. Investigation on the antimicrobial properties of cerium-doped bioactive glasses. J Biomed Mater Res A 2021; 110:504-508. [PMID: 34346141 PMCID: PMC9291033 DOI: 10.1002/jbm.a.37289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/12/2022]
Abstract
Cerium‐doped bioactive glasses (Ce‐BGs) are implant materials that present high biocompatibility, modulate the levels of reactive oxygen species, and exert antimicrobial activity. The potential of BGs, 45S5, and K50S derived glasses doped with CeO2 (1.2, 3.6, and 5.3 mol%) to inhibit the growth of pathogen microbes was thoroughly investigated according to the ISO 22196:2011 method properly adapted. A significant reduction of the E. coli charge was detected in all glasses, including the BGs without cerium. The evolution of pH of the medium not inoculated following the immersion of the Ce‐BGs was monitored. The presence of cerium did not affect markedly the pH trend, which increased rapidly for both compositions. The change of pH was strongly mitigated by the presence of 200 mM phosphate buffer pH 7.0 (PB) in the medium. In media buffered by PB, the growth of E. coli, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, and C. albicans was not affected by the presence of BGs doped or not with cerium, suggesting that the antibacterial activity of Ce‐BGs is linked to the increase of environmental pH rather than to specific ion effects. However, Ce‐BGs resulted promising biomaterials that associate low toxicity to normal cells to a considerable antimicrobial effect, albeit the latter is not directly associated with the presence of cerium.
Collapse
Affiliation(s)
- Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Raffaella Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Fraulini
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biogest-Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biogest-Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Gigliola Lusvardi
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
36
|
Oltramare R, Par M, Mohn D, Wiedemeier DB, Attin T, Tauböck TT. Short- and Long-Term Dentin Bond Strength of Bioactive Glass-Modified Dental Adhesives. NANOMATERIALS 2021; 11:nano11081894. [PMID: 34443725 PMCID: PMC8398528 DOI: 10.3390/nano11081894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the short- and long-term effects of dental adhesives doped with nano-sized bioactive glass 45S5 (BAG) on the resin-dentin interfacial bond strength. Two etch-and-rinse adhesives (Adper Scotchbond Multi-Purpose (ASB) and Solobond Plus (SB)) and one self-etch adhesive (Clearfil SE Bond (CF)) were doped with different concentrations of BAG (5, 10, and 20 wt%). The unmodified (0 wt% BAG) commercial adhesives served as control groups. Dentin of 120 molars (n = 10 per group) was treated with the different adhesives, followed by buildups with a conventional composite restorative material. From each tooth, 14 sticks were prepared for micro-tensile bond strength (µTBS) testing. The sticks were stored in simulated body fluid at 37 °C and tested after 24 h or six months for µTBS and failure mode. Data were analyzed using Kruskal-Wallis tests in combination with post-hoc Conover-tests and Wilcoxon signed-rank tests at a level of significance of α = 0.05. After 24 h and six months, both etch-and-rinse adhesives with a low BAG content (up to 10 wt% for ASB and 5 wt% for SB) showed similar µTBSs as their respective control groups (0 wt% BAG). CF showed a significant decrease in µTBS even after addition of 5 wt% BAG. At a high concentration of added BAG (20 wt%), all three adhesives showed a significant decrease in µTBS compared to the unmodified controls. The CF control group showed significantly lower µTBS after 6 months of storage than after 24 h. In contrast, the µTBS of all CF groups modified with BAG was unaffected by aging. In conclusion, the tested etch-and-rinse adhesives can be modified with up to 5 wt% (SB), or 10 wt% (ASB) of BAG without reducing their short- and long-term dentin bond strength. Moreover, the addition of nano-sized BAG may prevent long-term bond strength deterioration of a self-etch adhesive.
Collapse
Affiliation(s)
- Ramona Oltramare
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
- Correspondence: ; Tel.: +41-44-634-33-63
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Dirk Mohn
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel B. Wiedemeier
- Statistical Services, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland;
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
| | - Tobias T. Tauböck
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
| |
Collapse
|
37
|
Hasan R, Schaner K, Mulinti P, Brooks A. A Bioglass-Based Antibiotic (Vancomycin) Releasing Bone Void Filling Putty to Treat Osteomyelitis and Aid Bone Healing. Int J Mol Sci 2021; 22:7736. [PMID: 34299362 PMCID: PMC8304857 DOI: 10.3390/ijms22147736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
While the infection rate after primary total joint replacements (TJR) sits at 1-2%, for trauma-related surgery, it can be as high as 3.6 to 21.2% based on the type of trauma; the risk of reinfection after revision surgery is even higher. Current treatments with antibiotic-releasing PMMA-based bone cement/ beads and/or systemic antibiotic after surgical debridement do not provide effective treatment due to fluctuating antibiotic levels at the site of infection, leading to insufficient local antibiotic concentration. In addition, non-biodegradable PMMA does not support bone regrowth in the debrided void spaces and often must be removed in an additional surgery. Here, we report a bioactive glass or bioglass (BG) substrate-based biodegradable, easy to fabricate "press fitting" antibiotic-releasing bone void filling (ABVF-BG) putty to provide effective local antibiotic release at the site of infection along with support for bone regeneration. The ABVF-BG putty formulation had homogenously distributed BG particles, a porous structure, and showed putty-like ease of handling. Furthermore, the ABVF-BG putty demonstrated in vitro antibacterial activity for up to 6 weeks. Finally, the ABVF-BG putty was biodegradable in vivo and showed 100% bacterial eradication (as shown by bacterial cell counts) in the treatment group, which received ABVF-BG putty, compared to the infection control group, where all the rats had a high bacterial load (4.63 × 106 ± 7.9 × 105 CFU/gram bone) and sustained osteomyelitis. The ABVF-BG putty also supported bone growth in the void space as indicated by a combination of histology, µCT, and X-ray imaging. The potential for simultaneous infection treatment and bone healing using the developed BG-based ABVF-BG putty is promising as an alternative treatment option for osteomyelitis.
Collapse
Affiliation(s)
- Raquib Hasan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Kambri Schaner
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Pranothi Mulinti
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Amanda Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84734, USA
| |
Collapse
|
38
|
Crovace MC, Soares VO, Rodrigues ACM, Peitl O, Raucci LM, de Oliveira PT, Zanotto ED. Understanding the mixed alkali effect on the sinterability and in vitro performance of bioactive glasses. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Design of poly-l-glutamic acid embedded mesoporous bioactive glass nanospheres for pH-stimulated chemotherapeutic drug delivery and antibacterial susceptibility. Colloids Surf B Biointerfaces 2021; 202:111700. [DOI: 10.1016/j.colsurfb.2021.111700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
|
40
|
Wanitwisutchai T, Monmaturapoj N, Srisatjaluk R, Subannajui K, Dechkunakorn S, Anuwongnukroh N, Pongprueksa P. Buffering capacity and antibacterial properties among bioactive glass-containing orthodontic adhesives. Dent Mater J 2021; 40:1169-1176. [PMID: 34078777 DOI: 10.4012/dmj.2020-375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was to evaluate the acid-buffering capacity and antibacterial properties of orthodontic adhesives containing bioactive glasses (BAGs) (45S5, 45S5F, S53P4), Hydroxyapatite, beta-tricalcium phosphate, and Canasite. Fillers comprising 15 wt% bioactive glasses, HAp, β-TCP, and Canasite incorporated with 55 wt% silanated glass were added to a mixture of UDMA/TEGDMA. Acid-buffering capacity was tested by exposing disc-shaped samples of each adhesive to medium of bacteria-produced acids, and pH changes were recorded at 24 and 48 h. Antibacterial properties were assessed by indirect testing by exposing polymerized adhesive samples to a medium and direct testing by immersing the specimens in solutions containing S. mutans and S. sanguinis. A significant buffering capacity was shown by the 45S5, 45S5F and S53P4 BAG adhesives. The antibacterial properties were not significant in all experimental adhesives. Therefore, the experimental orthodontic adhesives containing BAGs demonstrated a significant buffering capacity but did not show significant antibacterial properties against S. mutans and S. sanguinis.
Collapse
Affiliation(s)
| | - Naruporn Monmaturapoj
- Assistive Technology and Medical Devices Research Center, National Science and Technology Development Agency
| | | | - Kittitat Subannajui
- Material Science and Engineering Program, Multi-Disciplinary Unit, Faculty of Science, Mahidol University
| | | | | | - Pong Pongprueksa
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University
| |
Collapse
|
41
|
Carvalho EM, Ferreira PVC, Gutiérrez MF, Sampaio RF, Carvalho CN, Menezes ASD, Loguercio AD, Bauer J. Development and characterization of self-etching adhesives doped with 45S5 and niobophosphate bioactive glasses: Physicochemical, mechanical, bioactivity and interface properties. Dent Mater 2021; 37:1030-1045. [PMID: 33846019 DOI: 10.1016/j.dental.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of study was to develop and characterize experimental bioactive glasses (45S5 and niobophosphate bioactive glass (NbG)) and evaluate the effects of their addition in self-etching adhesive systems on physicochemical, mechanical, and bioactive properties, microtensile bond strength (μTBS), and nanoleakage (NL). METHODS Two-step self-etching adhesive systems containing 5, 10, and 20 wt.% of 45S5 and NbG bioactive glasses were developed. An experimental adhesive without microparticles and a commercial adhesive (Clearfil SE Bond) were used as control groups. The materials were evaluated for their degree of conversion (DC%), ultimate tensile strength (UTS), softening in solvent, radiopacity, sorption and solubility, alkalizing activity (pH), ionic release, and bioactivity. μTBS and NL were evaluated after 24 h and 1 year of storage. The data were subjected to analysis of variance and post-Holm-Sidak tests (α = 0.05). RESULTS The addition of the two bioactive glasses did not change the values of the degree of conversion, ultimate tensile strength, and softening in solvent. The adhesive system containing 20% NbG showed the highest radiopacity. The incorporation of 45S5 increased water sorption and solubility, raised the pH, and allowed the release of large amounts of calcium. After 28 days of immersion in simulated body fluid, the 45S5 adhesive precipitated hydroxyapatite and calcium carbonate (SEM/EDX, ATR/FTIR, and XDR). The addition of 45S5 and NbG to the adhesives improved the stability of the resin-dentin interface after 1 year. SIGNIFICANCE The incorporation of microparticles from 45S5 bioactive glass in self-etching adhesive systems is considered an excellent alternative for the development of a bioactive adhesive that improves the integrity of the hybrid layer on sound dentin.
Collapse
Affiliation(s)
- Edilausson Moreno Carvalho
- University Ceuma (UNICEUMA), School of Dentistry, R. Josué Montello, 1, Renascença II, 65075-120 São Luis, Maranhão, Brazil.
| | - Paulo Vitor Campos Ferreira
- Department of Restorative Dentistry, Dental Materials Division, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901, 13414-903 Piracicaba, São Paulo, Brazil.
| | - Mario Felipe Gutiérrez
- Department of Biomaterials, School of Dentistry, Universidad de los Andes, Av. Monseñor Álvaro del Portillo 12455, 7550000 Las Condes, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Av. Olivos 943, 8380544 Independencia, Santiago, Chile.
| | - Ruan Ferreira Sampaio
- University Ceuma (UNICEUMA), School of Dentistry, R. Josué Montello, 1, Renascença II, 65075-120 São Luis, Maranhão, Brazil.
| | - Ceci Nunes Carvalho
- University Ceuma (UNICEUMA), School of Dentistry, R. Josué Montello, 1, Renascença II, 65075-120 São Luis, Maranhão, Brazil.
| | - Alan Silva de Menezes
- Department of Physics, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, 65080-805 São Luís, Maranhão, Brazil.
| | - Alessandro Dourado Loguercio
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa (UEPG), Rua Carlos Cavalcanti, 4748, Campus Uvaranas, 84030-900 Ponta Grossa, Paraná, Brazil.
| | - José Bauer
- Discipline of Dental Materials, School of Dentistry, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, 65080-805 São Luís, Maranhão, Brazil.
| |
Collapse
|
42
|
Abushahba F, Gürsoy M, Hupa L, Närhi TO. Effect of bioactive glass air-abrasion on Fusobacterium nucleatum and Porphyromonas gingivalis biofilm formed on moderately rough titanium surface. Eur J Oral Sci 2021; 129:e12783. [PMID: 33724569 DOI: 10.1111/eos.12783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022]
Abstract
This aim of this study was to investigate the effects of three types of air-abrasion particles on dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis, both of which were cultured on sandblasted and acid-etched (SA) titanium discs. Out of 24 SA discs with biofilm, 18 were exposed to either air-abrasion using Bioglass 45S5 (45S5 BG; n = 6), novel zinc (Zn)-containing bioactive glass (Zn4 BG; n = 6), or inert glass (n = 6). The efficiency of biofilm removal was evaluated using scanning electron microscopy (SEM) imaging and culturing techniques. Air-abrasion using 45S5 BG or Zn4 BG demonstrated a significant decrease in the total number of viable bacteria compared to discs air-abraded with inert glass or intact biofilm without abrasion. Moreover, P. gingivalis could not be detected from SEM images nor culture plates after air-abrasion with 45S5 BG or Zn4 BG. The present study showed that air-abrasion with 45S5 or Zn4 bioactive glasses can successfully eradicate dual-biofilm of F. nucleatum and P. gingivalis from sandblasted and acid-etched titanium discs.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Timo O Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland.,Welfare Division, City of Turku, Turku, Finland
| |
Collapse
|
43
|
Khan AUR, Morsi Y, Zhu T, Ahmad A, Xie X, Yu F, Mo X. Electrospinning: An emerging technology to construct polymer-based nanofibrous scaffolds for diabetic wound healing. FRONTIERS OF MATERIALS SCIENCE 2021; 15:10-35. [DOI: 10.1007/s11706-021-0540-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2025]
|
44
|
Plyusnin A, He J, Elschner C, Nakamura M, Kulkova J, Spickenheuer A, Scheffler C, Lassila LVJ, Moritz N. A Polymer for Application as a Matrix Phase in a Concept of In Situ Curable Bioresorbable Bioactive Load-Bearing Continuous Fiber Reinforced Composite Fracture Fixation Plates. Molecules 2021; 26:molecules26051256. [PMID: 33652632 PMCID: PMC7956420 DOI: 10.3390/molecules26051256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/04/2022] Open
Abstract
The use of bioresorbable fracture fixation plates made of aliphatic polyesters have good potential due to good biocompatibility, reduced risk of stress-shielding, and eliminated need for plate removal. However, polyesters are ductile, and their handling properties are limited. We suggested an alternative, PLAMA (PolyLActide functionalized with diMethAcrylate), for the use as the matrix phase for the novel concept of the in situ curable bioresorbable load-bearing composite plate to reduce the limitations of conventional polyesters. The purpose was to obtain a preliminary understanding of the chemical and physical properties and the biological safety of PLAMA from the prospective of the novel concept. Modifications with different molecular masses (PLAMA-500 and PLAMA-1000) were synthesized. The efficiency of curing was assessed by the degree of convergence (DC). The mechanical properties were obtained by tensile test and thermomechanical analysis. The bioresorbability was investigated by immersion in simulated body fluid. The biocompatibility was studied in cell morphology and viability tests. PLAMA-500 showed better DC and mechanical properties, and slower bioresorbability than PLAMA-1000. Both did not prevent proliferation and normal morphological development of cells. We concluded that PLAMA-500 has potential for the use as the matrix material for bioresorbable load-bearing composite fracture fixation plates.
Collapse
Affiliation(s)
- Artem Plyusnin
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Cindy Elschner
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku, FI-20014 Turku, Finland;
| | - Julia Kulkova
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
- Correspondence: ; Tel.: +358-44-974-91-83
| | - Axel Spickenheuer
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Christina Scheffler
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Lippo V. J. Lassila
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| | - Niko Moritz
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| |
Collapse
|
45
|
ELALMIŞ Y. Effect of Al2O3 Doping on Antibacterial Activity of 45S5 Bioactive Glass. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.835912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
46
|
Kirthika N, Vidhya S, Sujatha V, Mahalaxmi S, Senthil Kumar R. Comparative evaluation of compressive and flexural strength, fluoride release and bacterial adhesion of GIC modified with CPP-ACP, bioactive glass, chitosan and MDPB. J Dent Res Dent Clin Dent Prospects 2021; 15:16-21. [PMID: 33927836 PMCID: PMC8058153 DOI: 10.34172/joddd.2021.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 12/04/2022] Open
Abstract
Background. This study evaluated the incorporation of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), calcium sodium phosphosilicate bioactive glass (BAG), chitosan (CH), and methacryloyloxydodecylpyridinium bromide (MDPB) on the compressive and flexural strength, fluoride (F‒ ) release, and bacterial adhesion of conventional glass-ionomer cement (C-GIC). Methods. Modifications were implemented by adding CPP-ACP, BAG, and CH to the glass powder, while MDPB-GIC was prepared by incorporating MDPB to the liquid of C-GIC. Custom-made molds were used for specimen preparation. Compressive and flexural strengths were evaluated using a universal testing machine. F‒ release was calculated with Erichrome cyanide reagent, using UV-spectrophotometry, at two time intervals of 24 hours and seven days. For bacterial adhesion, the test specimens were exposed to the bacterial suspension of Streptococcus mutans and Lactobacillus acidophilus for 4 hours, and the adherent bacteria were quantified using colorimetry as the optical density (OD). Results. The incorporation of MDPB increased the flexural strength of C-GIC, with no effect on its compressive strength. CH significantly improved the compressive and flexural strength; modifications with CPP-ACP, BAG, and MDPB significantly improved the flexural strength of C-GIC. While MDPB-GIC released significantly higher F‒ at 24 hours, CPP-ACP- and BAG-modified GICs were comparable to C-GIC on day 7. C-GIC exhibited the highest bacterial adhesion, and MDPB-GIC showed the least. The data were analyzed with one-way (ANOVA), and pairwise comparisons were made with Tukey HSD tests. Conclusion. Hence, it can be concluded that the incorporation of CPP-ACP, BAG, and CH improved the mechanical properties of C-GIC, whereas MDPB improved the resistance of C-GIC to bacterial adhesion.
Collapse
Affiliation(s)
- Natarajan Kirthika
- Department of Conservative Dentistry and Endodontics, Karpaga Vinayaga Institute of Dental Sciences, Tamil Nadu, India
| | - Sampath Vidhya
- Department of Conservative Dentistry and Endodontics, SRM Dental College, SRM Institute of Science and Technology, Chennai, India
| | - Venkatappan Sujatha
- Department of Conservative Dentistry and Endodontics, SRM Dental College, SRM Institute of Science and Technology, Chennai, India
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, SRM Institute of Science and Technology, Chennai, India
| | - Renganathan Senthil Kumar
- Department of Conservative Dentistry and Endodontics, Adhiparasakthi Dental College & Hospital, Melmaruvathur, India
| |
Collapse
|
47
|
Silica-Based Bioactive Glasses and Their Applications in Hard Tissue Regeneration: A Review. Pharmaceuticals (Basel) 2021; 14:ph14020075. [PMID: 33498229 PMCID: PMC7909272 DOI: 10.3390/ph14020075] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Regenerative medicine is a field that aims to influence and improvise the processes of tissue repair and restoration and to assist the body to heal and recover. In the field of hard tissue regeneration, bio-inert materials are being predominantly used, and there is a necessity to use bioactive materials that can help in better tissue-implant interactions and facilitate the healing and regeneration process. One such bioactive material that is being focused upon and studied extensively in the past few decades is bioactive glass (BG). The original bioactive glass (45S5) is composed of silicon dioxide, sodium dioxide, calcium oxide, and phosphorus pentoxide and is mainly referred to by its commercial name Bioglass. BG is mainly used for bone tissue regeneration due to its osteoconductivity and osteostimulation properties. The bioactivity of BG, however, is highly dependent on the compositional ratio of certain glass-forming system content. The manipulation of content ratio and the element compositional flexibility of BG-forming network developed other types of bioactive glasses with controllable chemical durability and chemical affinity with bone and bioactivity. This review article mainly discusses the basic information about silica-based bioactive glasses, including their composition, processing, and properties, as well as their medical applications such as in bone regeneration, as bone grafts, and as dental implant coatings.
Collapse
|
48
|
Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, Suresh A, Abraham J, Swamiappan S. Biomineralization, mechanical, antibacterial and biological investigation of larnite and rankinite bioceramics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111466. [DOI: 10.1016/j.msec.2020.111466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023]
|
49
|
Palza Cordero H, Castro Cid R, Diaz Dosque M, Cabello Ibacache R, Palma Fluxá P. Li-doped bioglass® 45S5 for potential treatment of prevalent oral diseases. J Dent 2020; 105:103575. [PMID: 33385532 DOI: 10.1016/j.jdent.2020.103575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Despite the excellent properties of both pure bioglasses (BG) and BG doped with therapeutic ions (such as Li) in hard tissue applications, there is not enough information about their role in the remineralization and bacterial-growth in oral diseases. The aim of this contribution is to evaluate the effect of both pure BG and BG doped with 5-wt% of Li (BGLi) on both the remineralization of in vitro demineralized human-teeth and the antimicrobial behavior against strains from caries and periodontitis. METHODS Bioglass® 45S5 (BG) and BGLi were synthesized by the sol-gel method. The remineralization tests were carried out using in vitro demineralized enamel teeth and evaluated by Electron Microscopy (SEM) and Vickers micro-hardness (HV). The antimicrobial behavior of the particles was evaluated against S. mutans, A. actinomycetemcomitans, and P. gingivalis, representing pathogens from caries and periodontitis. RESULTS Enamel lesion was partially remineralized when both bioglasses (BG and BGLi) were applied on its surface with micro-hardness recoveries around 45 %. They further inhibited the growth of S. mutans and P. gingivalis, at 50 and 200 mg/mL, respectively. BGLi presented a higher toxicity against A. actinomycetemcomitans than BG, with inhibition concentrations of 20 mg/mL and 100 mg/mL, respectively. CONCLUSIONS Bioglasses could be used in the treatment of two of the most prevalent oral diseases: caries and periodontitis, promoting the remineralization of the teeth and killing the main pathogens. The presence of Li did not affect the bioactivity of the bioglass and improved the antibacterial effect over A. actinomycetemcomitans strain.
Collapse
Affiliation(s)
- Humberto Palza Cordero
- Chemical Engineering, Biotechnological and Materials Department, Faculty of Physics and Mathematics Sciences, University of Chile, Santiago, Chile.
| | - René Castro Cid
- Chemical Engineering, Biotechnological and Materials Department, Faculty of Physics and Mathematics Sciences, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
50
|
Best served small: nano battles in the war against wound biofilm infections. Emerg Top Life Sci 2020; 4:567-580. [PMID: 33269803 DOI: 10.1042/etls20200155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
The global challenge of antimicrobial resistance is of increasing concern, and alternatives to currently used antibiotics or methods to improve their stewardship are sought worldwide. Microbial biofilms, complex 3D communities of bacteria and/or fungi, are difficult to treat with antibiotics for several reasons. These include their protective coats of extracellular matrix proteins which are difficult for antibiotics to penetrate. Nanoparticles (NP) are one way to rise to this challenge; whilst they exist in many forms naturally there has been a profusion in synthesis of these small (<100 nm) particles for biomedical applications. Their small size allows them to penetrate the biofilm matrix, and as well as some NP being inherently antimicrobial, they also can be modified by doping with antimicrobial payloads or coated to increase their effectiveness. This mini-review examines the current role of NP in treating wound biofilms and the rise in multifunctionality of NP.
Collapse
|