1
|
Shehadeh M, Palzur E, Apel L, Soustiel JF. Reduction of Traumatic Brain Damage by Tspo Ligand Etifoxine. Int J Mol Sci 2019; 20:ijms20112639. [PMID: 31146356 PMCID: PMC6600152 DOI: 10.3390/ijms20112639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 01/30/2023] Open
Abstract
Experimental studies have shown that ligands of the 18 kDa translocator protein can reduce neuronal damage induced by traumatic brain injury by protecting mitochondria and preventing metabolic crisis. Etifoxine, an anxiolytic drug and 18 kDa translocator protein ligand, has shown beneficial effects in the models of peripheral nerve neuropathy. The present study investigates the potential effect of etifoxine as a neuroprotective agent in traumatic brain injury (TBI). For this purpose, the effect of etifoxine on lesion volume and modified neurological severity score at 4 weeks was tested in Sprague-Dawley adult male rats submitted to cortical impact contusion. Effects of etifoxine treatment on neuronal survival and apoptosis were also assessed by immune stains in the perilesional area. Etifoxine induced a significant reduction in the lesion volume compared to nontreated animals in a dose-dependent fashion with a similar effect on neurological outcome at four weeks that correlated with enhanced neuron survival and reduced apoptotic activity. These results are consistent with the neuroprotective effect of etifoxine in TBI that may justify further translational research.
Collapse
Affiliation(s)
- Mona Shehadeh
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| | - Eilam Palzur
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| | - Liat Apel
- Institute of Pathology, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
- The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed 13100, Israel.
| | - Jean Francois Soustiel
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
- The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed 13100, Israel.
- Department of Neurosurgery, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| |
Collapse
|
2
|
Palzur E, Sharon A, Shehadeh M, Soustiel JF. Investigation of the mechanisms of neuroprotection mediated by Ro5-4864 in brain injury. Neuroscience 2016; 329:162-70. [PMID: 27223627 DOI: 10.1016/j.neuroscience.2016.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
Increasing evidence has established the involvement of the 18-kDa translocator protein (TSPO) in the process of mitochondrial membrane permeabilization and subsequent apoptosis through modulation of the mitochondrial permeability transition pore. Recent studies have shown that treatment with Ro5-4864, a TSPO ligand, resulted in a neuroprotective effect in traumatic brain injury. Yet, the nature of this effect remained uncertain as mature neurons are considered to be lacking the TSPO protein. In order to investigate the mechanism of Ro5-4864-mediated neuroprotection, the neuro-inflammatory and neurosteroid response to cortical injury was tested in sham-operated, vehicle, cyclosporine A (CsA) and Ro5-4864-treated rats. As anticipated, the levels of interleukin 1β and tumor necrosis factor α, as well as the astrocyte and microglia cellular density in the injured area were all decreased by CsA in comparison with the vehicle group. By contrast, no visible effect could be observed in Ro5-4864-treated animals. None of the groups showed any significant difference with any other in respect with the expression of brain-derived neurotrophic factor. Double immunofluorescence staining with NeuN and TSPO confirmed the absence of TSPO in native neurons though showed clear evidence of co-localization of TSPO in the cytoplasm of NeuN-stained injured neurons. Altogether, this study shows that the neuronal protection mediated by Ro5-4864 in brain injury cannot be solely attributed to an indirect effect of the ligand on glial TSPO but may also represent the consequence of the modulation of upregulated TSPO in injured neurons. This observation may be of importance for future pharmacological research in neurotrauma.
Collapse
Affiliation(s)
- Eilam Palzur
- Eliachar Research Laboratory, Medical Center of the Galilee, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia 22100, Israel
| | - Aviram Sharon
- Department of Neurosurgery, Medical Center of the Galilee, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia 22100, Israel
| | - Mona Shehadeh
- Eliachar Research Laboratory, Medical Center of the Galilee, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia 22100, Israel
| | - Jean Francois Soustiel
- Eliachar Research Laboratory, Medical Center of the Galilee, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia 22100, Israel; Department of Neurosurgery, Medical Center of the Galilee, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia 22100, Israel.
| |
Collapse
|
3
|
TSPO ligand residence time influences human glioblastoma multiforme cell death/life balance. Apoptosis 2015; 20:383-98. [PMID: 25413799 DOI: 10.1007/s10495-014-1063-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ligands addressed to the mitochondrial Translocator Protein (TSPO) have been suggested as cell death/life and steroidogenesis modulators. Thus, TSPO ligands have been proposed as drug candidates in several diseases; nevertheless, a correlation between their binding affinity and in vitro efficacy has not been demonstrated yet, questioning the specificity of the observed effects. Since drug-target residence time is an emerging parameter able to influence drug pharmacological features, herein, the interaction between TSPO and irDE-MPIGA, a covalent TSPO ligand, was investigated in order to explore TSPO control on death/life processes in a standardized glioblastoma cell setting. After 90 min irDE-MPIGA cell treatment, 25 nM ligand concentration saturated irreversibly all TSPO binding sites; after 24 h, TSPO de-novo synthesis occurred and about 40 % TSPO binding sites resulted covalently bound to irDE-MPIGA. During cell culture treatments, several dynamic events were observed: (a) early apoptotic markers appeared, such as mitochondrial membrane potential collapse (at 3 h) and externalization of phosphatidylserine (at 6 h); (b) cell viability was reduced (at 6 h), without cell cycle arrest. After digitonin-permeabilized cell suspension treatment, a modulation of mitochondrial permeability transition pore was evidenced. Similar effects were elicited by the reversible TSPO ligand PIGA only when applied at micromolar dose. Interestingly, after 6 h, irDE-MPIGA cell exposure restored cell survival parameters. These results highlighted the ligand-target residence time and the cellular setting are crucial parameters that should be taken into account to understand the drug binding affinity and efficacy correlation and, above all, to translate efficiently cellular drug responses from bench to bedside.
Collapse
|
4
|
Synthesis of micheliolide derivatives and their activities against AML progenitor cells. Molecules 2013; 18:5980-92. [PMID: 23698050 PMCID: PMC6270314 DOI: 10.3390/molecules18055980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 01/22/2023] Open
Abstract
Micheliolide (MCL) derivatives with etherification or esterification of the hydroxyl group at the C4 position were synthesized and evaluated for their activities against different acute myelogenous leukemia (AML) cell lines. These derivatives demonstrated comparable activities against AML cell lines HL-60 and doxorubicin resistant cell line HL-60/A. As to multi-drug resistant AML progenitor cells KG-1a, MCL and some of its derivatives maintained significant activities, and only 1.1–2.7 fold activity reductions were observed when compared with the activities against HL-60, while doxorubicin showed 20-fold activity reduction. Our study demonstrated that the C4 hydroxyl group of MCL might not only be a suitable position for structural modifications, but also be a starting point for the design of appropriate molecular probes to explore the specific targets in the progenitor cell line KG-1a.
Collapse
|
5
|
Mendonça-Torres MC, Roberts SS. The translocator protein (TSPO) ligand PK11195 induces apoptosis and cell cycle arrest and sensitizes to chemotherapy treatment in pre- and post-relapse neuroblastoma cell lines. Cancer Biol Ther 2013; 14:319-26. [PMID: 23358477 DOI: 10.4161/cbt.23613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
High-risk neuroblastoma (NB) has a poor prognosis. Even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal, and new treatments are needed. Translocator protein 18kDa (TSPO) ligands have been studied as potential new therapeutic agents in many cancers, but not in NB. We studied the effects of TSPO ligands on cell proliferation, cell cycle progression and apoptosis using paired cell lines derived from the same patient at the time of initial surgery and again after development of progressive disease or relapse post-chemotherapy. We found that TSPO expression was significantly increased 2- to 10-fold in post-relapse cell lines compared with pre-treatment lines derived from the same individual. Subsequently, these cell lines were treated with the specific TSPO ligand 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195) (0-160µM) as a single agent, with cytotoxic chemotherapy agents alone (carboplatin, etoposide or melphalan), or with combinations of PK11195 and chemotherapy drugs. We found that PK11195 inhibited proliferation in a dose-dependent manner, induced apoptosis and caused G 1/S cell cycle arrest in all tested NB cell lines at micromolar concentrations. In addition, PK11195 significantly decreased mRNA expression of the chemotherapy resistance efflux pumps ABCA3, ABCB1 and ABCC1 in two post-relapse NB cell lines. We also found that pre-treatment with PK11195 sensitized these cell lines to treatment with cytotoxic chemotherapy agents. These results suggest that PK11195 alone or in combination with standard chemotherapeutic drugs warrants further study for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Maria C Mendonça-Torres
- Department of Pediatrics, Division of Hematology/Oncology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | | |
Collapse
|
6
|
Leducq-Alet N, Vin V, Savi P, Bono F. TNF-alpha induced PMN apoptosis in whole human blood: Protective effect of SSR180575, a potent and selective peripheral benzodiazepine ligand. Biochem Biophys Res Commun 2010; 399:475-9. [DOI: 10.1016/j.bbrc.2010.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/03/2010] [Indexed: 10/19/2022]
|
7
|
Mukhopadhyay S, Guillory B, Mukherjee S, Das SK. Antiproliferative effect of peripheral benzodiazepine receptor antagonist PK11195 in rat mammary tumor cells. Mol Cell Biochem 2010; 340:203-13. [PMID: 20204676 DOI: 10.1007/s11010-010-0419-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/10/2010] [Indexed: 01/26/2023]
Abstract
This study aims to establish the antiproliferative effects of PK11195, a peripheral benzodiazepine receptor antagonist (PBR) in rat mammary tumor cells. Breast tumors were induced by administration of a carcinogen, dimethylbenz[a]anthracene to 50-day-old female rats maintained on a standard AIN-76A diet with casein as the protein source. The tumors were developed approximately after 120 days. The tumors were of grade I (20%), grade II (60%), and grade III (20%). The tumors were isolated and cultured in DMEM/F12 media with supplements. We characterized the properties of the isolated cells and study the effect of PK11195 on those cells. We were successful in growing breast tumor cells up to 30 passages for cellular characterization. These cells had high reactivity with Ki-67 and PCNA antibodies suggesting high proliferation rate. These cells were highly invasive as evident by matrigel invading ability. Furthermore, these cells acquired a positive response for CD-31 and VEGF antibodies suggesting angiogenic potential, and also possessed migrating ability/motility as evident by the wound healing properties. These cells expressed elevated levels of PBR, a cancer promoting gene. The proliferation, invasion and migration appear to decrease when treated with PK11195, a PBR antagonist. Furthermore, PK11195 treatment caused an increase in apoptosis as evident by increase in the levels of annexin V. However, the inhibition of cell proliferation by PK11195 was counteracted by Ro5-4864, a PBR agonist. Thus, PBR antagonist may be a potential therapeutic agent for the control of aggressiveness of breast cancer.
Collapse
Affiliation(s)
- Sutapa Mukhopadhyay
- Department of Cancer Biology, Meharry Medical College, 1005 D.B.Todd Blvd., Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
8
|
Campanella M, Szabadkai G, Rizzuto R. Modulation of intracellular Ca2+ signalling in HeLa cells by the apoptotic cell death enhancer PK11195. Biochem Pharmacol 2008; 76:1628-36. [PMID: 18929543 DOI: 10.1016/j.bcp.2008.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/15/2022]
Abstract
1-(2-Chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195) is a proven enhancer of apoptotic cell death in a variety of cellular models. This effect is independent of its established cellular target, the mitochondrial benzodiazepine receptor (mBzR), since it is able to promote cell death also in mBzR knockout cells. Thus recently it was suggested that PK11195 might exert its effect by modulating the expression and function of the oncogene Bcl-2. We have previously demonstrated that Bcl-2 modulates cellular Ca2+ homeostasis as its overexpression reduces the Ca2+ concentration in the endoplasmic reticulum (ER) ([Ca2+](er)), impairing mitochondrial and cytosolic Ca2+ overload during cellular stress and therefore inhibiting the induction of the apoptotic cascade. Here, using ER, mitochondria and cytosolic targeted aequorin probes, we show that cellular treatment with PK11195 induces opposite changes in cellular Ca2+ homeostasis, increasing the [Ca2+](er) and amplifying IP(3) induced Ca2+ transients in mitochondria ([Ca2+](m)) and cytosol ([Ca2+](c)). This work provides evidence for a novel pharmacological effect of PK11195 on Ca2+ signalling which may be linked to its effect on Bcl-2 and account for its role in apoptotic cell death.
Collapse
Affiliation(s)
- Michelangelo Campanella
- Department of Veterinary Basic Science, Royal Veterinary College, Royal College Street, University of London, NW10TU London, UK.
| | | | | |
Collapse
|
9
|
Design, synthesis and preliminary biological evaluation of new hydroxamate histone deacetylase inhibitors as potential antileukemic agents. Bioorg Med Chem Lett 2008; 18:5071-4. [DOI: 10.1016/j.bmcl.2008.07.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/29/2008] [Accepted: 07/31/2008] [Indexed: 11/23/2022]
|
10
|
Soustiel JF, Zaaroor M, Vlodavsky E, Veenman L, Weizman A, Gavish M. Neuroprotective effect of Ro5-4864 following brain injury. Exp Neurol 2008; 214:201-8. [PMID: 18789929 DOI: 10.1016/j.expneurol.2008.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/21/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a protein complex located at the outer mitochondrial membrane and interacting with the mitochondrial permeability transition pore (mPTP), indicating its involvement in the control of mPTP opening. We intended to explore the effect of TSPO ligands, PK 11195 and Ro5-4864 on apoptosis in a rat model of cortical injury. Sprague-Dawley rats received a daily intraperitoneal injection of dimethylsulfoxide (vehicle), PK 11195, or Ro5-4864, starting 2 days prior the injury and a third injection after the injury. At 6 weeks, immunohistochemistry analysis showed that Ro5-4864 resulted in a significant increase in the number of surviving neurons and in the density of the neurofilament network in the perilesional cortex in comparison with animals of the vehicle and PK 11195 groups. In tissue samples dissected from the injured area, Ro5-4864 caused a significant reduction in activation of caspases 3 and 9 but not of caspase 8 in comparison with the vehicle and PK 11195 groups. In addition, measurements of transmembrane mitochondrial potential of mitochondria (Deltapsi(M)) isolated from normal rat brain showed that loss of Deltapsi(M) induced by recombinant Bax could be significantly reduced by Ro5-4864 in a concentration-dependent manner. Our findings indicate that the neuroprotective effect shown by Ro5-4864 in the present model of brain injury involves the mitochondrial pathway of apoptosis modulation of mPTP.
Collapse
Affiliation(s)
- Jean F Soustiel
- Acute Brain Injury Research Laboratory, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
11
|
Cleary J, Johnson KM, Opipari AW, Glick GD. Inhibition of the mitochondrial F1F0-ATPase by ligands of the peripheral benzodiazepine receptor. Bioorg Med Chem Lett 2007; 17:1667-70. [PMID: 17251020 DOI: 10.1016/j.bmcl.2006.12.102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 12/22/2006] [Indexed: 11/25/2022]
Abstract
Although PK11195 binds to the peripheral benzodiazepine receptor with nanomolar affinity, significant data exist which suggest that it has another cellular target distinct from the PBR. Here we demonstrate that PK11195 inhibits F(1)F(0)-ATPase activity in an OSCP-dependent manner, similar to the pro-apoptotic benzodiazepine Bz-423. Importantly, our data indicate that cellular responses observed with micromolar concentrations of PK11195, which are commonly attributed to modulation of the PBR, are likely a direct result of mitochondrial F(1)F(0)-ATPase inhibition.
Collapse
Affiliation(s)
- Joanne Cleary
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, MI 48109-1055, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The permeability transition pore (PTP) is a multi-protein complex at contact sites of the inner with the outer mitochondrial membrane. Research over the past years has led to the concept that the PTP occupies a central role in cell death induction. Numerous apoptosis signals convert this protein aggregate into an unspecific pore, thus activating mitochondria for the cellular self-destruction process. Here, we describe the evidence for this and the various approaches being undertaken to elucidate its subunit composition and mode of regulation. In particular, we review data that indicate a role of specific PTP subunits for apoptosis inhibition during tumorigenesis.
Collapse
Affiliation(s)
- C Brenner
- University of Versailles/St Quentin, CNRS UMR 8159, Versailles, France.
| | | |
Collapse
|
13
|
Fontenay M, Cathelin S, Amiot M, Gyan E, Solary E. Mitochondria in hematopoiesis and hematological diseases. Oncogene 2006; 25:4757-67. [PMID: 16892088 DOI: 10.1038/sj.onc.1209606] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondria are involved in hematopoietic cell homeostasis through multiple ways such as oxidative phosphorylation, various metabolic processes and the release of cytochrome c in the cytosol to trigger caspase activation and cell death. In erythroid cells, the mitochondrial steps in heme synthesis, iron (Fe) metabolism and Fe-sulfur (Fe-S) cluster biogenesis are of particular importance. Mutations in the specific delta-aminolevulinic acid synthase (ALAS) 2 isoform that catalyses the first and rate-limiting step in heme synthesis pathway in the mitochondrial matrix, lead to ineffective erythropoiesis that characterizes X-linked sideroblastic anemia (XLSA), the most common inherited sideroblastic anemia. Mutations in the adenosine triphosphate-binding cassette protein ABCB7, identified in XLSA with ataxia (XLSA-A), disrupt the maturation of cytosolic (Fe-S) clusters, leading to mitochondrial Fe accumulation. In addition, large deletions in mitochondrial DNA, whose integrity depends on a specific DNA polymerase, are the hallmark of Pearson's syndrome, a rare congenital disorder with sideroblastic anemia. In acquired myelodysplastic syndromes at early stage, exacerbation of physiological pathways involving caspases and the mitochondria in erythroid differentiation leads to abnormal activation of a mitochondria-mediated apoptotic cell death pathway. In contrast, oncogenesis-associated changes at the mitochondrial level can alter the apoptotic response of transformed hematopoietic cells to chemotherapeutic agents. Recent findings in mitochondria metabolism and functions open new perspectives in treating hematopoietic cell diseases, for example various compounds currently developed to trigger tumor cell death by directly targeting the mitochondria could prove efficient as either cytotoxic drugs or chemosensitizing agents in treating hematological malignancies.
Collapse
Affiliation(s)
- M Fontenay
- Inserm U567, Institut Cochin, Department of Hematology, Paris, Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Galluzzi L, Larochette N, Zamzami N, Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 2006; 25:4812-30. [PMID: 16892093 DOI: 10.1038/sj.onc.1209598] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are vital for cellular bioenergetics and play a central role in determining the point-of-no-return of the apoptotic process. As a consequence, mitochondria exert a dual function in carcinogenesis. Cancer-associated changes in cellular metabolism (the Warburg effect) influence mitochondrial function, and the invalidation of apoptosis is linked to an inhibition of mitochondrial outer membrane permeabilization (MOMP). On theoretical grounds, it is tempting to develop specific therapeutic interventions that target the mitochondrial Achilles' heel, rendering cancer cells metabolically unviable or subverting endogenous MOMP inhibitors. A variety of experimental therapeutic agents can directly target mitochondria, causing apoptosis induction. This applies to a heterogeneous collection of chemically unrelated compounds including positively charged alpha-helical peptides, agents designed to mimic the Bcl-2 homology domain 3 of Bcl-2-like proteins, ampholytic cations, metals and steroid-like compounds. Such MOMP inducers or facilitators can induce apoptosis by themselves (monotherapy) or facilitate apoptosis induction in combination therapies, bypassing chemoresistance against DNA-damaging agents. In addition, it is possible to design molecules that neutralize inhibitor of apoptosis proteins (IAPs) or heat shock protein 70 (HSP70). Such IAP or HSP70 inhibitors can mimic the action of mitochondrion-derived mediators (Smac/DIABLO, that is, second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with a low isoelectric point, in the case of IAPs; AIF, that is apoptosis-inducing factor, in the case of HSP70) and exert potent chemosensitizing effects.
Collapse
Affiliation(s)
- L Galluzzi
- CNRS-FRE 2939, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
15
|
Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett 2006; 240:123-34. [DOI: 10.1016/j.canlet.2005.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 08/12/2005] [Accepted: 09/05/2005] [Indexed: 01/21/2023]
|
16
|
Bouchier-Hayes L, Lartigue L, Newmeyer DD. Mitochondria: pharmacological manipulation of cell death. J Clin Invest 2005; 115:2640-7. [PMID: 16200197 PMCID: PMC1236694 DOI: 10.1172/jci26274] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell death by apoptosis or necrosis is often important in the etiology and treatment of disease. Since mitochondria play important roles in cell death pathways, these organelles are potentially prime targets for therapeutic intervention. Here we discuss the mechanisms through which mitochondria participate in the cell death process and also survey some of the pharmacological approaches that target mitochondria in various ways.
Collapse
Affiliation(s)
- Lisa Bouchier-Hayes
- La Jolla Institute for Allergy and Immunology, Department of Cellular Immunology, San Diego, California 92121, USA
| | | | | |
Collapse
|
17
|
Chelli B, Rossi L, Da Pozzo E, Costa B, Spinetti F, Rechichi M, Salvetti A, Lena A, Simorini F, Vanacore R, Scatena F, Da Settimo F, Gremigni V, Martini C. PIGA (N,N-Di-n-butyl-5-chloro-2-(4-chlorophenyl)indol-3-ylglyoxylamide), a new mitochondrial benzodiazepine-receptor ligand, induces apoptosis in C6 glioma cells. Chembiochem 2005; 6:1082-8. [PMID: 15883977 DOI: 10.1002/cbic.200400350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mitochondrial benzodiazepine-receptor (mBzR) ligands constitute a heterogeneous class of compounds that show a pleiotropic spectrum of effects within the cells, including the modulation of apoptosis. In this paper, a novel synthetic 2-phenylindol-3-ylglyoxylamide derivative, N,N-di-n-butyl-5-chloro-2-(4-chlorophenyl)indol-3-ylglyoxylamide (PIGA), which shows high affinity and selectivity for the mBzR, is demonstrated to induce apoptosis in rat C6 glioma cells. PIGA was able to dissipate mitochondrial transmembrane potential (DeltaPsim) and to cause a significant cytosolic accumulation of cytochrome c. Moreover, typical features of apoptotic cell death, such as caspase-3 activation and DNA fragmentation, were also detected in PIGA-treated cells. Our data expand the knowledge on mBzR ligand-mediated apoptosis and suggest PIGA as a novel proapoptotic compound with therapeutic potential against glial tumours, in which apoptosis resistance has been reported to be involved in carcinogenesis.
Collapse
Affiliation(s)
- Beatrice Chelli
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gonzalez-Polo RA, Carvalho G, Braun T, Decaudin D, Fabre C, Larochette N, Perfettini JL, Djavaheri-Mergny M, Youlyouz-Marfak I, Codogno P, Raphael M, Feuillard J, Kroemer G. PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene 2005; 24:7503-13. [PMID: 16091749 DOI: 10.1038/sj.onc.1208907] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
1-(2-Chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195) is a prototypic ligand of the peripheral benzodiazepine receptor (PBR), a mitochondrial outer membrane protein. PK11195 can be used to chemosensitize tumor cells to a variety of chemotherapeutic agents, both in vitro and in vivo. PK11195 has been suggested to exert this effect via inhibition of the multiple drug resistance (MDR) pump and by direct mitochondrial effects which could be mediated by the PBR. Here, we established a model system in which PK11195 and another PBR ligand, 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5-4864), sensitize to nutrient depletion-induced cell death. In this MDR-independent model, PK11195 and Ro5-4864 are fully active even when the PBR is knocked down by small interfering RNA. Cells that lack PBR possess low-affinity binding sites for PK11195 and Ro5-4864. The starvation-sensitizing effects of PK11195 are not due to a modulation of the adaptive response of starved cells, namely autophagy and NF-kappaB activation. Rather, it appears that the combination of PK11195 with autophagy or NF-kappaB inhibitors has a potent synergistic death-inducing effect. Starved cells treated with PK11195 exhibit characteristics of apoptosis, including loss of the mitochondrial transmembrane potential, mitochondrial cytochrome c release, caspase activation and chromatin condensation. Accordingly, stabilization of mitochondria by overexpression of Bcl-2 or expression of the viral mitochondrial inhibitor (vMIA) from cytomegalovirus inhibits cell death induced by PK11195 plus starvation. Thus, PK11195 potently sensitizes to apoptosis via a pathway that involves mitochondria, yet does not involve the PBR.
Collapse
Affiliation(s)
- Rosa-Ana Gonzalez-Polo
- 1Centre National de la Recherche Scientifique, UMR8125, Institut Gustave Roussy, Pavillon de Recherche 1, 39 rue Camille-Desmoulins, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Walter RB, Pirga JL, Cronk MR, Mayer S, Appelbaum FR, Banker DE. PK11195, a peripheral benzodiazepine receptor (pBR) ligand, broadly blocks drug efflux to chemosensitize leukemia and myeloma cells by a pBR-independent, direct transporter-modulating mechanism. Blood 2005; 106:3584-93. [PMID: 16051742 PMCID: PMC1895053 DOI: 10.1182/blood-2005-02-0711] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peripheral benzodiazepine receptor (pBR) ligand, PK11195, promotes mitochondrial apoptosis and blocks P-glycoprotein (Pgp)-mediated drug efflux to chemosensitize cancer cells at least as well or better than the Pgp modulator, cyclosporine A (CSA). We now show that PK11195 broadly inhibits adenosine triphosphate (ATP)-binding cassette (ABC) transporters in hematologic cancer cell lines and primary leukemia-cell samples, including multidrug resistance protein (MRP), breast cancer resistance protein (BCRP), and/or Pgp. Ectopic expression models confirmed that pBR can directly mediate chemosensitizing by PK11195, presumably via mitochondrial activities, but showed that pBR expression is unnecessary to PK11195-mediated efflux inhibition. PK11195 binds plasma-membrane sites in Pgp-expressing cells, stimulates Pgp-associated adenosine triphosphatase (ATPase) activity, and causes conformational changes in Pgp, suggesting that PK11195 modulates Pgp-mediated efflux by direct transporter interaction(s). PK11195 and CSA bind noncompetitively in Pgp-expressing cells, indicating that PK11195 interacts with Pgp at sites that are distinct from CSA-binding sites. Importantly, PK11195 concentrations that were effective in these in vitro assays can be safely achieved in patients. Because PK11195 promotes chemotherapy-induced apoptosis by a pBR-dependent mitochondrial mechanism and broadly blocks drug efflux by an apparently pBR-independent, ABC transporter-dependent mechanism, PK11195 may be a useful clinical chemosensitizer in cancer patients.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Binding Sites/drug effects
- Biological Transport, Active/drug effects
- Cyclosporine/metabolism
- Cyclosporine/pharmacology
- Female
- GABA-A Receptor Agonists
- HL-60 Cells
- Humans
- Isoquinolines/pharmacology
- Leukemia, Myeloid, Acute/metabolism
- Ligands
- Male
- Mitochondria/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Protein Binding/drug effects
- Receptors, GABA-A/metabolism
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Cancer cells are defined by their unlimited replicative potential and resistance to cell death stimuli. It is generally considered that a point of no return in apoptotic cell death is the permeabilisation of the mitochondrial membranes. For this reason, agents that permeabilise cancer cell mitochondria have the potential to circumvent their resistance to apoptotic cell death. Fortunately, the proliferative and bioenergetic differences between normal and cancerous cells provide an opportunity to selectively target cancer cell mitochondria.
Collapse
Affiliation(s)
- Anthony S Don
- Centre for Vascular Research, University of New South Wales, Department of Haematology, Prince of Wales Hospital, Sydney NSW 2052, Australia
| | | |
Collapse
|
21
|
Morgan J, Oseroff AR, Cheney RT. Expression of the peripheral benzodiazepine receptor is decreased in skin cancers in comparison with normal skin. Br J Dermatol 2005; 151:846-56. [PMID: 15491426 DOI: 10.1111/j.1365-2133.2004.06198.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The peripheral benzodiazepine receptor (PBR) is an 18-kDa protein receptor mainly found on the outer mitochondrial membrane of cells. The PBR plays a role in several cellular functions including haem synthesis, steroidogenesis, DNA synthesis, cell growth and differentiation, and apoptosis. PBR expression in normal skin correlates with proliferating, secretory and differentiated cellular structures. Increased or aberrant expression of PBR has been associated with aggressive behaviour in several tumour types including ovarian, colon and breast adenocarcinomas and glioblastoma. OBJECTIVES To determine whether changes in normal PBR distribution would be useful as markers for skin cancers or possible target sites for therapies such as photodynamic therapy (PDT), we used immunohistochemistry to evaluate PBR expression and distribution in normal and photodamaged skin (actinic keratoses), skin cancers (in situ and invasive squamous cell carcinomas and superficial, nodular, morphoeiform and mixed pattern basal cell carcinomas) and several benign epithelial proliferations. METHODS A rabbit polyclonal antibody to a synthetic peptide fragment of the PBR was developed and characterized by enzyme-linked immunosorbent assay and Western blot analysis. The antibody was used to stain formalin-fixed and paraffin-embedded tissue samples (n = 157) by a routine avidin-biotin immunohistochemical technique. Sections were evaluated for antibody localization, distribution (0-4+) and reaction intensity (negative to strong). RESULTS Normal skin stained with a strong homogeneous positive reaction (3-4+) in the spinous and granular layers (with a gradient corresponding to increasing differentiation), the pilosebaceous units, eccrine gland ducts, endothelial cells and pilar muscle. In cutaneous neoplasms and other skin diseases, a heterogeneous pattern (0-4+) of PBR expression at lower intensity was seen depending on tumour type and degree of differentiation. PBR expression was greatest in well-differentiated tumours, synonymous with the PBR expression gradient seen in normal skin; and least in poorly differentiated and infiltrative tumour types. CONCLUSIONS The haem biosynthetic pathway has been harnessed for PDT of skin carcinomas by application of exogenous aminolaevulinic acid to generate the endogenous photosensitizer protoporphyrin IX (PpIX). Owing to the role of PBR as a transporter of haem precursors in haem synthesis, PBR density and distribution in skin cancers could be a predictor of the capacity for PpIX production and subsequent response to PDT in skin cancers.
Collapse
Affiliation(s)
- J Morgan
- Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
22
|
Jordà EG, Jiménez A, Verdaguer E, Canudas AM, Folch J, Sureda FX, Camins A, Pallàs M. Evidence in favour of a role for peripheral-type benzodiazepine receptor ligands in amplification of neuronal apoptosis. Apoptosis 2005; 10:91-104. [PMID: 15711925 DOI: 10.1007/s10495-005-6064-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mitochondrial peripheral benzodiazepine receptor (PBR) is involved in a functional structure designated as the mitochondrial permeability transition (MPT) pore, which controls apoptosis. PBR expression in nervous system has been reported in glial and immune cells. We now show expression of both PBR mRNA and protein, and the appearance of binding of a synthetic ligand fluo-FGIN-1-27 in mitochondria of rat cerebellar granule cells (CGCs). Additionally, the effect of PBR ligands on colchicine-induced apoptosis was investigated. Colchicine-induced neurotoxicity in CGCs was measured at 24 h. We show that, in vitro, PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4- benzodiazepin-2-one (Ro5-4864) and diazepam (25- 50 microM) enhanced apoptosis induced by colchicine, as demonstrated by viability experiments, flow cytometry and nuclear chromatin condensation. Enhancement of colchicine-induced apoptosis was characterized by an increase in mitochondrial release of cytochrome c and AIF proteins and an enhanced activation of caspase-3, suggesting mitochondrion dependent mechanism that is involved in apoptotic process. Our results indicate that exposure of neural cells to PBR ligands generates an amplification of apoptotic process induced by colchicine and that the MPT pore may be involved in this process.
Collapse
Affiliation(s)
- E G Jordà
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Tumor cell targeted therapies, by induction or enhancement of apoptosis, constitute recent promising approaches achieving more specific anti-tumor efficacy. The peripheral benzodiazepine receptor (PBR), which belongs to the permeability transition pore (PTP), the central regulatory complex of apoptosis, is a potential target. A number of findings argue in favor of the development of PBR targeting approaches: (i) overexpression of PBR has been described in a large range of human cancers, (ii) PTP-mediated regulation of programmed cell death is an apoptotic-inducing factor-independent check-point that could be modulated by various conventional cancer therapies, and (iii) PBR ligation enhances apoptosis induction in many types of tumors and reverses Bcl-2 cytoprotective effects. Altogether, these observations support the use of PBR-directed drugs, particularly PBR ligands such as Ro5-4864, in the treatment of human cancers.
Collapse
Affiliation(s)
- Didier Decaudin
- Department of Clinical Hematology, Institut Curie, Paris, France.
| |
Collapse
|
24
|
Chelli B, Lena A, Vanacore R, Da Pozzo E, Costa B, Rossi L, Salvetti A, Scatena F, Ceruti S, Abbracchio MP, Gremigni V, Martini C. Peripheral benzodiazepine receptor ligands: mitochondrial transmembrane potential depolarization and apoptosis induction in rat C6 glioma cells. Biochem Pharmacol 2004; 68:125-34. [PMID: 15183124 DOI: 10.1016/j.bcp.2004.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
The peripheral benzodiazepine receptor (PBR) is a component of a multiprotein complex, located at the contact site between the inner and outer mitochondrial membranes, which constitutes the mitochondrial permeability transition (MPT)-pore. The opening of the MPT-pore, leading to the transmembrane mitochondrial potential (DeltaPsi(m)) dissipation, is a critical event in the mechanism of apoptosis. In the present work, we investigated the ability of the specific PBR ligands, PK 11195 or Ro5-4864, to affect mitochondrial potential and to induce apoptotic cell death in rat C6 glioma cells. Both specific ligands inhibited cell survival in a dose- and time-dependent manner, as assessed by MTS conversion assay, whereas the non-site selective ligand Diazepam or the low-affinity benzodiazepine Clonazepam showed no significant effects. After cell exposure to PK 11195 or Ro5-4864 we evidenced typical alterations of apoptotic cell death such as DNA fragmentation and chromatin condensation assessed by flow cytometric and transmission electron microscopy (TEM) analysis, respectively. Activation of the "effector" caspase-3 confirmed the ability of specific PBR ligands to induce apoptosis. Moreover, PK 11195 and Ro5-4864 induced a decrease of DeltaPsi(m), as evidenced by JC-1 flow cytometry analysis. Our data demonstrate the pro-apoptotic effects of specific PBR ligands on rat C6 glioma cells.
Collapse
Affiliation(s)
- Beatrice Chelli
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chauhan D, Li G, Podar K, Hideshima T, Mitsiades C, Schlossman R, Munshi N, Richardson P, Cotter FE, Anderson KC. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood 2004; 104:2458-66. [PMID: 15217830 DOI: 10.1182/blood-2004-02-0547] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bortezomib (PS-341), a selective inhibitor of proteasomes, induces apoptosis in multiple myeloma (MM) cells; however, prolonged drug exposure may result in cumulative toxicity and the development of chemoresistance. Here we show that combining PK-11195 (PK), an antagonist to mitochondrial peripheral benzodiazepine receptors (PBRs), with bortezomib triggers synergistic anti-MM activity even in doxorubicin-, melphalan-, thalidomide-, dexamethasone-, and bortezomib-resistant MM cells. No significant cytotoxicity was noted in normal lymphocytes. Low-dose combined PK and bortezomib treatment overcomes the growth, survival, and drug resistance conferred by interleukin-6 or insulin growth factor within the MM bone marrow milieu. The mechanism of PK + bortezomib-induced apoptosis includes: loss of mitochondrial membrane potential; superoxide generation; release of mitochondrial proteins cytochrome-c (cyto-c) and Smac; and activation of caspases-8/-9/-3. Furthermore, PK + bortezomib activates c-Jun NH2 terminal kinase (JNK), which translocates to mitochondria, thereby facilitating release of cyto-c and Smac from mitochondria to cytosol. Blocking JNK, by either dominant-negative mutant (DN-JNK) or cotreatment with a specific JNK inhibitor SP600125, abrogates both PK + bortezomib-induced release of cyto-c/Smac and induction of apoptosis. Together, these preclinical studies suggest that combining bortezomib with PK may enhance its clinical efficacy, reduce attendant toxicity, and overcome conventional and bortezomib resistance in patients with relapsed refractory MM.
Collapse
|
26
|
Abstract
Resistance towards apoptosis is a key factor for the survival of a malignant cell. Cancer results if there is too little apoptosis and cells grow faster and live longer than normal cells. In addition, defects in apoptosis signaling contribute to drug resistance of tumor cells. Thus, one of the main goals for oncologic treatment is to overcome resistance of tumor cells towards apoptosis. The exciting challenge in oncology is to translate the growing knowledge of apoptotic pathways into clinical applications. In this review we address the role of apoptosis signaling in tumorigenesis and drug resistance of tumor cells and discuss therapeutic approaches interfering with apoptosis pathways.
Collapse
|
27
|
Walter RB, Raden BW, Cronk MR, Bernstein ID, Appelbaum FR, Banker DE. The peripheral benzodiazepine receptor ligand PK11195 overcomes different resistance mechanisms to sensitize AML cells to gemtuzumab ozogamicin. Blood 2004; 103:4276-84. [PMID: 14962898 DOI: 10.1182/blood-2003-11-3825] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The antibody-targeted therapeutic, gemtuzumab ozogamicin (GO, Mylotarg), is approved for treatment of relapsed acute myeloid leukemia (AML). We previously showed that AML blasts from GO refractory patients frequently express the drug transporters P-glycoprotein (Pgp) and/or multidrug resistance protein (MRP). We also previously reported that inhibition of drug transport by the Pgp modulator, cyclosporine A (CSA), can increase GO sensitivity in Pgp(+) AML cells and that the peripheral benzodiazepine receptor ligand, PK11195, sensitizes AML cells to standard chemotherapeutics both by inhibiting Pgp-mediated efflux and by promoting mitochondrial apoptosis. We now show that PK11195 also can overcome multiple resistance mechanisms to increase GO sensitivity in AML cells, including resistance associated with expression of drug transporters and/or antiapoptotic proteins. PK11195 substantially increases GO cytotoxicity in AML cells from many different cell lines and primary patient samples, often more effectively than CSA. We also show that PK11195 is nontoxic in NOD/SCID mice and can sensitize xenografted human AML cells to GO. Since PK11195 is well tolerated in humans as a single agent, its further study as a multifunctional chemosensitizer for anti-AML therapies, including GO-based therapies, is warranted.
Collapse
MESH Headings
- Acute Disease
- Aminoglycosides/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Cyclosporine/pharmacology
- Drug Resistance, Neoplasm
- Gemtuzumab
- Gene Expression Regulation, Leukemic/drug effects
- HL-60 Cells
- Humans
- Immunosuppressive Agents/pharmacology
- Isoquinolines/pharmacology
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/metabolism
- Leukotriene Antagonists/pharmacology
- Ligands
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Propionates/pharmacology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Quinolines/pharmacology
- Receptors, GABA-A/metabolism
- Xenograft Model Antitumor Assays
- bcl-X Protein
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
28
|
Joseph B, Bhargava KK, Malhi H, Schilsky ML, Jain D, Palestro CJ, Gupta S. Sestamibi is a substrate for MDR1 and MDR2 P-glycoprotein genes. Eur J Nucl Med Mol Imaging 2003; 30:1024-31. [PMID: 12536246 DOI: 10.1007/s00259-002-1111-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Technetium-99m sestamibi has attracted interest for assessment of the function of P-glycoproteins, which are well expressed in the liver and have roles in biliary transport and the removal of chemotherapeutic drugs. To further examine the cross-reactivity of (99m)Tc-sestamibi for P-glycoprotein family members, we conducted studies in animals. Hepatobiliary secretion of (99m)Tc-sestamibi was determined in normal FVB/N mice, mutant mice with specific P-glycoprotein deficiencies in the FVB/N background, normal Long-Evans Agouti (LEA) rats, and Long-Evans Cinnamon (LEC) rats with abnormal copper transport and liver disease but intact P-glycoprotein expression. After intrasplenic injection, (99m)Tc-sestamibi was rapidly incorporated in the mouse and rat liver, with maximal accumulation after 102+/-31 and 109+/-16 s, respectively ( P=NS). In normal mice and rats, 55%+/-11% and 55%+/-6%, respectively, of the maximal sestamibi activity was retained in the liver after 1 h ( P=NS). In double knockout mice lacking both mdr1a and mdr1b homologs of the human MDR1 ( ABCB1) gene, 88%+/-11% of maximal sestamibi activity was retained in the liver after 1 h ( P<0.001). In knockout mice deficient in either mdr1a gene or mdr2 ( ABCB4) gene, biliary sestamibi excretion was also impaired, although this impairment was relatively less pronounced in ABCB4-deficient mice than in double knockout mice lacking both ABCB1 gene homologs ( P<0.03). Hepatobiliary sestamibi excretion in LEC rats was not different from that in control normal rats, despite the presence of significant liver disease in the former. Hepatobiliary sestamibi excretion requires P-glycoproteins and is unperturbed in chronic liver disease. Sestamibi appears to be a substrate for both ABCB1 and ABCB4 genes, although the former utilizes it far more efficiently. Assessment of P-glycoprotein activity with sestamibi should consider how regulation of ABCB1 and related family members might modulate sestamibi incorporation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Liver/cytology
- Liver/diagnostic imaging
- Liver/metabolism
- Metabolic Clearance Rate
- Mice
- Mice, Knockout
- Radionuclide Imaging
- Rats
- Rats, Inbred LEC
- Substrate Specificity
- Technetium Tc 99m Sestamibi/pharmacokinetics
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Brigid Joseph
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Ullmann 625, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Hockenbery DM, Giedt CD, O'Neill JW, Manion MK, Banker DE. Mitochondria and apoptosis: new therapeutic targets. Adv Cancer Res 2003; 85:203-42. [PMID: 12374287 DOI: 10.1016/s0065-230x(02)85007-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David M Hockenbery
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
30
|
Solary E, Bettaieb A, Dubrez-Daloz L, Corcos L. Mitochondria as a target for inducing death of malignant hematopoietic cells. Leuk Lymphoma 2003; 44:563-74. [PMID: 12769332 DOI: 10.1080/1042819021000038001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitochondria plays a central role in apoptotic cell death. The intermembrane space of mitochondria contains a number of soluble molecules whose release from the organelle to the cytosol or the nucleus induces cell death. Thus, molecules that directly trigger mitochondria membrane permeabilisation are efficient cytotoxic drugs. Mitochondria is one of the cellular targets for commonly used epipodophyllotoxins, adenine deoxynucleoside analogs and taxanes as well as recently developped agents such as the pentacyclic triterpene betulinic acid and the lymphotoxic agent FTY720. Most informations on anthracyclines point to the mitochondrial membrane as the main target of cardiotoxicity. Mitochondria is also a target for arsenite trioxide, an old cytotoxic agent recently used for treating acute promyelocytic leukemia, lonidamine, a dichlorinated derivative of indazole-3-carboxylic acid developped as a chemosensitizer, the retinoic acid receptor gamma activator CD437 and nitric oxide (NO). Recently, cytotoxic drugs have been specifically designed to directly affect the mitochondrial function. These include the positively charged alpha-helical peptides, which are attracted to and disrupt the negatively charged mitochondrial membrane, thus inducing mammalian cell apoptosis when targeted intracellularly. Various strategies have been proposed also to directly inhibit Bcl-2 and related anti-apoptotic proteins, including antisense oligonucleotides (e.g. Genasense, currently tested in phase III trials), small molecules that mimic the BH3 dimerization domain of these proteins and kinase inhibitors. Ligands of the mitochondrial benzodiazepine receptor such as the isoquinolone carboxamide derivative PK11195 also overcome the membrane-stabilizing effect of Bcl-2, whereas the adenosine nucleotide translocator (ANT) and the mitochondrial DNA are two other potential cellular targets for cytotoxic agents. Potentially, new compounds directly targeting the mitochondria may be useful in treating hematological malignancies. The challenge is now to selectively target these mitochondria permeabilizing agents to malignant cells. This review briefly summarizes the role of the mitochondria in cell death and describes these various strategies for targeting the mitochondria to induce apoptosis.
Collapse
Affiliation(s)
- Eric Solary
- INSERM U517, IFR 100, 7 boulevard Jeanne d'Arc, 21000 Dijon, France.
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- F R Appelbaum
- Fred Hutchinson Cancer Research Center and the University of Washington, School of Medicine, Seattle 98109, USA
| |
Collapse
|
32
|
Debatin KM, Poncet D, Kroemer G. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 2002; 21:8786-803. [PMID: 12483532 DOI: 10.1038/sj.onc.1206039] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 09/09/2002] [Accepted: 09/11/2002] [Indexed: 12/31/2022]
Abstract
One of the mechanisms by which chemotherapeutics destroy cancer cells is by inducing apoptosis. Apoptosis can be activated through several different signalling pathways, but these all appear to converge at a single event - mitochondrial membrane permeabilization (MMP). This 'point-of-no-return' in the cell death program is a complex process that is regulated by the composition of the mitochondrial membrane and pre-mitochondrial signal-transduction events. MMP is subject to a complex regulation, and local alterations in the composition of mitochondrial membranes, as well as alterations in pre-mitochondrial signal-transducing events, can determine chemotherapy resistance in cancer cells. Detecting MMP might thus be useful for detecting chemotherapy responses in vivo. Several cytotoxic drugs induce MMP by a direct action on mitochondria. This type of agents can enforce death in cells in which upstream signals normally leading to apoptosis have been disabled. Cytotoxic components acting on mitochondria can specifically target proteins from the Bcl-2 family, the peripheral benzodiazepin receptor, or the adenine nucleotide translocase, and/or act by virtue of their physicochemical properties as steroid analogues, cationic ampholytes, redox-active compounds or photosensitizers. Some compounds acting on mitochondria can overcome the cytoprotective effect of Bcl-2-like proteins. Several agents which are already used in anti-cancer chemotherapy can induce MMP, and new drugs specifically designed to target mitochondria are being developed.
Collapse
|
33
|
Castedo M, Perfettini JL, Kroemer G. Mitochondrial apoptosis and the peripheral benzodiazepine receptor: a novel target for viral and pharmacological manipulation. J Exp Med 2002; 196:1121-5. [PMID: 12417623 PMCID: PMC2194100 DOI: 10.1084/jem.20021758] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Maria Castedo
- Centre National de la Recherche Scientifique, UMR 1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Judith E Karp
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|