1
|
Finely-Tuned Calcium Oscillations in Osteoclast Differentiation and Bone Resorption. Int J Mol Sci 2020; 22:ijms22010180. [PMID: 33375370 PMCID: PMC7794828 DOI: 10.3390/ijms22010180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Calcium (Ca2+) plays an important role in regulating the differentiation and function of osteoclasts. Calcium oscillations (Ca oscillations) are well-known phenomena in receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption via calcineurin. Many modifiers are involved in the fine-tuning of Ca oscillations in osteoclasts. In addition to macrophage colony-stimulating factors (M-CSF; CSF-1) and RANKL, costimulatory signaling by immunoreceptor tyrosine-based activation motif-harboring adaptors is important for Ca oscillation generation and osteoclast differentiation. DNAX-activating protein of 12 kD is always necessary for osteoclastogenesis. In contrast, Fc receptor gamma (FcRγ) works as a key controller of osteoclastogenesis especially in inflammatory situation. FcRγ has a cofactor in fine-tuning of Ca oscillations. Some calcium channels and transporters are also necessary for Ca oscillations. Transient receptor potential (TRP) channels are well-known environmental sensors, and TRP vanilloid channels play an important role in osteoclastogenesis. Lysosomes, mitochondria, and endoplasmic reticulum (ER) are typical organelles for intracellular Ca2+ storage. Ryanodine receptor, inositol trisphosphate receptor, and sarco/endoplasmic reticulum Ca2+ ATPase on the ER modulate Ca oscillations. Research on Ca oscillations in osteoclasts has still many problems. Surprisingly, there is no objective definition of Ca oscillations. Causality between Ca oscillations and osteoclast differentiation and/or function remains to be examined.
Collapse
|
2
|
Meng G, Pan L, Li C, Hu F, Shi X, Lee I, Drevenšek-Olenik I, Zhang X, Xu J. Temperature-induced labelling of Fluo-3 AM selectively yields brighter nucleus in adherent cells. Biochem Biophys Res Commun 2013; 443:888-93. [PMID: 24380862 DOI: 10.1016/j.bbrc.2013.12.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca(2+)]c) and nuclear calcium ([Ca(2+)]n) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injection always induces a brighter nucleus which is more responsive to [Ca(2+)]n detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca(2+)]n and [Ca(2+)]c in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells.
Collapse
Affiliation(s)
- Guixian Meng
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, China.
| | - Cunbo Li
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, China
| | - Xuechen Shi
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, China
| | - Imshik Lee
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, China
| | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, and J. Stefan Institute, Ljubljana, Slovenia
| | - Xinzheng Zhang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, China
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Berger CE, Rathod H, Gillespie JI, Horrocks BR, Datta HK. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J Bone Miner Res 2001; 16:2092-102. [PMID: 11697806 DOI: 10.1359/jbmr.2001.16.11.2092] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteoclast resorptive activity occurs despite the presence of extremely high levels of ionized calcium ([Ca2+]) within the osteoclast hemivacuole, which is generated as a by-product of its resorptive activity. Previous in vitro observations have shown that increases in extracellular [Ca2+] ([Ca2+]e) in the surrounding medium can inhibit the osteoclast resorptive activity. Therefore, it has been suggested that the osteoclast acts as a "sensor" for [Ca2+]e, and that high [Ca2+]e leads to an increase in intracellular [Ca2+] ([Ca2+]i), thereby inhibiting osteoclasts in a negative feedback manner. In this report we have carried out an experimental and theoretical analysis of calcium disposal during osteoclast activity to evaluate how in vitro models relate to in vivo osteoclast activity, where it is possible that high [Ca2+]e may be present in the hemivacuole but not over the nonresorbing surface of the cell. Scanning electrochemical microscopy (SECM) studies of [Ca2+] and superoxide anion (O2.-) generation by bone-resorbing osteoclasts on the surface of a bovine cortical bone slice were compared with microspectofluorometric measurements of the levels of [Ca2+]i in single osteoclasts and the effect of [Ca2+]i on various aspects of osteoclast function. The generation of O2.- by the osteoclasts has been shown to be positively correlated with osteoclast resorptive function and can therefore serve as an index of acute changes in osteoclast activity. The SECM of bone-resorbing osteoclasts at the surface of a bone slice revealed a continuous steady-state release of Ca2+. Even after prolonged incubation lasting 3 h the near-surface [Ca2+]e in the solution above the cell remained <2 mM. The SECM real-time measurement data were consistent with the osteoclast acting as a conduit for continuous Ca2+ disposal from the osteoclast-bone interface. We conclude that the osteoclast distinguishes [Ca2+]e in the hemivacuole and in the extracellular fluid above the cell which we denote [Ca2+]e. We found that an increase in [Ca2+]i may be associated with activation; inhibition; or be without effect on O2.- generation, bone-matrix, or bone resorption. Similarly, osteoclast adhesion and bone-resorbing activity was affected by [Ca2+]e' but showed no correlation with [Ca2+]i. The data suggest the existence of functional compartmentalization of [Ca2+]i within the osteoclast, where elevated calcium may have an inhibitory, excitatory, or no effect on the overall osteoclast activity while exerting a selective effect on different functional modalities. These observations lead to the conclusion that far from being inhibited by Ca2+ generated, the osteoclast by virtue of the observed functional compartmentalization is highly adapted at carrying out its activity even when the level of [Ca2+] in resorptive lacunae is elevated.
Collapse
Affiliation(s)
- C E Berger
- Department of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | | | | |
Collapse
|
4
|
Bunney TD, Shaw PJ, Watkins PA, Taylor JP, Beven AF, Wells B, Calder GM, Drøbak BK. ATP-dependent regulation of nuclear Ca(2+) levels in plant cells. FEBS Lett 2000; 476:145-9. [PMID: 10913602 DOI: 10.1016/s0014-5793(00)01709-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Localised alterations in cytoplasmic Ca(2+) levels are an integral part of the response of eukaryotic cells to a plethora of external stimuli. Due to the large size of nuclear pores, it has generally been assumed that intranuclear Ca(2+) levels reflect the prevailing cytoplasmic Ca(2+) levels. Using nuclei prepared from carrot (Daucus carota L.) cells, we now show that Ca(2+) can be transported across nuclear membranes in an ATP-dependent manner and that over 95% of Ca(2+) is accumulated into a pool releasable by the Ca(2+) ionophore A.23187. ATP-dependent nuclear Ca(2+) uptake did not occur in the presence of ADP or ADPgammaS and was abolished by orthovanadate. Confocal microscopy of nuclei loaded with dextran-linked Indo-1 showed that the initial ATP-induced rise in [Ca(2+)] occurs in the nuclear periphery. The occurrence of ATP-dependent Ca(2+) uptake in plant nuclei suggests that alterations of intranuclear Ca(2+) levels may occur independently of cytoplasmic [Ca(2+)] changes.
Collapse
Affiliation(s)
- T D Bunney
- Department of Cell Biology, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Teruel MN, Chen W, Persechini A, Meyer T. Differential codes for free Ca(2+)-calmodulin signals in nucleus and cytosol. Curr Biol 2000; 10:86-94. [PMID: 10662666 DOI: 10.1016/s0960-9822(00)00295-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Many targets of calcium signaling pathways are activated or inhibited by binding the Ca(2+)-liganded form of calmodulin (Ca(2+)-CaM). Here, we test the hypothesis that local Ca(2+)-CaM-regulated signaling processes can be selectively activated by local intracellular differences in free Ca(2+)-CaM concentration. RESULTS Energy-transfer confocal microscopy of a fluorescent biosensor was used to measure the difference in the concentration of free Ca(2+)-CaM between nucleus and cytoplasm. Strikingly, short receptor-induced calcium spikes produced transient increases in free Ca(2+)-CaM concentration that were of markedly higher amplitude in the cytosol than in the nucleus. In contrast, prolonged increases in calcium led to equalization of the nuclear and cytosolic free Ca(2+)-CaM concentrations over a period of minutes. Photobleaching recovery and translocation measurements with fluorescently labeled CaM showed that equalization is likely to be the result of a diffusion-mediated net translocation of CaM into the nucleus. The driving force for equalization is a higher Ca(2+)-CaM-buffering capacity in the nucleus compared with the cytosol, as the direction of the free Ca(2+)-CaM concentration gradient and of CaM translocation could be reversed by expressing a Ca(2+)-CaM-binding protein at high concentration in the cytosol. CONCLUSIONS Subcellular differences in the distribution of Ca(2+)-CaM-binding proteins can produce gradients of free Ca(2+)-CaM concentration that result in a net translocation of CaM. This provides a mechanism for dynamically regulating local free Ca(2+)-CaM concentrations, and thus the local activity of Ca(2+)-CaM targets. Free Ca(2+)-CaM signals in the nucleus remain low during brief or low-frequency calcium spikes, whereas high-frequency spikes or persistent increases in calcium cause translocation of CaM from the cytoplasm to the nucleus, resulting in similar concentrations of nuclear and cytosolic free Ca(2+)-CaM.
Collapse
Affiliation(s)
- M N Teruel
- Department of Cell Biology, Department of Pharmacology and Cancer Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
7
|
Myers DE, Collier FM, Minkin C, Wang H, Holloway WR, Malakellis M, Nicholson GC. Expression of functional RANK on mature rat and human osteoclasts. FEBS Lett 1999; 463:295-300. [PMID: 10606741 DOI: 10.1016/s0014-5793(99)01650-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the important roles of RANK/RANKL in osteoclastogenesis have been established, their roles in the regulation of mature osteoclasts remain uncertain. Microisolation has been used to obtain pure populations of rat and human osteoclasts for RT-PCR analysis. RANK and calcitonin receptor mRNA was detected in all the samples whereas OPG and ALP mRNA was not present in any. RANKL mRNA was detected in two of eight rat and one of four human samples. Treatment of osteoclasts with soluble RANKL resulted in translocation of NF-kappaB to the nucleus and elevation of cytosolic and nuclear calcium levels. We have shown that RANK is highly expressed in mature osteoclasts and that its stimulation by RANKL results in activation of NF-kappaB and calcium signalling.
Collapse
Affiliation(s)
- D E Myers
- Department of Medicine, The University of Melbourne, Barwon Health, The Geelong Hospital, Geelong, Australia
| | | | | | | | | | | | | |
Collapse
|