1
|
Hwang SH, Moon K, Du W, Cho WT, Huh JB, Bae EB. Effect of Porcine- and Bovine-Derived Xenografts with Hydroxypropyl Methylcellulose for Bone Formation in Rabbit Calvaria Defects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1850. [PMID: 36902966 PMCID: PMC10004720 DOI: 10.3390/ma16051850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, hydroxypropyl methylcellulose (HPMC) was mixed with particle-type xenografts, derived from two different species (bovine and porcine), to increase the manipulability of bone grafts and compare the bone regeneration ability. Four circular defects with a diameter of 6 mm were formed on each rabbit calvaria, and the defects were randomly divided into three groups: no treatment (control group), HPMC-mixed bovine xenograft (Bo-Hy group), and HPMC-mixed porcine xenograft (Po-Hy group). At eight weeks, micro-computed tomography (µCT) scanning and histomorphometric analyses were performed to evaluate new bone formation within the defects. The results revealed that the defects treated with the Bo-Hy and the Po-Hy showed higher bone regeneration than the control group (p < 0.05), while there was no significant difference between the two xenograft groups (p > 0.05). Within the limitations of the present study, there was no difference in new bone formation between porcine and bovine xenografts with HPMC, and bone graft material was easily moldable with the desired shape during surgery. Therefore, the moldable porcine-derived xenograft with HPMC used in this study could be a promising substitute for the currently used bone grafts as it exhibits good bone regeneration ability for bony defects.
Collapse
Affiliation(s)
- Su-Hyun Hwang
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Keumok Moon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Wen Du
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610093, China
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Won-Tak Cho
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Seo YH, Hwang SH, Kim YN, Kim HJ, Bae EB, Huh JB. Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model. Int J Mol Sci 2022; 23:ijms23052647. [PMID: 35269791 PMCID: PMC8910567 DOI: 10.3390/ijms23052647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we aimed to investigate the bone regeneration efficiency of two-layer porcine-derived bone scaffolds composed of cancellous and cortical bones in a rabbit calvarial defect model. Four circular calvaria defects were formed on cranium of rabbit and were filled with block bone scaffolds of each group: cortical bone block (Cortical group), cancellous bone block (Cancellous group), and two-layer bone block (2layer group). After 8 weeks, new bones were primarily observed in cancellous parts of the Cancellous and 2layer groups, while the Cortical group exhibited few new bones. In the results of new bone volume and area analyses, the Cancellous group showed the highest value, followed by the 2layer group, and were significantly higher than the Cortical group. Within the limitations of this study, the cancellous and two-layer porcine-derived bone scaffolds showed satisfactory bone regeneration efficiency; further studies on regulating the ratio of cortical and cancellous bones in two-layer bones are needed.
Collapse
Affiliation(s)
- Yong-Ho Seo
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
| | - Su-Hyun Hwang
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
| | - Yu-Na Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-N.K.); (H.-J.K.)
| | - Hyung-Joon Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-N.K.); (H.-J.K.)
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
- Section of Restorative Dentistry, University of California, Los Angeles, CA 90095, USA
- Correspondence: (E.-B.B.); (J.-B.H.); Tel.: +82-10-2355-6550 (E.-B.B.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-360-5134 (J.-B.H.)
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
- Correspondence: (E.-B.B.); (J.-B.H.); Tel.: +82-10-2355-6550 (E.-B.B.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-360-5134 (J.-B.H.)
| |
Collapse
|
3
|
Kim SY, Lee YJ, Cho WT, Hwang SH, Heo SC, Kim HJ, Huh JB. Preliminary Animal Study on Bone Formation Ability of Commercialized Particle-Type Bone Graft with Increased Operability by Hydrogel. MATERIALS 2021; 14:ma14164464. [PMID: 34442986 PMCID: PMC8399214 DOI: 10.3390/ma14164464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to evaluate the bone-generating ability of a new bovine-derived xenograft (S1-XB) containing hydrogel. For control purposes, we used Bio-Oss and Bone-XB bovine-derived xenografts. S1-XB was produced by mixing Bone-XB and hydrogel. Cell proliferation and differentiation studies were performed to assess cytotoxicities and cell responses. For in vivo study, 8 mm-sized cranial defects were formed in 16 rats, and then the bone substitutes were transplanted into defect sites in the four study groups, that is, a Bio-Oss group, a Bone-XB group, an S1-XB group, and a control (all n = 4); in the control group defects were left empty. Eight weeks after surgery, new bone formation areas were measured histomorphometrically. In the cell study, extracts of Bio-Oss, Bone-XB, and S1-XB showed good results in terms of the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and no cytotoxic reaction was evident. No significant difference was observed between mean new bone areas in the Bio-Oss (36.93 ± 4.27%), Bone-XB (35.07 ± 3.23%), and S1-XB (30.80 ± 6.41%) groups, but new bone area was significantly smaller in the control group (18.73 ± 5.59%) (p < 0.05). Bovine-derived bone graft material containing hydrogel (S1-XB) had a better cellular response and an osteogenic effect similar to Bio-Oss.
Collapse
Affiliation(s)
- So-Yeun Kim
- Department of Prosthodontics, Kyungpook National University Dental Hospital, Daegu 41940, Korea;
| | - You-Jin Lee
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-J.L.); (W.-T.C.); (S.-H.H.)
| | - Won-Tak Cho
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-J.L.); (W.-T.C.); (S.-H.H.)
| | - Su-Hyun Hwang
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-J.L.); (W.-T.C.); (S.-H.H.)
| | - Soon-Chul Heo
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
| | - Hyung-Joon Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
- Correspondence: (H.-J.K.); (J.-B.H.); Tel.: +82-10-6326-4189 (H.-J.K.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-510-8208 (H.-J.K.); +82-55-360-5134 (J.-B.H.)
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-J.L.); (W.-T.C.); (S.-H.H.)
- Correspondence: (H.-J.K.); (J.-B.H.); Tel.: +82-10-6326-4189 (H.-J.K.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-510-8208 (H.-J.K.); +82-55-360-5134 (J.-B.H.)
| |
Collapse
|
4
|
Guarnieri R, Savio L, Bermonds A, Testarelli L. Implants with a Laser-microgrooved Collar Placed in Grafted Posterior Maxillary Extraction Sockets and in Crestally Grafted Sinuses: a 5-Year Multicentre Retrospective Study. J Oral Maxillofac Res 2020; 11:e2. [PMID: 33598110 PMCID: PMC7875103 DOI: 10.5037/jomr.2020.11402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
Objectives The aim of this retrospective multicentre cohort study was to compare clinical outcomes, soft tissues conditions and differences in marginal bone loss between implants with a laser-microgrooved collar placed in posterior maxillary extraction sockets grafted by 4 to 5 months, and in posterior maxillary pristine bone (spontaneously healed posterior maxillary extraction sockets) by means of osteotome-mediated sinus floor elevation, over a period of 5 years after functional loading. Material and Methods Patients of Group 1 underwent extractions with sockets preservation using porcine-derived bone, covered with collagen membrane. Group 2 underwent extractions without socket preservation. Patients of Group 1 received implants in grafted sites, and Group 2 received implants in spontaneously healed bone using a maxillary sinus lift with crestal approach. Results Over the observation period, the overall clinical success rate in Group 1 and Group 2 was 98% and 100%, respectively, with no differences between the procedures and implants used. Cumulative radiographic marginal bone loss ranged from 0.03 to 0.39 mm after 60 months of functional loading. There were no statistically significant differences in marginal bone loss between short and standard-length implants placed in grafted extraction sockets and in pristine bone. Conclusions Short and standard implants with a laser-microgrooved collar, placed in posterior maxillary extraction sockets grafted by 4 to 5 months, and in posterior maxillary pristine bone (spontaneously healed posterior maxillary extraction sockets) by means of osteotome-mediated sinus floor elevation, exhibited no statistical difference in success rate, clinical parameters and marginal bone loss.
Collapse
Affiliation(s)
- Renzo Guarnieri
- Department of Dental and Maxillofacial Sciences, School of Dentistry, University "La Sapienza", RomeItaly.,Private practice, TorinoItaly
| | | | | | - Luca Testarelli
- Department of Dental and Maxillofacial Sciences, School of Dentistry, University "La Sapienza", RomeItaly.,Department of Dental and Maxillofacial Sciences, School of Dentistry, University "La Sapienza", RomeItaly
| |
Collapse
|
5
|
Bae EB, Kim HJ, Ahn JJ, Bae HY, Kim HJ, Huh JB. Comparison of Bone Regeneration between Porcine-Derived and Bovine-Derived Xenografts in Rat Calvarial Defects: A Non-Inferiority Study. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3412. [PMID: 31635277 PMCID: PMC6829332 DOI: 10.3390/ma12203412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022]
Abstract
The present study aimed to compare the bone-regeneration capacity of porcine-derived xenografts to bovine-derived xenografts in the rat calvarial defect model. The observation of surface morphology and in vitro cell studies were conducted prior to the animal study. Defects with a diameter of 8 mm were created in calvaria of 20 rats. The rats were randomly treated with porcine-derived (Bone-XP group) or bovine-derived xenografts (Bio-Oss group) and sacrificed at 4 and 8 weeks after surgery. The new bone regeneration was evaluated by micro-computed tomography (μCT) and histomorphometric analyses. In the cell study, the extracts of Bone-XP and Bio-Oss showed a positive effect on the regulation of osteogenic differentiation of human mesenchymal stem cells (hMSCs) without cytotoxicity. The new bone volume of Bone-XP (17.52 ± 3.78% at 4 weeks and 32.09 ± 3.51% at 8 weeks) was similar to that of Bio-Oss (11.6 ± 3.88% at 4 weeks and 25.89 ± 7.43% at 8 weeks) (p > 0.05). In the results of new bone area, there was no significant difference between Bone-XP (9.08 ± 5.47% at 4 weeks and 25.22 ± 13.56% at 8 weeks) and Bio-Oss groups (5.83 ± 2.56% at 4 weeks and 21.68 ± 11.11% at 8 weeks) (p > 0.05). It can be concluded that the porcine-derived bone substitute may offer a favorable cell response and bone regeneration similar to those of commercial bovine bone mineral.
Collapse
Affiliation(s)
- Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Ha-Jin Kim
- Department of Oral Physiology, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jong-Ju Ahn
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hyun-Young Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hyung-Joon Kim
- Department of Oral Physiology, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
6
|
Qiao W, Liu R, Li Z, Luo X, Huang B, Liu Q, Chen Z, Tsoi JKH, Su YX, Cheung KMC, Matinlinna JP, Yeung KWK, Chen Z. Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration. Biomater Sci 2018; 6:2951-2964. [DOI: 10.1039/c8bm00910d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluoride incorporation in porcine bone-derived biological apatite can change the surrounding microenvironment via in situ ionic exchange, which accelerates bone formation by activating Wnt/β-catenin pathway.
Collapse
|
7
|
Bone Regeneration Induced by Bone Porcine Block with Bone Marrow Stromal Stem Cells in a Minipig Model of Mandibular "Critical Size" Defect. Stem Cells Int 2017; 2017:9082869. [PMID: 28553359 PMCID: PMC5434233 DOI: 10.1155/2017/9082869] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/02/2016] [Accepted: 03/19/2017] [Indexed: 12/23/2022] Open
Abstract
Introduction. Adding stem cells to biodegradable scaffolds to enhance bone regeneration is a valuable option. Different kinds of stem cells with osteoblastic activity were tested, such as bone marrow stromal stem cells (BMSSCs). Aim. To assess a correct protocol for osteogenic stem cell differentiation, so BMSSCs were seeded on a bone porcine block (BPB). Materials and Methods. Bone marrow from six minipigs was extracted from tibiae and humeri and treated to isolate BMSSCs. After seeding on BPB, critical-size defects were created on each mandible of the minipigs and implanted with BPB and BPB/BMSSCs. After three months, histomorphometric analysis was performed. Results. Histomorphometric analysis provided percentages of the three groups. Tissues present in control defects were 23 ± 2% lamellar bone, 28 ± 1% woven bone, and 56 ± 4% marrow spaces; in BPB defects were 20 ± 5% BPB, 32 ± 2% lamellar bone, 24 ± 1% woven bone, and 28 ± 2% marrow spaces; in BPB/BMSSCs defects were 17 ± 4% BPB/BMSSCs, 42 ± 2% lamellar bone, 12 ± 1% woven bone, and 22 ± 3% marrow spaces. Conclusion. BPB used as a scaffold to induce bone regeneration may benefit from the addition of BDPSCs in the tissue-engineered constructs.
Collapse
|
8
|
Qiao W, Liu Q, Li Z, Zhang H, Chen Z. Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:110-121. [PMID: 28243337 PMCID: PMC5315024 DOI: 10.1080/14686996.2016.1263140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/15/2023]
Abstract
As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Oral Implantology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Quan Liu
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
- Zhujiang New Town Dental Clinic, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
| | - Zhipeng Li
- Department of Oral Implantology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Hanqing Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Zhuofan Chen
- Department of Oral Implantology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
- Corresponding author.
| |
Collapse
|
9
|
Meng S, Zhang X, Xu M, Heng BC, Dai X, Mo X, Wei J, Wei Y, Deng X. Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone: an approach to optimize osteoconductivity of bone graft. Biomed Mater 2015; 10:035006. [DOI: 10.1088/1748-6041/10/3/035006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Lee J, Abdeen AA, Zhang D, Kilian KA. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 2013; 34:8140-8. [DOI: 10.1016/j.biomaterials.2013.07.074] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/21/2013] [Indexed: 12/27/2022]
|
11
|
Characterization of a hybrid bone substitute composed of polylactic acid tetrapod chips and hydroxyapatite powder. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-0357-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Zhang X, Cai Q, Liu H, Heng B, Peng H, Song Y, Yang Z, Deng X. Osteoconductive effectiveness of bone graft derived from antler cancellous bone: an experimental study in the rabbit mandible defect model. Int J Oral Maxillofac Surg 2012; 41:1330-7. [DOI: 10.1016/j.ijom.2012.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/22/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022]
|
13
|
Tensile Strain as a Regulator of Mesenchymal Stem Cell Osteogenesis. Ann Biomed Eng 2010; 38:1767-79. [DOI: 10.1007/s10439-010-9979-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
|
14
|
Song ZC, Shu R, Zhang XL. Cellular responses and expression profiling of human bone marrow stromal cells stimulated with enamel matrix proteins in vitro. Cell Prolif 2009; 43:84-94. [PMID: 19922487 DOI: 10.1111/j.1365-2184.2009.00656.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate biological effects and gene expression profiles of enamel matrix proteins (EMPs), on human bone marrow stromal cells (HBMSCs), for preliminary understanding of mechanisms involved in promoting periodontal regeneration by EMPs. MATERIALS AND METHODS EMPs were extracted using the acetic acid method, and HBMSCs from human bone marrow aspirates were cultured. Attachment levels, level of cells morphologically attenuated, cell proliferation, alkaline phosphatase (ALP) activity and staining of HBMSCs were measured in the absence and in the presence of EMPs. Microarray analysis was performed to detect gene profiles of HBMSCs by treatment with 200 microg/ml EMPs, for 5 days. Four differential genes were selected for validation of the microarray data using real-time PCR. RESULTS EMPs promoted proliferation and ALP activity of HBMSCs in a time- and dose-dependent manner, and at a concentration of 200 microg/ml significantly enhanced proliferation and ALP expression. However, there were no significant changes between EMP-treated groups and the control group in cell attachment and cell process attenuation levels. Twenty-seven genes were differentially expressed by HBMSCs in the presence of EMPs. Expressions of 18 genes were upregulated and expressions of nine genes were found to be downregulated. There was good consistency between data obtained from the validation group and microarray results. CONCLUSIONS EMPs promoted cell proliferation and differentiation and gene expression profiles of HBMSCs were affected. This may help elucidation of mechanisms involved in promoting regeneration of periodontal tissues by EMPs.
Collapse
Affiliation(s)
- Z C Song
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
15
|
Liu Y, Wang S, Krouse J, Kotov NA, Eghtedari M, Vargas G, Motamedi M. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. J Biomed Mater Res A 2007; 83:1-9. [PMID: 17335022 DOI: 10.1002/jbm.a.31199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Successful regeneration of biological tissues in vitro requires the utilization of three-dimensional (3D) scaffolds that provide a near natural microenvironment for progenitor cells to grow, interact, replicate, and differentiate to form target tissues. In this work, a rapid aqueous photo-polymerization route was developed toward the fabrication of a variety of polymer hydrogel 3D inverted colloidal crystal (ICC) scaffolds having different physical and chemical properties. To demonstrate the versatility of this technique, a variety of polymer hydrogel ICC scaffolds were prepared, including (1) polyacrylamide (pAAM) scaffolds, (2) poly(2-hydroxyethyl methacrylate) (pHEMA) scaffolds, (3) poly(2-hydroxyethyl acrylate) (pHEA) scaffolds, and composite scaffolds including (4) pAAM-pHEMA scaffolds, (5) pHEMA-pMAETAC [poly(2-methacryloyloxy) trimethyl ammonium] scaffolds, and (6) pHEA-pMEATAC scaffolds. Templates for scaffolds incorporated both uniform sized (104 microm diameter) and nonuniform sized (100 +/- 20 microm diameter) closely packed noncrosslinked poly(methyl methacrylate) beads. Human bone marrow stromal HS-5 cells were cultured on the six different types of scaffolds to demonstrate biocompatibility. Experimental results show that cells can remain viable in these scaffolds for at least 5 weeks. Of the six scaffolds, maximal cell adhesion and proliferation are obtained on the positively charged composite hydrogel pHEMA-pMEATAC and pHEA-pMAETAC scaffolds.
Collapse
Affiliation(s)
- Yuanfang Liu
- ICx Nomadics, Inc., 1024S Innovation Way, Stillwater, Oklahoma 74074, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, Kim IA, Shin JW. The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomaterials 2004; 25:5715-23. [PMID: 15147817 DOI: 10.1016/j.biomaterials.2004.01.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 01/17/2004] [Indexed: 10/26/2022]
Abstract
In this study, we propose a new bioactive bone cement (BBC), composed of natural bone powder (hydroxyapatite; HA), chitosan powder, and the currently available polymethylmethacrylate (PMMA) bone cement, for use in orthopedic surgeries such as vertebroplasty or as bone filler. Three types of BBCs (BBC I, BBC II, and BBC III) were prepared with different composition ratios. In vitro tests and animal studies were performed with the new BBCs, and with a currently available commercial PMMA bone cement. Surface morphology, chemical composition, changes in pH over time, exothermic temperatures, intrusion, and cellular responses were investigated in vitro. Scanning electron microscopy (SEM) and radiological and histological examinations were performed in animal studies. The results showed that the major components of the BBCs were C, O, Ca, P, Cl, Si, S, Ba, and Mg. The pH values of the BBCs decreased after 1 day, but eventually recovered to 7.2-7.4. The water absorbency, weight loss, and porosity of the BBCs were higher than those of pure PMMA, but the compressive Young's modulus and the ultimate compressive strength (UCS) of the BBCs were lower than those of pure PMMA. The exothermic temperatures of the BBCs were considerably lower than that of pure PMMA. BBC II and III required longer times to solidify than did pure PMMA. Intrusion tests showed that the BBCs were more intrusive than was pure PMMA. Cell proliferation tests demonstrated that BBC II was preferable to pure PMMA for cell attachment and proliferation. No cytotoxic characteristics were found associated with any of the BBCs. In animal tests, BBC II was more biocompatible and osteoconductible than was pure PMMA. The results of in vitro and animal studies indicated that the proposed BBCs have potential clinical application as replacements for the pure PMMA bone cements currently in use.
Collapse
Affiliation(s)
- Seok Bong Kim
- Department of Biomedical Engineering, Inje University, 607 Eu-Bang Dong, Gimhae, Gyeongnam 621-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|