1
|
Hussain B, Grytten JI, Rongen G, Sanz M, Haugen HJ. Surface Topography Has Less Influence on Peri-Implantitis than Patient Factors: A Comparative Clinical Study of Two Dental Implant Systems. ACS Biomater Sci Eng 2024; 10:4562-4574. [PMID: 38916970 PMCID: PMC11234333 DOI: 10.1021/acsbiomaterials.3c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES This study aims to assess the risk of peri-implantitis (PI) onset among different implant systems and evaluate the severity of the disease from a population of patients treated in a university clinic. Furthermore, this study intends to thoroughly examine the surface properties of the implant systems that have been identified and investigated. MATERIAL AND METHODS Data from a total of six hundred and 14 patients were extracted from the Institute of Clinical Dentistry, Dental Faculty, University of Oslo. Subject- and implant-based variables were collected, including the type of implant, date of implant installation, medical records, recall appointments up to 2022, periodontal measurements, information on diabetes, smoking status, sex, and age. The outcome of interest was the diagnosis of PI, defined as the occurrence of bleeding on probing (BoP), peri-implant probing depth (PD) ≥ 5 mm, and bone loss (BL). Data were analyzed using multivariate linear and logistic regression. Scanning electron microscopy, light laser profilometer, and X-ray photoelectron spectroscopy were utilized for surface and chemical analyses. RESULTS Among the patients evaluated, 6.8% were diagnosed with PI. A comparison was made between two different implant systems: Dentsply Sirona, OsseospeedTM and Straumann SLActive, with mean follow-up times of 3.84 years (SE: 0.15) and 3.34 years (SE: 0.15), respectively. The surfaces have different topographies and surface chemistry. However, no significant association was found between PI and implant surface/system, including no difference in the onset or severity of the disease. Nonetheless, plaque control was associated with an increased risk of developing PI, along with the gender of the patient. Furthermore, patients suffering from PI exhibited increased BL in the anterior region. CONCLUSION No differences were observed among the evaluated implant systems, although the surfaces have different topography and chemistry. Factors that affected the risk of developing PI were plaque index and male gender. The severity of BL in patients with PI was more pronounced in the anterior region. Consequently, our findings show that success in implantology is less contingent on selecting implant systems and more on a better understanding of patient-specific risk factors, as well as on implementing biomaterials that can more effectively debride dental implants.
Collapse
Affiliation(s)
- Badra Hussain
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0316, Norway
| | | | - Gunnar Rongen
- Institute
of Community Dentistry, University of Oslo, Oslo 0316, Norway
| | - Mariano Sanz
- Section
of Periodontology, Faculty of Odontology, University Complutense of Madrid, Madrid 28040, Spain
- ETEP
(Etiology and Therapy of Periodiontal and Peri-Implant Diseases) Research
Group, Complutense University, Madrid 28040, Spain
| | - Håvard Jostein Haugen
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
2
|
Zhou H, Ye S, Xu M, Hao L, Chen J, Fang Z, Guo K, Chen Y, Wang L. Dynamic surface adapts to multiple service stages by orchestrating responsive polymers and functional peptides. Biomaterials 2023; 301:122200. [PMID: 37423184 DOI: 10.1016/j.biomaterials.2023.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Control over the implant surface functions is highly desirable to enhance tissue healing outcomes but has remained unexplored to adapt to the different service stages. In the present study, we develop a smart titanium surface by orchestrating thermoresponsive polymer and antimicrobial peptide to enable dynamic adaptation to the implantation stage, normal physiological stage and bacterial infection stage. The optimized surface inhibited bacterial adhesion and biofilm formation during surgical implantation, while promoted osteogenesis in the physiological stage. The further temperature increase driven by bacterial infection induced polymer chain collapse to expose antimicrobial peptides by rupturing bacterial membranes, as well as protect the adhered cells from the hostile environment of infection and abnormal temperature. The engineered surface could inhibit infection and promote tissue healing in rabbit subcutaneous and bone defect infection models. This strategy enables the possibility to create a versatile surface platform to balance bacteria/cell-biomaterial interactions at different service stages of implants that has not been achieved before.
Collapse
Affiliation(s)
- Haiyan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Silin Ye
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Mingjian Xu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Lihui Hao
- Department of Stomatology, Xingtai Medical College, Xingtai 054000, China
| | - Junjian Chen
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Zhou Fang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kunzhong Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Mechanical micromodeling of stress-shielding at the bone-implant interphase under shear loading. Med Biol Eng Comput 2022; 60:3281-3293. [DOI: 10.1007/s11517-022-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
|
5
|
Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study. J Funct Biomater 2022; 13:jfb13030143. [PMID: 36135578 PMCID: PMC9503392 DOI: 10.3390/jfb13030143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were evaluated. Sandblasting and subsequent acid etching of cpTi and Ti6Al4V discs was performed with Al2O3 grains of different sizes and with varying blasting pressures. The micro- and nano-roughness of the experimental SA surfaces were analyzed via confocal, atomic force and scanning electron microscopy. Surface free energy and friction coefficients were determined. hFOB 1.19 cells were seeded to evaluate adhesion, proliferation and osteoblastic differentiation for up to 12 d via crystal violet assays, MTT assays, ALP activity assays and Alizarin Red staining assays. Differences in blasting procedures had significant impacts on surface macro- and micro-topography. The crystal violet assay revealed a significant inverse relationship between blasting grain size and hFOB cell growth after 7 days. This trend was also visible in the Alizarin Red assays staining after 12 d: there was significantly higher biomineralization visible in the group that was sandblasted with smaller grains (F180) when compared to standard-grain-size groups (F70). SA samples treated with reduced blasting pressure exhibited lower hFOB adhesion and growth capabilities at initial (2 h) and later time points for up to 7 days, when compared to the standard SA surface, even though micro-roughness and other relevant surface parameters were similar. Overall, etched-only surfaces consistently exhibited equivalent or higher adhesion, proliferation and differentiation capabilities when compared to all other sandblasted and etched surfaces. No differences were found between cpTi and Ti6Al4V SA surfaces. Subtle modifications in the blasting protocol for Ti6Al4V SA surfaces significantly affect the proliferative and differentiation behavior of human osteoblasts. Surface roughness parameters are not sufficient to predict osteoblast behavior on etched Ti6Al4V surfaces.
Collapse
|
6
|
Luo F, Mao R, Huang Y, Wang L, Lai Y, Zhu X, Fan Y, Wang K, Zhang X. Femtosecond laser optimization of PEEK: efficient bioactivity achieved by synergistic surface chemistry and structures. J Mater Chem B 2022; 10:7014-7029. [PMID: 36043488 DOI: 10.1039/d2tb01142e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly-ether-ether-ketone (PEEK) is considered a potential orthopedic material due to the excellent mechanical properties and chemical resistance, but its biological inertness hampers its further clinical application. In this study, advanced femtosecond laser microfabrication technology was utilized to induce the change of the surface characteristics of PEEK to improve its bioactivity. Meanwhile, the mechanism of surface reaction and improved bioactivity was interpreted in detail from the perspective of material science. The surface physical-chemical characterization results showed that femtosecond laser etching could increase the surface energy, and the contents of active sites including amorphous carbon and carbon-hydroxyl on PEEK surfaces. In vitro validation experiments demonstrated that the samples etched with a femtosecond laser had a better ability to induce apatite deposition and cell proliferation than those treated with popular sulfonation modification, which would lead to better bioactivity and osteointegration. The current work fully presents the mechanism of the femtosecond laser low-temperature plasma effect on PEEK and the resulting surface characteristics, which could broaden the application of PEEK in the orthopedic field. Moreover, it has great potential in the surface design and modification of other biomaterials with enhanced bioactivity.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yixiang Lai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Haugen HJ, Chen H. Is There a Better Biomaterial for Dental Implants than Titanium?—A Review and Meta-Study Analysis. J Funct Biomater 2022; 13:jfb13020046. [PMID: 35645254 PMCID: PMC9149859 DOI: 10.3390/jfb13020046] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
This article focuses on preclinical studies and reviews the available evidence from the literature on dental implant and abutment materials in the last decade. Specifically, different peri-implantitis materials and how surface modifications may affect the peri-implant soft-tissue seal and subsequently delay or hinder peri-implantitis are examined. This review analyzed more than 30 studies that were Randomized Controlled Trials (RCTs), Controlled Clinical Trials (CCTs), or prospective case series (CS) with at least six months of follow-up. Meta-analyses were performed to make a comparison between different implant materials (titanium vs. zirconia), including impact on bone changes, probing depth, plaque levels, and peri-implant mucosal inflammation, as well as how the properties of the implant material and surface modifications would affect the peri-implant soft-tissue seal and peri-implant health conditions. However, there was no clear evidence regarding whether titanium is better than other implant materials. Clinical evidence suggests no difference between different implant materials in peri-implant bone stability. The metal analysis offered a statistically significant advantage of zirconia implants over titanium regarding developing a favorable response to the alveolar bone.
Collapse
Affiliation(s)
- Håvard J. Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
- Correspondence:
| | - Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| |
Collapse
|
8
|
Luo F, Wang L, Xiao Z, Zhu X, Fan Y, Wang K, Zhang X. Application of femtosecond laser microfabrication in the preparation of advanced bioactive titanium surfaces. J Mater Chem B 2021; 9:3912-3924. [PMID: 33928992 DOI: 10.1039/d1tb00231g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface activation of titanium plays a key role in the biological properties of titanium implants as bone repair materials. Improving the ability to induce apatite precipitation on the surface was a well-accepted titanium bioactivation route. In this study, advanced femtosecond laser microfabrication was applied to modify titanium surfaces, and the effect of femtosecond laser etching on apatite precipitation was investigated and compared with popular titanium modification methods. Meanwhile, the mechanism of apatite formation after femtosecond laser modification was interpreted from the point of materials science. The surface physical-chemical characterization results showed that femtosecond laser etching can improve the surface hydrophilicity and increase the surface energy. Compared with traditional abrasive paper and acid-alkali treatment, this method increased the contents of active sites including titanium oxide and titanium-hydroxyl on titanium surfaces. TiO2 on the surface was transformed to TiO after femtosecond laser treatment. The samples etched with 0.3 W and 0.5 W femtosecond lasers had a better ability to induce apatite deposition than those treated with traditional mechanical treatment and popular acid-alkali modification, which would lead to better bioactivity and osteointegration. Considering the technical advantages of femtosecond lasers in microfabrication, it provides a more efficient and controllable scheme for the bioactivation of titanium. This research would improve the application potential of femtosecond laser treatment, such as micropattern preparation and surface activation, in the field of biomaterials.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
9
|
Raffa ML, Nguyen VH, Hernigou P, Flouzat-Lachaniette CH, Haiat G. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio. J Orthop Res 2021; 39:1174-1183. [PMID: 32852064 DOI: 10.1002/jor.24840] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/06/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
Short and long-term stabilities of cementless implants are strongly determined by the interfacial load transfer between implants and bone tissue. Stress-shielding effects arise from shear stresses due to the difference of material properties between bone and the implant. It remains difficult to measure the stress field in periprosthetic bone tissue. This study proposes to investigate the dependence of the stress field in periprosthetic bone tissue on (i) the implant surface roughness, (ii) the material properties of bone and of the implant, (iii) the bone-implant contact ratio. To do so, a microscale two-dimensional finite element model of an osseointegrated bone-implant interface was developed where the surface roughness was modeled by a sinusoidal surface. The results show that the isostatic pressure is not affected by the presence of the bone-implant interface while shear stresses arise due to the combined effects of a geometrical singularity (for low surface roughness) and of shear stresses at the bone-implant interface (for high surface roughness). Stress-shielding effects are likely to be more important when the bone-implant contact ratio value is low, which corresponds to a case of relatively low implant stability. Shear stress reach a maximum value at a distance from the interface comprised between 0 and 0.1 time roughness wavelength λ and tend to 0 at a distance from the implant surface higher than λ, independently from bone-implant contact ratio and waviness ratio. A comparison with an analytical model allows validating the numerical results. Future work should use the present approach to model osseointegration phenomena.
Collapse
Affiliation(s)
- Maria Letizia Raffa
- Univ Paris Est Creteil, CNRS, MSME, Créteil, F-94010, France.,SUPMECA, EA 7393 QUARTZ Laboratory, Saint-Ouen 93407, France
| | - Vu-Hieu Nguyen
- Univ Paris Est Creteil, CNRS, MSME, Créteil, F-94010, France.,Univ Gustave Eiffel, MSME, Marne-la-Vallée, F-77454, France
| | - Philippe Hernigou
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, Créteil, France.,INSERM U955, IMRB Université Paris-Est, Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, Créteil, France.,INSERM U955, IMRB Université Paris-Est, Créteil, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208, Créteil, F-94010, France
| |
Collapse
|
10
|
Guillaume F, Le Cann S, Tengattini A, Törnquist E, Falentin-Daudre C, Albini Lomami H, Petit Y, Isaksson H, Haïat G. Neutron microtomography to investigate the bone-implant interface-comparison with histological analysis. Phys Med Biol 2021; 66. [PMID: 33831846 DOI: 10.1088/1361-6560/abf603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Bone properties and especially its microstructure around implants are crucial to evaluate the osseointegration of prostheses in orthopaedic, maxillofacial and dental surgeries. Given the intrinsic heterogeneous nature of the bone microstructure, an ideal probing tool to understand and quantify bone formation must be spatially resolved. X-ray imaging has often been employed, but is limited in the presence of metallic implants, where severe artifacts generally arise from the high attenuation of metals to x-rays. Neutron tomography has recently been proposed as a promising technique to study bone-implant interfaces, thanks to its lower interaction with metals. The aim of this study is to assess the potential of neutron tomography for the characterisation of bone tissue in the vicinity of a metallic implant. A standardised implant with a bone chamber was implanted in rabbit bone. Four specimens were imaged with neutron tomography and subsequently compared to non-decalcified histology to stain soft and mineralised bone tissues, used here as a ground-truth reference. An intensity-based image registration procedure was performed to place the 12 histological slices within the corresponding 3D neutron volume. Significant correlations (p < 0.01) were obtained between the two modalities for the bone-implant contact (BIC) ratio (R = 0.77) and the bone content inside the chamber (R = 0.89). The results indicate that mineralised bone tissue can be reliably detected by neutron tomography. However, theBICratio and bone content were found to be overestimated with neutron imaging, which may be explained by its sensitivity to non-mineralised soft tissues, as revealed by histological staining. This study highlights the suitability of neutron tomography for the analysis of the bone-implant interface. Future work will focus on further distinguishing soft tissues from bone tissue, which could be aided by the adoption of contrast agents.
Collapse
Affiliation(s)
- Florian Guillaume
- Département de génie mécanique, École de technologie supérieure, Montréal, Canada.,MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| | - Sophie Le Cann
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| | - Alessandro Tengattini
- Institut Laue Langevin, Grenoble, France.,Laboratoire 3SR, Université Grenoble Alpes, Gières, France
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Céline Falentin-Daudre
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, 99 avenue JB Clément 93430- Villetaneuse, France
| | - Hugues Albini Lomami
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| | - Yvan Petit
- Département de génie mécanique, École de technologie supérieure, Montréal, Canada
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Guillaume Haïat
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| |
Collapse
|
11
|
Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration-Resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 2021; 109:1909-1923. [PMID: 33871951 DOI: 10.1002/jbm.b.34835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
As life expectancy and the age of the general population increases so does the need for improved implants. A major contributor to the failure of implants is poor osseointegration, which is typically described as the direct connection between bone and implant. This leads to unnecessary complications and an increased burden on the patient population. Modification of the implant surfaces through novel techniques, such as varying topography and/or applying coatings, has become a popular method to enhance the osseointegration capability of implants. Recent research has shown that particular surface features influence how bone cells interact with a material; however, it is unknown which exact features achieve optimal bone integration. In this review, current methods of modifying surfaces will be highlighted, and the resulting surface characteristics and biological responses are discussed. Review of the current strategies of surface modifications found that many coating types are more advantageous when used in combination; however, finding a surface modification that utilizes the mutual beneficial effects of important surface characteristics while still maintaining commercial viability is where future challenges exist.
Collapse
Affiliation(s)
- Kadie P Nobles
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Randall S Williamson
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
12
|
Lei H, Yi T, Fan H, Pei X, Wu L, Xing F, Li M, Liu L, Zhou C, Fan Y, Zhang X. Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111789. [PMID: 33545915 DOI: 10.1016/j.msec.2020.111789] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Scaffold micro-topological structure plays an important role in the regulation of cell behavior in bone tissue engineering. This paper investigated the effect of 3D printing parameters on the scaffold micro-topological structure and its subsequent cell behaviors. By setting of different 3D printing parameters, i.e., the 3D printing laser power, the scanning interval and the thickness of sliced layers, the highest resolution up to 20 μm can be precisely fabricated. Scaffolds' characterization results indicated that the laser power affected the forming quality of melt tracks, the scanning interval distance determined the size of regularly arranged pores, and the thickness of sliced layers affected the morphological and structural characteristics. By regulating of these printing parameters, customized porous Ti6Al4V scaffold with varied hierarchical micro-topological structure can be obtained. In vitro cell culturing results showed that the regular porous micro-topological structure of scaffolds with the aperture close to cell size was more suitable for cell proliferation and adhesion. The overall distribution of cells on regular porous scaffolds was similar to the orderly arrangement of cultivated crops in the field. The findings suggested that customization of the scaffold provided an effective way to regulate cellular behavior and biological properties.
Collapse
Affiliation(s)
- Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Tao Yi
- School of Mechanical Engineering, Sichuan University, 610065 Chengdu, China
| | - Hongyuan Fan
- School of Mechanical Engineering, Sichuan University, 610065 Chengdu, China.
| | - Xuan Pei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| |
Collapse
|
13
|
Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111505. [DOI: 10.1016/j.msec.2020.111505] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
|
14
|
Fraulob M, Vayron R, Le Cann S, Lecuelle B, Hériveaux Y, Albini Lomami H, Flouzat Lachaniette CH, Haïat G. Quantitative ultrasound assessment of the influence of roughness and healing time on osseointegration phenomena. Sci Rep 2020; 10:21962. [PMID: 33319800 PMCID: PMC7738679 DOI: 10.1038/s41598-020-78806-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/23/2020] [Indexed: 12/04/2022] Open
Abstract
The evolution of bone tissue quantity and quality in contact with the surface of orthopedic and dental implants is a strong determinant of the surgical outcome but remains difficult to be assessed quantitatively. The aim of this study was to investigate the performance of a quantitative ultrasound (QUS) method to measure bone-implant interface (BII) properties. A dedicated animal model considering coin-shaped titanium implants with two levels of surface roughness (smooth, Sa = 0.49 µm and rough, Sa = 3.5 µm) allowed to work with a reproducible geometry and a planar interface. The implants were inserted in rabbit femurs and tibiae for 7 or 13 weeks. The ultrasonic response of the BII was measured ex vivo, leading to the determination of the 2-D spatial variations of bone in contact with the implant surface. Histological analysis was carried out to determine the bone-implant contact (BIC) ratio. The amplitude of the echo was significantly higher after 7 weeks of healing time compared to 13 weeks, for both smooth (p < 0.01) and rough (p < 0.05) implants. A negative correlation (R = − 0.63) was obtained between the ultrasonic response and the BIC. This QUS technique is more sensitive to changes of BII morphology compared to histological analyses.
Collapse
Affiliation(s)
- M Fraulob
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, 61, Avenue du Général de Gaulle, 94010, Créteil Cedex, France
| | - R Vayron
- Laboratoire d'Automatique, de Mécanique et d'informatique Industrielles et Humaines, LAMIH UMR CNRS 8201, Université Polytechnique Hauts de France, 59300, Valenciennes, France
| | - S Le Cann
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, 61, Avenue du Général de Gaulle, 94010, Créteil Cedex, France
| | - B Lecuelle
- Centre de Recherche BioMédicale, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Y Hériveaux
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, 61, Avenue du Général de Gaulle, 94010, Créteil Cedex, France
| | - H Albini Lomami
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, 61, Avenue du Général de Gaulle, 94010, Créteil Cedex, France
| | - C H Flouzat Lachaniette
- INSERM U955, IMRB Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France.,Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - G Haïat
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, 61, Avenue du Général de Gaulle, 94010, Créteil Cedex, France.
| |
Collapse
|
15
|
Fraulob M, Le Cann S, Voumard B, Yasui H, Yano K, Vayron R, Matsukawa M, Zysset P, Haïat G. Multimodal Evaluation of the Spatiotemporal Variations of Periprosthetic Bone Properties. J Biomech Eng 2020; 142:121014. [PMID: 32909597 DOI: 10.1115/1.4048399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 07/25/2024]
Abstract
Titanium implants are widely used in dental and orthopedic surgeries. However, implant failures still occur because of a lack of implant stability. The biomechanical properties of bone tissue located around the implant need to be assessed to better understand the osseointegration phenomena and anticipate implant failure. The aim of this study was to explore the spatiotemporal variation of the microscopic elastic properties of newly formed bone tissue close to an implant. Eight coin-shaped Ti6Al4V implants were inserted into rabbit tibiae for 7 and 13 weeks using an in vivo model allowing the distinction between mature and newly formed bone in a standardized configuration. Nanoindentation and micro-Brillouin scattering measurements were carried out in similar locations to measure the indentation modulus and the wave velocity, from which relative variations of bone mass density were extracted. The indentation modulus, the wave velocity and mass density were found to be higher (1) in newly formed bone tissue located close to the implant surface, compared to mature cortical bone tissue, and (2) after longer healing time, consistently with an increased mineralization. Within the bone chamber, the spatial distribution of elastic properties was more heterogeneous for shorter healing durations. After 7 weeks of healing, bone tissue in the bone chamber close to the implant surface was 12.3% denser than bone tissue further away. Bone tissue close to the chamber edge was 16.8% denser than in its center. These results suggest a bone spreading pathway along tissue maturation, which is confirmed by histology and consistent with contact osteogenesis phenomena.
Collapse
Affiliation(s)
- Manon Fraulob
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, Creteil F-94010, France
| | - Sophie Le Cann
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, Creteil F-94010, France
| | - Benjamin Voumard
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern CH-3010, Switzerland
| | - Hirokazu Yasui
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Keita Yano
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Romain Vayron
- Université Polytechnique Hauts de France, Laboratoire d'Automatique, de Mécanique et d'informatique Industrielles et Humaines, LAMIH UMR CNRS 8201, Valenciennes F-59300, France
| | - Mami Matsukawa
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Philippe Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern CH-3010, Switzerland
| | - Guillaume Haïat
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, Creteil F-94010, France
| |
Collapse
|
16
|
Multimodal characterization of the bone-implant interface using Raman spectroscopy and nanoindentation. Med Eng Phys 2020; 84:60-67. [DOI: 10.1016/j.medengphy.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
|
17
|
Surface Modification of Porous Titanium Discs Using Femtosecond Laser Structuring. METALS 2020. [DOI: 10.3390/met10060748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The failure of titanium implants is associated with two main problems that include the bone resorption and fracture of the surrounding bone tissue (stiffness incompatibility) and implant loosening (poor osseointegration). The development of porous titanium implants with low Young modulus solve the stress shielding phenomenon, while the modification of the implant surface must be implemented to promote a fast bond between the implant and bone. In this work, femtosecond laser micromachining was applied to modify the topography of the surface of Ti porous samples obtained by a space-holder technique to obtain hierarchical structures (micro and nano roughness patterns) to enhance osseointegration. Scanning electron microscopy, confocal laser microscopy, and image analysis were used for characterization of the surface morphology, roughness, and porosity before and after performing the laser treatment. Based on these results, the effect of the treatment on the mechanical behavior of the samples was estimated. In addition, a preliminary in-vitro test was performed to verify the adhesion of osteoblasts (filopodia presence) on modified titanium surface. Results revealed that laser texturing generated clusters of micro-holes and micro-columns both on the flat surface of the samples and inside the macro-pores, and periodic nanometric structures across the entire surface. The porous substrate offers suitable biomechanics (stiffness and yield strength) and bio-functional behavior (bone ingrowth and osseointegration), which improves the clinic success of titanium implants.
Collapse
|
18
|
Pham MH, Haugen HJ, Reseland JE. Fluoride Modification of Titanium Surfaces Enhance Complement Activation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E684. [PMID: 32028745 PMCID: PMC7040644 DOI: 10.3390/ma13030684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 11/18/2022]
Abstract
Immediately after dental implant insertion, blood will be in direct contact and interact with the implant surface and activates inflammatory responses and complement cascades within seconds. The aim of the present study was to determine the ability of fluoride-modified titanium surfaces to activate complement cascades using the human buffy coat as model. The buffy coats were exposed to hydrofluoric acid-modified surfaces for a short time and its responses were compared to controls. Identification and quantification of complement cascade biomarkers were conducted using ELISA kits and multianalyte profiling using Luminex. A lower level of C3 at 30 min and increased levels of C4, MIP-4, CRP, and pigment epithelium-derived factor at 360 min were found on modified surfaces as compared to controls. We found no significant differences in the levels of C3a, C5a, C Factor H, α2M, ApoA1, ApoC3, ApoE, Prealbumin, α1AT, and SAP in modified surfaces in the buffy coats. We conclude that titanium surfaces treated with hydrofluoric acid modify the levels of specific biomarkers related to the complement cascade and angiogenesis and, thus, tissue growth, remodeling and repair, as this may play a role in the enhanced clinical performance of fluoride-modified Ti dental implants.
Collapse
Affiliation(s)
| | | | - Janne E. Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
19
|
Raffa ML, Nguyen VH, Haiat G. Micromechanical modeling of the contact stiffness of an osseointegrated bone-implant interface. Biomed Eng Online 2019; 18:114. [PMID: 31796076 PMCID: PMC6889538 DOI: 10.1186/s12938-019-0733-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Background The surgical success of cementless implants is determined by the evolution of the biomechanical properties of the bone–implant interface (BII). One difficulty to model the biomechanical behavior of the BII comes from the implant surface roughness and from the partial contact between bone tissue and the implant. The determination of the constitutive law of the BII would be of interest in the context of implant finite element (FE) modeling to take into account the imperfect characteristics of the BII. The aim of the present study is to determine an effective contact stiffness \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {K_{c}^{\text{FEM}} } \right)$$\end{document}KcFEM of an osseointegrated BII accounting for its micromechanical features such as surface roughness, bone–implant contact ratio (BIC) and periprosthetic bone properties. To do so, a 2D FE model of the BII under normal contact conditions was developed and was used to determine the behavior of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{c}^{\text{FEM}}$$\end{document}KcFEM. Results The model is validated by comparison with three analytical schemes based on micromechanical homogenization including two Lekesiz’s models (considering interacting and non-interacting micro-cracks) and a Kachanov’s model. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{c}^{\text{FEM}}$$\end{document}KcFEM is found to be comprised between 1013 and 1015 N/m3 according to the properties of the BII. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{c}^{\text{FEM}}$$\end{document}KcFEM is shown to increase nonlinearly as a function of the BIC and to decrease as a function of the roughness amplitude for high BIC values (above around 20%). Moreover, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{c}^{\text{FEM}}$$\end{document}KcFEM decreases as a function of the roughness wavelength and increases linearly as a function of the Young’s modulus of periprosthetic bone tissue. Conclusions These results open new paths in implant biomechanical modeling since this model may be used in future macroscopic finite element models modeling the bone–implant system to replace perfectly rigid BII conditions. ![]()
Collapse
Affiliation(s)
- Maria Letizia Raffa
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010, Créteil, France
| | - Vu-Hieu Nguyen
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010, Créteil, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010, Créteil, France.
| |
Collapse
|
20
|
Gao X, Fraulob M, Haïat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface 2019; 16:20190259. [PMID: 31362615 PMCID: PMC6685012 DOI: 10.1098/rsif.2019.0259] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
In recent decades, cementless implants have been widely used in clinical practice to replace missing organs, to replace damaged or missing bone tissue or to restore joint functionality. However, there remain risks of failure which may have dramatic consequences. The success of an implant depends on its stability, which is determined by the biomechanical properties of the bone-implant interface (BII). The aim of this review article is to provide more insight on the current state of the art concerning the evolution of the biomechanical properties of the BII as a function of the implant's environment. The main characteristics of the BII and the determinants of implant stability are first introduced. Then, the different mechanical methods that have been employed to derive the macroscopic properties of the BII will be described. The experimental multi-modality approaches used to determine the microscopic biomechanical properties of periprosthetic newly formed bone tissue are also reviewed. Eventually, the influence of the implant's properties, in terms of both surface properties and biomaterials, is investigated. A better understanding of the phenomena occurring at the BII will lead to (i) medical devices that help surgeons to determine an implant's stability and (ii) an improvement in the quality of implants.
Collapse
Affiliation(s)
- Xing Gao
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
- Research Centre for Medical Robotics and Minimally Invasive Surgical Devices, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Manon Fraulob
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Guillaume Haïat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| |
Collapse
|
21
|
Printzell L, Reseland JE, Edin NFJ, Ellingsen JE. Effects of ionizing irradiation and interface backscatter on human mesenchymal stem cells cultured on titanium surfaces. Eur J Oral Sci 2019; 127:500-507. [PMID: 31322296 DOI: 10.1111/eos.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
Radiotherapy to the head and neck region negatively influences the osseointegration and survival of dental implants. The effects of cobalt 60 (60 Co) ionizing radiation and the impact of backscatter rays were investigated on human mesenchymal stem cells cultured on titanium surfaces. Bone marrow-derived human mesenchymal stem cells were seeded on titanium (Ti), fluoride-modified titanium (TiF), and tissue culture plastic. Cells were exposed to ionizing γ-radiation in single doses of 2, 6, or 10 Gy using a 60 Co source. Density and distribution of cells were evaluated using confocal laser-scanning microscopy, 21 d post-irradiation. Lactate dehydrogenase concentration and the levels of total protein and cytokines/chemokines were measured in the cell-culture medium on days 1, 3, 7, 14, and 21 post-irradiation. Unirradiated cells were used as the control. Irradiation had no effect on cell viability, collagen and actin expression, or cell distribution, but induced an initial increase in the secretion of interleukin (IL)-6, IL-8, monocyte chemotactic protein 1 (MCP-1), and vascular endothelial growth factor (VEGF), followed by a decrease in secretion after 3 or 7 d. Irradiation resulted in secretion of a lower amount of all analytes examined compared with controls on day 21, irrespective of radiation dose and growth surface. Backscattering from titanium did not influence the cell response significantly, suggesting a clinical potential for achieving successful osseointegration of dental implants placed before radiotherapy.
Collapse
Affiliation(s)
- Lisa Printzell
- Department of Prosthodontics, Faculty for Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Faculty for Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Nina F J Edin
- Department of Physics, Faculty of Mathematics and Natural Science, University of Oslo, Oslo, Norway
| | - Jan E Ellingsen
- Department of Prosthodontics, Faculty for Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Santos-Rosales V, Ardao I, Alvarez-Lorenzo C, Ribeiro N, Oliveira AL, García-González CA. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach. Molecules 2019; 24:molecules24050871. [PMID: 30823685 PMCID: PMC6429194 DOI: 10.3390/molecules24050871] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
Aerogels from natural polymers are endowed with attractive textural and biological properties for biomedical applications due to their high open mesoporosity, low density, and reduced toxicity. Nevertheless, the lack of macroporosity in the aerogel structure and of a sterilization method suitable for these materials restrict their use for regenerative medicine purposes and prompt the research on getting ready-to-implant dual (macro + meso)porous aerogels. In this work, zein, a family of proteins present in materials for tissue engineering, was evaluated as a sacrificial porogen to obtain macroporous starch aerogels. This approach was particularly advantageous since it could be integrated in the conventional aerogel processing method without extra leaching steps. Physicochemical, morphological, and mechanical characterization were performed to study the effect of porogen zein at various proportions (0:1, 1:2, and 1:1 zein:starch weight ratio) on the properties of the obtained starch-based aerogels. From a forward-looking perspective for its clinical application, a supercritical CO₂ sterilization treatment was implemented for these aerogels. The sterilization efficacy and the influence of the treatment on the aerogel final properties were evaluated mainly in terms of absence of microbial growth, cytocompatibility, as well as physicochemical, structural, and mechanical modifications.
Collapse
Affiliation(s)
- Víctor Santos-Rosales
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Inés Ardao
- BioFarma Research group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Nilza Ribeiro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-375 Porto, Portugal.
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-375 Porto, Portugal.
| | - Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Yoruç ABH, Keleşoğlu E, Yıldız HE. In vitro bioactivity of laser surface-treated Ti6Al4V alloy. Lasers Med Sci 2019; 34:1567-1573. [PMID: 30798388 DOI: 10.1007/s10103-019-02746-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
The effects of lasing parameters on the precipitation of hydroxyapatite (HA) on the commercial Ti6Al4V alloy in simulated body fluid (SBF) were investigated. Ti6Al4V plates were polished and ultrasonically cleaned in acetone and ethyl alcohol, respectively. The specimen surfaces were treated with Er:YAG laser using super short pulse (SSP, 50 μs) and very short pulse (VSP, 100 μs) modes. Surface roughness was measured before and after laser treatment. The specimens were immersed in simulated body fluid (SBF) for 1, 3, and 7 days and, then the amount of Ca and P precipitation on specimens was determined using SEM/EDS analysis. An average roughness varying between 0.19 and 0.81 μm in surface roughness was detected in all laser-treated specimens depending on the lasing parameters. The highest surface roughness and Ca precipitation were found in VSP group (20 Hz and 5 W). Laser treatment of specimen surfaces has dramatically increased the HA precipitation due to the increasing surface roughness. It is also concluded that the immersion time was effective on the HA precipitation as well.
Collapse
Affiliation(s)
- Afife Binnaz Hazar Yoruç
- Department of Metallurgical and Materials Engineering, Yildiz Technical University, Istanbul, Turkey.
| | - Ergün Keleşoğlu
- Department of Metallurgical and Materials Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Harika Ekşioğlu Yıldız
- Department of Metallurgical and Materials Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
24
|
Pham MH, Haugen HJ, Rinna A, Ellingsen JE, Reseland JE. Hydrofluoric acid treatment of titanium surfaces enhances the proliferation of human gingival fibroblasts. J Tissue Eng 2019; 10:2041731419828950. [PMID: 30800262 PMCID: PMC6378639 DOI: 10.1177/2041731419828950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/16/2019] [Indexed: 12/23/2022] Open
Abstract
The attachment of implants relies on bone and soft tissue biocompatibility. The aim of this article is to investigate the effect of fluoride-modified metallic titanium (Ti) surfaces (Ti-F) on proliferation and differentiation of human gingival fibroblasts. Human gingival fibroblast cells were exposed to hydrofluoric acid-modified Ti coins (Ti-F) for 1, 3, 7, 14 and 21 days, and untreated coins were used as controls. A five- to six-fold increase in the proliferation of human gingival fibroblasts on Ti-F compared to Ti surfaces was observed. Enhanced gene expression of interleukin-6 and osteoprotegerin was found at 7 days. Increased levels of sclerostin, interleukin-6 and osteoprotegerin in the media from human gingival fibroblasts cultured on Ti-F coins were found compared to controls. Our results confirm that hydrofluoric acid-modified surface may indirectly enhance the firm attachment of implant surface to junction epithelium, soft tissue epithelium, which would give protection for underlying osseous structures making osseointegration of the dental implant possible.
Collapse
Affiliation(s)
- Maria H Pham
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Alessandra Rinna
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Jan Eirik Ellingsen
- Department of Prosthodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Yurttutan ME, Keskin A. Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration. BMC Oral Health 2018; 18:47. [PMID: 29554893 PMCID: PMC5859722 DOI: 10.1186/s12903-018-0509-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successful dental implant treatment is directly related to osseointegration. In achieving osseointegration, the surface property of the implant is of great importance. Sandblasting is the most commonly used basic method for modifying the surface. Many companies use different sand particles for surface roughening and claim their sand is the best. This leads clinicians to mix their minds in product selection. In this study, we tried to find the appropriate sand material by working objectively without praising any brand. We believe that the results of the study will help clinicians choose the right dental implant. In this study, machined-surfaced implants and implants sandblasted with Aluminum oxide (Al2O3), Titanium dioxide (TiO2) and Silicon dioxide (SiO2) were compared via biomechanical testing. METHODS For the study, four 2 year-old sheep, weighing 45 kilograms (kg), were used. Eight implants (Al2O3, TiO2, and SiO2 sandblasted implants and machined-surfaced implants), each with different surface characteristics, were inserted into the bilateral tibia of each sheep under general anesthesia. Results of the initial Resonance Frequency Analysis (RFA) were recorded just after implant insertion. The sheep were then randomly divided into two groups, each with 2 sheep, to undergo either a 1-month or a 3-month assessment. At the end of the designated evaluation period, RFA and removal torque tests were performed. RESULTS Although there were no statistically significant differences between the groups, the implants sandblasted with Al2O3 showed a higher Implant Stability Quotient (ISQ) and removal torque value at the end of the 1st and 3rd month. CONCLUSIONS In short, the results of the study demonstrate that Aluminum oxide is superior to other sand particles.
Collapse
Affiliation(s)
- Mehmet Emre Yurttutan
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara University, Atatürk Mah. Gazi Cad. No:19, Ankara, Turkey.
| | - Ahmet Keskin
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara University, Atatürk Mah. Gazi Cad. No:19, Ankara, Turkey
| |
Collapse
|
26
|
Wang G, Wan Y, Wang T, Liu Z. Corrosion Behavior of Titanium Implant with different Surface Morphologies. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.promfg.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Andrukhov O, Huber R, Shi B, Berner S, Rausch-Fan X, Moritz A, Spencer ND, Schedle A. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater 2016; 32:1374-1384. [PMID: 27637551 DOI: 10.1016/j.dental.2016.08.217] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Titanium surface roughness is recognized as an important parameter influencing osseointegration. However, studies concerning the effect of well-defined surface topographies of titanium surfaces on osteoblasts have been limited in scope. In the present study we have investigated how Ti surfaces of different micrometer-scale roughness influence proliferation, migration, and differentiation of osteoblasts in-vitro. METHODS Titanium replicas with surface roughnesses (Ra) of approximately 0, 1, 2, and 4μm were produced and MG-63 osteoblasts were cultured on these surfaces for up to 5 days. The effect of surface micrometer-scale roughness on proliferation, migration in time-lapse microscopy experiments, as well as the expression of alkaline phosphatase, osteocalcin, vascular-endothelial growth factor (VEGF), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were investigated. RESULTS Proliferation of MG-63 cells was found to decrease gradually with increasing surface roughness. However, the highest expression of alkaline phosphatase, osteocalcin and VEGF was observed on surfaces with Ra values of approximately 1 and 2μm. Further increase in surface roughness resulted in decreased expression of all investigated parameters. The cell migration speed measured in time-lapse microscopy experiments was significantly lower on surfaces with a Ra value of about 4μm, compared to those with lower roughness. No significant effect of surface roughness on the expression of OPG and RANKL was observed. SIGNIFICANCE Thus, surfaces with intermediate Ra roughness values of 1-2μm seem to be optimal for osteoblast differentiation. Neither proliferation nor differentiation of osteoblasts appears to be supported by surfaces with higher or lower Ra values.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Rebecca Huber
- Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Bin Shi
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | | | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Nicholas D Spencer
- Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Andreas Schedle
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Satué M, Monjo M, Ronold HJ, Lyngstadaas SP, Ramis JM. Titanium implants coated with UV-irradiated vitamin D precursor and vitamin E: in vivo performance and coating stability. Clin Oral Implants Res 2016; 28:424-431. [PMID: 26926140 DOI: 10.1111/clr.12815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed at evaluating the biological response of titanium implants coated with UV-irradiated 7-dehydrocholesterol (7-DHC) and vitamin E (VitE) in vivo and analyzing the effects of aging on their stability and bioactivity in vitro. MATERIAL AND METHODS Titanium surfaces were coated with 7-DHC and VitE, UV-irradiated and incubated for 48 h at 23°C to allow cholecalciferol synthesis. The in vivo biological response was tested using a rabbit tibia model after 8 weeks of healing by analyzing the wound fluid and the mRNA levels of several markers at the bone-implant interface (N = 8). The stability of the coating after storage up to 12 weeks was determined using HPLC analysis, and the bioactivity of the stored modified implants was studied by an in vitro study with MC3T3-E1 cells (N = 6). RESULTS A significant increase in gene expression levels of osteocalcin was found in the bone tissue attached to implants coated with the low dose of 7-DHC and VitE, together with a higher ALP activity in the wound fluid. Implants treated with the high dose of 7-DHC and VitE showed increased tissue necrosis and inflammation. Regarding the aging effects, coated implants were stable and bioactive up to 12 weeks when stored at 4°C and avoiding oxygen, light and moisture. CONCLUSION This study demonstrates that Ti implants coated with UV-irradiated 7-DHC and VitE promote in vivo gene expression of bone formation markers and ALP activity, while they keep their osteopromotive potential in vitro and composition when stored up to 12 weeks at 4°C.
Collapse
Affiliation(s)
- María Satué
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain
| | - Marta Monjo
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| | - Hans Jacob Ronold
- Department of Prosthetics and Oral Function, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Joana M Ramis
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| |
Collapse
|
29
|
Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater 2015; 11:494-502. [PMID: 25449926 DOI: 10.1016/j.actbio.2014.10.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/15/2014] [Accepted: 10/15/2014] [Indexed: 01/11/2023]
Abstract
Titanium and its alloys are commonly used for dental implants because of their good mechanical properties and biocompatibility. The surface properties of titanium implants are key factors for rapid and stable bone tissue integration. Micro-rough surfaces are commonly prepared by grit-blasting and acid-etching. However, proteins and cells interact with implant surfaces in the nanometer range. The aim of this study was to compare the osseointegration of machined (MA), standard alumina grit-blasted and acid-etched (MICRO) and nanostructured (NANO) implants in rabbit femurs. The MICRO surface exhibited typical random cavities with an average roughness of 1.5 μm, while the NANO surface consisted of a regular array of titanium oxide nanotubes 37±11 nm in diameter and 160 nm thick. The MA and NANO surfaces had a similar average roughness of 0.5 μm. The three groups of implants were inserted into the femoral condyles of New Zealand White rabbits. After 4 weeks, the pull-out test gave higher values for the NANO than for the other groups. Histology corroborated a direct apposition of bone tissue on to the NANO surface. Both the bone-to-implant contact and bone growth values were higher for the NANO than for the other implant surfaces. Overall, this study shows that the nanostructured surface improved the osseointegration of titanium implants and may be an alternative to conventional grit-blasted and acid-etched surface treatments.
Collapse
Affiliation(s)
- Laëtitia Salou
- Inserm UMR957, Laboratory of Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France; CNRS-Institute of Materials, University of Nantes, Nantes, France; Biomedical Tissues, Nantes, France
| | - Alain Hoornaert
- CHU Nantes, Faculty of Dental Surgery, University of Nantes, Nantes, France
| | | | - Pierre Layrolle
- CNRS-Institute of Materials, University of Nantes, Nantes, France.
| |
Collapse
|
30
|
Vayron R, Mathieu V, Michel A, Haïat G. Assessment of in vitro dental implant primary stability using an ultrasonic method. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2885-2894. [PMID: 25308939 DOI: 10.1016/j.ultrasmedbio.2014.03.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 06/04/2023]
Abstract
Dental implants are used for oral rehabilitation. However, there remain risks of failure that depend on the implant stability. The objective of this study is to investigate whether quantitative ultrasound technique can be used to assess the amount of bone in contact with dental implants. Ten implants are first inserted in the bone samples. The 10 MHz ultrasonic response of each implant is measured using a dedicated device and an indicator I is derived based on the amplitude of the signal. Then, the implant is unscrewed by 2 π radians and the measurement is realized again. A statistical analysis of variance was carried out and revealed a significant effect of the amount of bone in contact with the implant on the values of I (p value < 10⁻⁵). The results indicates the feasibility of quantitative ultrasound techniques to assess implant primary stability in vitro.
Collapse
Affiliation(s)
- Romain Vayron
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, UMR CNRS 8208, Créteil, France
| | - Vincent Mathieu
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, UMR CNRS 8208, Créteil, France
| | - Adrien Michel
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, UMR CNRS 8208, Créteil, France
| | - Guillaume Haïat
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, UMR CNRS 8208, Créteil, France.
| |
Collapse
|
31
|
Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater 2014; 31:37-52. [PMID: 25467952 DOI: 10.1016/j.dental.2014.10.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/14/2014] [Accepted: 10/31/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Osseointegration has been a proven concept in implant dentistry and orthopedics for decades. Substantial efforts for engineering implants for reduced treatment time frames have focused on micrometer and most recently on nanometer length scale alterations with negligible attention devoted to the effect of both macrometer design alterations and surgical instrumentation on osseointegration. This manuscript revisits osseointegration addressing the individual and combined role of alterations on the macrometer, micrometer, and nanometer length scales on the basis of cell culture, preclinical in vivo studies, and clinical evidence. METHODS A critical appraisal of the literature was performed regarding the impact of dental implant designing on osseointegration. Results from studies with different methodological approaches and the commonly observed inconsistencies are discussed. RESULTS It is a consensus that implant surface topographical and chemical alterations can hasten osseointegration. However, the tailored combination between multiple length scale design parameters that provides maximal host response is yet to be determined. SIGNIFICANCE In spite of the overabundant literature on osseointegration, a proportional inconsistency in findings hitherto encountered warrants a call for appropriate multivariable study designing to ensure that adequate data collection will enable osseointegration maximization and/or optimization, which will possibly lead to the engineering of endosteal implant designs that can be immediately placed/loaded regardless of patient dependent conditions.
Collapse
|
32
|
Frank MJ, Walter MS, Rubert M, Thiede B, Monjo M, Reseland JE, Haugen HJ, Lyngstadaas SP. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD). MATERIALS 2014; 7:2210-2228. [PMID: 28788564 PMCID: PMC5453263 DOI: 10.3390/ma7032210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 01/09/2023]
Abstract
The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.
Collapse
Affiliation(s)
- Matthias J Frank
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Institute of Medical and Polymer Engineering, Technische Universität München, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Martin S Walter
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Institute of Medical and Polymer Engineering, Technische Universität München, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Marina Rubert
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca ES-07122, Spain.
| | - Bernd Thiede
- The Biotechnology Centre of Oslo, University of Oslo, P.O. Box 1125 Blindern, Oslo NO-0317, Norway.
| | - Marta Monjo
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca ES-07122, Spain.
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| | - Håvard J Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| |
Collapse
|
33
|
Vayron R, Matsukawa M, Tsubota R, Mathieu V, Barthel E, Haiat G. Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time. Phys Med Biol 2014; 59:1389-406. [PMID: 24584004 DOI: 10.1088/0031-9155/59/6/1389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of elastic properties of newly formed bone tissue as a function of healing time. To do so, nanoindentation and micro-Brillouin scattering techniques are coupled following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 µm from the cortical bone surface, leading to an initially empty cavity. Two rabbits were sacrificed after 7 and 13 weeks of healing time. The histological analyses allow us to distinguish mature and newly formed bone tissue. The bone mechanical properties were measured in mature and newly formed bone tissue. Analysis of variance and Tukey-Kramer tests reveals a significant effect of healing time on the indentation modulus and ultrasonic velocities of bone tissue. The results show that bone mass density increases by 12.2% (2.2% respectively) between newly formed bone at 7 weeks (13 weeks respectively) and mature bone. The dependence of bone properties on healing time may be explained by the evolution of bone microstructure and mineralization.
Collapse
Affiliation(s)
- Romain Vayron
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR CNRS 8208, 61, avenue du Général de Gaulle, 94010 Créteil, Cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Walter MS, Frank MJ, Sunding MF, Gómez-Florit M, Monjo M, Bucko MM, Pamula E, Lyngstadaas SP, Haugen HJ. Increased reactivity and in vitro cell response of titanium based implant surfaces after anodic oxidation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2761-2773. [PMID: 23912792 DOI: 10.1007/s10856-013-5020-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
In the quest for improved bone growth and attachment around dental implants, chemical surface modifications are one possibility for future developments. The biological properties of titanium based materials can be further enhanced with methods like anodic polarization to produce an active rather than a passive titanium oxide surface. Here we investigate the formation of hydroxide groups on sand blasted and acid etched titanium and titanium-zirconium alloy surfaces after anodic polarization in an alkaline solution. X-ray photoelectron spectroscopy shows that the activated surfaces had increased reactivity. Furthermore the activated surfaces show up to threefold increase in OH(-) concentration in comparison to the original surface. The surface parameters Sa, Sku, Sdr and Ssk were more closely correlated to time and current density for titanium than for titanium-zirconium. Studies with MC3T3-E1 osteoblastic cells showed that OH(-) activated surfaces increased mRNA levels of osteocalcin and collagen-I.
Collapse
Affiliation(s)
- M S Walter
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, 0317, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mathieu V, Vayron R, Richard G, Lambert G, Naili S, Meningaud JP, Haiat G. Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties. J Biomech 2013; 47:3-13. [PMID: 24268798 DOI: 10.1016/j.jbiomech.2013.09.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
Dental implants are now widely used for the replacement of missing teeth in fully or partially edentulous patients and for cranial reconstructions. However, risks of failure, which may have dramatic consequences, are still experienced and remain difficult to anticipate. The stability of biomaterials inserted in bone tissue depends on multiscale phenomena of biomechanical (bone-implant interlocking) and of biological (mechanotransduction) natures. The objective of this review is to provide an overview of the biomechanical behavior of the bone-dental implant interface as a function of its environment by considering in silico, ex vivo and in vivo studies including animal models as well as clinical studies. The biomechanical determinants of osseointegration phenomena are related to bone remodeling in the vicinity of the implants (adaptation of the bone structure to accommodate the presence of a biomaterial). Aspects related to the description of the interface and to its space-time multiscale nature will first be reviewed. Then, the various approaches used in the literature to measure implant stability and the bone-implant interface properties in vitro and in vivo will be described. Quantitative ultrasound methods are promising because they are cheap, non invasive and because of their lower spatial resolution around the implant compared to other biomechanical approaches.
Collapse
Affiliation(s)
- Vincent Mathieu
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Romain Vayron
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Gilles Richard
- Septodont, 58 Rue Pont de Créteil, 94100 Saint-Maur-des-Fossés, France
| | - Grégory Lambert
- Septodont, 58 Rue Pont de Créteil, 94100 Saint-Maur-des-Fossés, France
| | - Salah Naili
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Jean-Paul Meningaud
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, CHU H. Mondor, 94017 Créteil cedex, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France.
| |
Collapse
|
36
|
Zhao X, Wang G, Zheng H, Lu Z, Zhong X, Cheng X, Zreiqat H. Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8203-8209. [PMID: 23957368 DOI: 10.1021/am402319a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface topography and chemistry have significant influences on the biological performance of biomedical implants. Our aim is to produce an implant surface with favorable biological properties by dual modification of surface chemistry and topography in one single simple process. In this study, because of its chemical stability, excellent corrosion resistance, and biocompatibility, titanium oxide (TiO2) was chosen to coat the biomedical Ti alloy implants. Biocompatible elements (niobium (Nb) and silicon (Si)) were introduced into TiO2 matrix to change the surface chemical composition and tailor the thermophysical properties, which in turn leads to the generation of topographical features under specific thermal history of plasma spraying. Results demonstrated that introduction of Nb2O5 resulted in the formation of Ti0.95Nb0.95O4 solid solution and led to the generation of nanoplate network structures on the composite coating surface. By contrast, the addition of SiO2 resulted in a hairy nanostructure and coexistence of rutile and quartz phases in the coating. Additionally, the introduction of Nb2O5 enhanced the corrosion resistance of TiO2 coating, whereas SiO2 did not exert much effect on the corrosion behaviors. Compared to the TiO2 coating, TiO2 coating doped with Nb2O5 enhanced primary human osteoblast adhesion and promoted cell proliferation, whereas TiO2 coatings with SiO2 were inferior in their bioactivity, compared to TiO2 coatings. Our results suggest that the incorporation of Nb2O5 can enhance the biological performance of TiO2 coatings by changing the surface chemical composition and nanotopgraphy, suggesting its potential use in modification of biomedical TiO2 coatings in orthopedic applications.
Collapse
Affiliation(s)
- Xiaobing Zhao
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Stübinger S, Dard M. The rabbit as experimental model for research in implant dentistry and related tissue regeneration. J INVEST SURG 2013; 26:266-82. [PMID: 23617292 DOI: 10.3109/08941939.2013.778922] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of rabbits for experimental research has a long historical tradition. The aim of this review consists in outlining the use of the rabbit for research in implant dentistry and related tissue regeneration. Rabbits appear as a first-hand choice for fundamental implant design studies because of their size, easy handling, short life span, and economical aspects in purchasing and sustaining. In the following, the various anatomical sites in the rabbit will be summarized to provide an overview of current possibilities and limitations of this model for bone research in oral implantology.
Collapse
Affiliation(s)
- Stefan Stübinger
- Musculoskeletal Research Unit, University of Zurich , Zurich , Switzerland
| | | |
Collapse
|
38
|
Cunha A, Renz RP, Blando E, de Oliveira RB, Hübler R. Osseointegration of atmospheric plasma-sprayed titanium implants: Influence of the native oxide layer. J Biomed Mater Res A 2013; 102:30-6. [DOI: 10.1002/jbm.a.34667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Alexandre Cunha
- Research & Development in Physics; Materials and Nanostructures Laboratory; Pontifical Catholic University of Rio Grande do Sul; Porto Alegre - RS Brazil
| | - Renata Pedrolli Renz
- Research & Development in Physics; Materials and Nanostructures Laboratory; Pontifical Catholic University of Rio Grande do Sul; Porto Alegre - RS Brazil
| | - Eduardo Blando
- Research & Development in Physics; Materials and Nanostructures Laboratory; Pontifical Catholic University of Rio Grande do Sul; Porto Alegre - RS Brazil
| | - Rogério Belle de Oliveira
- School of Dentistry; Oral and Maxillofacial Surgery Department; Pontifical Catholic University of Rio Grande do Sul; Porto Alegre - RS Brazil
| | - Roberto Hübler
- Research & Development in Physics; Materials and Nanostructures Laboratory; Pontifical Catholic University of Rio Grande do Sul; Porto Alegre - RS Brazil
- Physics Faculty; Pontifical Catholic University of Rio Grande do Sul; Porto Alegre - RS Brazil
| |
Collapse
|
39
|
Pham MH, Landin MA, Tiainen H, Reseland JE, Ellingsen JE, Haugen HJ. The effect of hydrofluoric acid treatment of titanium and titanium dioxide surface on primary human osteoblasts. Clin Oral Implants Res 2013; 25:385-394. [DOI: 10.1111/clr.12150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Maria H. Pham
- Department of Biomaterials; Institute for Clinical Dentistry; Faculty of Dentistry; University of Oslo; Oslo Norway
| | - Maria A. Landin
- Department of Biomaterials; Institute for Clinical Dentistry; Faculty of Dentistry; University of Oslo; Oslo Norway
| | - Hanna Tiainen
- Department of Biomaterials; Institute for Clinical Dentistry; Faculty of Dentistry; University of Oslo; Oslo Norway
| | - Janne E. Reseland
- Department of Biomaterials; Institute for Clinical Dentistry; Faculty of Dentistry; University of Oslo; Oslo Norway
| | - Jan Eirik Ellingsen
- Department of Prosthodontics; Institute for Clinical Dentistry; Faculty of Dentistry; University of Oslo; Oslo Norway
| | - Håvard J. Haugen
- Department of Biomaterials; Institute for Clinical Dentistry; Faculty of Dentistry; University of Oslo; Oslo Norway
| |
Collapse
|
40
|
Frank MJ, Walter MS, Lyngstadaas SP, Wintermantel E, Haugen HJ. Hydrogen content in titanium and a titanium–zirconium alloy after acid etching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1282-8. [DOI: 10.1016/j.msec.2012.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 10/20/2012] [Accepted: 12/04/2012] [Indexed: 01/25/2023]
|
41
|
Prodanov L, Lamers E, Domanski M, Luttge R, Jansen JA, Walboomers XF. The effect of nanometric surface texture on bone contact to titanium implants in rabbit tibia. Biomaterials 2013; 34:2920-7. [PMID: 23380354 DOI: 10.1016/j.biomaterials.2013.01.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/04/2013] [Indexed: 12/24/2022]
Abstract
Designing biomaterial surfaces to control the reaction of the surrounding tissue is still considered to be a primary issue, which needs to be addressed systematically. Although numerous in vitro studies have described different nano-metrically textured substrates capable to influence bone cellular response, in vivo studies validating this phenomenon have not been reported. In this study, nano-grooved silicon stamps were produced by laser interference lithography (LIL) and reactive ion etching (RIE) and were subsequently transferred onto the surface of 5 mm diameter Titanium (Ti) discs by nanoimprint lithography (NIL). Patterns with pitches of 1000 nm (500 nm ridge and groove, 150 nm depth), 300 nm (150 nm ridge and groove, 120 nm depth; as well as a 1:3 ratio of 75 nm ridge and 225 nm groove, 120 nm depth) and 150 nm (75 nm ridge and groove, 30 nm depth) were created. These samples were implanted in a rabbit tibia cortical bone. Histological evaluation and histomorphometric measurements were performed, comparing each sample to conventional grit-blasted/acid-etched (GAE) titanium controls. Results showed a significantly higher bone-to-implant contact at 4 weeks for the 300 nm (1:3) specimens, compared to GAE (p = 0.006). At 8 weeks, there was overall more bone contact compared to 4 weeks. However, no significant differences between the nano-textured samples and the GAE occurred. Further studies will need to address biomechanical testing and the use of trabecular bone models.
Collapse
Affiliation(s)
- Ljupcho Prodanov
- Radboud University Nijmegen Medical Centre, Department of Biomaterials, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Haugen HJ, Monjo M, Rubert M, Verket A, Lyngstadaas SP, Ellingsen JE, Rønold HJ, Wohlfahrt JC. Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomater 2013; 9:5390-9. [PMID: 22985740 DOI: 10.1016/j.actbio.2012.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/07/2012] [Accepted: 09/10/2012] [Indexed: 11/25/2022]
Abstract
Titanium oxide (TiO₂) scaffolds have previously been reported to exhibit very low mechanical strength. However, we have been able to produce a scaffold that features a high interconnectivity, a porosity of 91% and a compressive strength above 1.2 MPa. This study analyzed the in vivo performance of the porous TiO₂ scaffolds in a peri-implant cortical defect model in the rabbit. After 8 weeks of healing, morphological microcomputed tomography analyses of the defects treated with the TiO₂ scaffolds had significantly higher bone volume, bone surface and bone surface-to-volume ratio when compared to sham, both in the cortical and bone marrow compartment. No adverse effects, i.e. tissue necrosis or inflammation as measured by lactate dehydrogenase activity and real-time reverse transcription polymerase chain reaction analysis, were observed. Moreover, the scaffold did not hinder bone growth onto the adjacent cortical titanium implant. Histology clearly demonstrated new bone formation in the cortical sections of the defects and the presence of newly formed bone in close proximity to the scaffold surface and the surface of the adjacent Ti implant. Bone-to-material contact between the newly formed bone and the scaffold was observed in the histological sections. Islets of new bone were also present in the marrow compartment albeit in small amounts. In conclusion, the present investigation demonstrates that TiO₂ scaffolds osseointegrate well and are a suitable scaffold for peri-implant bone healing and growth.
Collapse
|
43
|
Zhao Y, Wong SM, Wong HM, Wu S, Hu T, Yeung KWK, Chu PK. Effects of carbon and nitrogen plasma immersion ion implantation on in vitro and in vivo biocompatibility of titanium alloy. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1510-1516. [PMID: 23362822 DOI: 10.1021/am302961h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Growth of bony tissues on titanium biomedical implants can be time-consuming, thereby prolonging recovery and hospitalization after surgery and a method to improve and expedite tissue-implant integration and healing is thus of scientific and clinical interests. In this work, nitrogen and carbon plasma immersion ion implantation (N-PIII and C-PIII) is conducted to modify Ti-6Al-4V to produce a graded surface layer composed of TiN and TiC, respectively. Both PIII processes do not significantly alter the surface hydrophilicity but increase the surface roughness and corrosion resistance. In vitro studies disclose improved cell adhesion and proliferation of MC3T3-E1 preosteoblasts and L929 fibroblasts after PIII. Micro-CT evaluation conducted 1 to 12 weeks after surgery reveals larger average bone volumes and less bone resorption on the N-PIII and C-PIII titanium alloy pins than the unimplanted one at every time point. The enhancements observed from both the in vitro and in vivo studies can be attributed to the good cytocompatibility, roughness, and corrosion resistance of the TiN and TiC structures which stimulate the response of preosteoblasts and fibroblasts and induce early bone formation. Comparing the two PIII processes, N-PIII is more effective and our results suggest a simple and practical means to improve the surface biocompatibility of medical-grade titanium alloy implants.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
44
|
In vitro osteogenic properties of two dental implant surfaces. Int J Biomater 2012; 2012:181024. [PMID: 23118752 PMCID: PMC3478747 DOI: 10.1155/2012/181024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 12/31/2022] Open
Abstract
Current dental implant research aims at understanding the biological basis for successful implant therapy. The aim of the study was to perform a full characterization of the effect of two commercial titanium (Ti) surfaces, OsseoSpeed and TiOblast, on the behaviour of mouse preosteoblast MC3T3-E1 cells. The effect of these Ti surfaces was compared with tissue culture plastic (TCP). In vitro experiments were performed to evaluate cytotoxicity, cell morphology and proliferation, alkaline phosphatase activity, gene expression, and release of a wide array of osteoblast markers. No differences were observed on cell viability and cell proliferation. However, changes were observed in cell shape after 2 days, with a more branched morphology on OsseoSpeed compared to TiOblast. Moreover, OsseoSpeed surface increased BMP-2 secretion after 2 days, and this was followed by increased IGF-I, BSP, and osterix gene expression and mineralization compared to TiOblast after 14 days. As compared to the gold standard TCP, both Ti surfaces induced higher osteocalcin and OPG release than TCP and differential temporal gene expression of osteogenic markers. The results demonstrate that the gain of using OsseoSpeed surface is an improved osteoblast differentiation and mineralization, without additional effects on cell viability or proliferation.
Collapse
|
45
|
Identification of early response genes to roughness and fluoride modification of titanium implants in human osteoblasts. IMPLANT DENT 2012; 21:141-9. [PMID: 22382752 DOI: 10.1097/id.0b013e31824a06b4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Tissue response after implantation determines the success of the healing process. This response is not only dependent on the chemical properties of the implant surface but also by the surface topography or its roughness. Although in vitro and in vivo studies show improved results with rough- and fluoride-modified implants, the mechanisms behind these findings are still unknown. METHODS AND MATERIALS Here, we have used a two-step procedure to identify novel genes related to the early response of primary human osteoblasts to roughness and fluoride-modified titanium implants. RESULTS Two hundred seventeen genes responding to roughness were identified by microarray analysis and 198 genes responding to fluoride, 33 genes were common. Those identified genes related to bone and mineralization were further investigated by real-time reverse-transcriptase polymerase chain reaction. After 1 day of culture, toll-like receptor 3, ankylosis-progressive homolog, decorin, osteocalcin, and runt-related transcription factor-2 were classified as responsive genes to roughness; Distal-less homeobox-2 and Tuftelin-1 as responsive genes to fluoride treatment. Responsive genes to both treatments were collagen type I, parathyroid hormone-like hormone, hairy and enhancer of split-1, follistatin, ectonucleotide pyrophosphatase/phosphodiesterase-1, and thyroid hormone receptor-alpha. CONCLUSION Our strategy was useful for identifying novel genes that might be involved in the early response of osteoblasts to rough and fluoride-modified titanium implants.
Collapse
|
46
|
Vayron R, Barthel E, Mathieu V, Soffer E, Anagnostou F, Haiat G. Nanoindentation measurements of biomechanical properties in mature and newly formed bone tissue surrounding an implant. J Biomech Eng 2012; 134:021007. [PMID: 22482674 DOI: 10.1115/1.4005981] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of the hardness and indentation modulus of newly formed bone tissue as a function of healing time. To do so, a nanoindentation device is employed following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 μm from the cortical bone surface, leading to an initially empty cavity of 200 μm * 4.4 mm. Three New Zealand White rabbits were sacrificed after 4, 7, and 13 weeks of healing time. The bone samples were embedded and analyzed using histological analyses, allowing to distinguish mature and newly formed bone tissue. The bone mechanical properties were then measured in mature and newly formed bone tissue. The results are within the range of hardness and apparent Young's modulus values reported in previous literature. One-way ANOVA test revealed a significant effect of healing time on the indentation modulus (p < 0.001, F = 111.24) and hardness (p < 0.02, F = 3.47) of bone tissue. A Tukey-Kramer analysis revealed that the biomechanical properties of newly formed bone tissue (4 weeks) were significantly different from those of mature bone tissue. The comparison with the results obtained in Mathieu et al. (2011, "Micro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant," J. Biomech. Eng., 133, 021006). shows that bone mass density increases by approximately 13.5% between newly formed bone (7 weeks) and mature bone tissue.
Collapse
Affiliation(s)
- Romain Vayron
- Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, CNRS, Université Paris Est, Créteil 94010, France
| | | | | | | | | | | |
Collapse
|
47
|
Experimental study of bone response to hydroxyapatite coating implants: bone-implant contact and removal torque test. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:411-8. [PMID: 22749706 DOI: 10.1016/j.oooo.2011.10.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 10/04/2011] [Accepted: 10/09/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the early osseointegration of hydroxyapatite (HA)-coated implant. STUDY DESIGN Twelve adult male miniature pigs were used in this study. The removal torque of implants placed in the tibia of miniature pigs was measured. For implants placed in the mandible, histomorphometric evaluation was performed for the evaluation of the bone-implant contact (BIC) ratio. RESULTS After 4, 8, and 12 weeks, removal torque values were increased. Among the 3 groups, the HA-coated group showed the highest values (P < .05). At 4 and 8 weeks, the BIC ratio of HA was significantly higher than that of resorbable blast medium or sand blasted with alumina and acid etched (P < .05). CONCLUSIONS It was concluded that HA-coated implants are relatively favorable in early loading stages.
Collapse
|
48
|
Abstract
Nanometer titanium dioxide powders were prepared by hydrolysis of titanium-tetrabutoxide with ethanol. The powder particle size of TiO2 in the structure of anatase-type is mainly between 5 and 10 nm. Using the process that titanium alloys were embedded by the nanometer TiO2 powders and sintered in the high temperature furnace, the nano-TiO2/titanium alloy biomaterials was fabricated out. The particle size of TiO2 particles on the surface of Ti alloy was mainly 50-70 nm. The method is a simple and adaptable technique for surface modification of the titanium alloys.
Collapse
|
49
|
Mathieu V, Vayron R, Soffer E, Anagnostou F, Haïat G. Influence of healing time on the ultrasonic response of the bone-implant interface. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:611-618. [PMID: 22341053 DOI: 10.1016/j.ultrasmedbio.2011.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
The aim of the present study is to investigate the effect of bone healing on the ultrasonic response of coin-shaped titanium implants inserted in rabbit tibiae. The ultrasound response of the interface was measured in vitro at 15 MHz after 7 and 13 weeks of healing time. The average value of the ratio r between the amplitudes of the echo of the bone-implant interface and of the water-implant interface was determined. The bone-implant contact (BIC) was measured by histomorphometry and the degree of mineralisation of bone was estimated qualitatively by histologic staining. The significant decrease of the ultrasonic quantitative indicator r (p = 2.10⁻⁴) vs. healing time (from r = 0.53 to r = 0.49) is explained by (1) the increase of the BIC (from 27% to 69%) and (2) the increase of mineralization of newly formed bone tissue, both phenomena inducing a decrease of the gap of acoustical impedance.
Collapse
Affiliation(s)
- Vincent Mathieu
- CNRS, Université Paris 7, Laboratoire de Biomécanique Biomatériaux Ostéo-Articulaires, UMR CNRS 7052, Paris, France.
| | | | | | | | | |
Collapse
|
50
|
Vignoletti F, Abrahamsson I. Quality of reporting of experimental research in implant dentistry. Critical aspects in design, outcome assessment and model validation. J Clin Periodontol 2012; 39 Suppl 12:6-27. [DOI: 10.1111/j.1600-051x.2011.01830.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabio Vignoletti
- Department of Periodontology; Faculty of Odontology; Complutense University of Madrid; Madrid; Spain
| | - Ingemar Abrahamsson
- Department of Periodontology; Institute of Odontology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| |
Collapse
|