1
|
Aissa T, Aissaoui-Zid D, Moslah W, Khamessi O, Ksiksi R, Oltermann M, Ruck M, Zid MF, Srairi-Abid N. Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development. J Inorg Biochem 2024; 260:112672. [PMID: 39079338 DOI: 10.1016/j.jinorgbio.2024.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C4H7N2)4[H2V10O28] is characterized by single-crystal X-ray diffraction, by FT-IR, UV-Vis and 51V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group P21/c. Its formula unit consists of one dihydrogen decavanadate anion [H2V10O28]4- and four organic 4-methylimidazolium cations (C4H7N2)+. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC50 values of 14.65 μM and 4 μM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C4H7N2)4H2V10O28 compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C4H7N2)4[H2V10O28] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.
Collapse
Affiliation(s)
- Taissir Aissa
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Dorra Aissaoui-Zid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| | - Wassim Moslah
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Oussema Khamessi
- University of Tunis El Manar, Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, Tunis, Tunisia.; Higher Institute of Biotechnology of Sidi Thabet ISBST, University of Manouba, 2020 Ariana,Tunisia
| | - Regaya Ksiksi
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia; The Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG) of Soukra, Carthage University, 49 Avenue "August 13" Choutrana, II-2036 Soukra, Tunisia
| | - Maike Oltermann
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Ruck
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mohamed Faouzi Zid
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| |
Collapse
|
2
|
Ho HY, Lin CC, Chuang YC, Lo YS, Hsieh MJ, Chen MK. Apoptotic effects of dehydrocrenatidine via JNK and ERK pathway regulation in oral squamous cell carcinoma. Biomed Pharmacother 2021; 137:111362. [PMID: 33578238 DOI: 10.1016/j.biopha.2021.111362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Dehydrocrenatidine, a β-carboline alkaloid isolated from Picrasma quassioides, has been demonstrated to exert analgesic effects and play essential roles in janus kinase inhibition and exert analgesic effects through the suppression of neuronal excitability. Alkaloids such as paclitaxel and vincristine had been well explored to be chemotherapeutic agents. However, the anticancer effects of dehydrocrenatidine remain unclear. In the present study, we found that dehydrocrenatidine induced apoptosis in human oral cancer cells through both extrinsic and intrinsic pathways involving proteins such as caspase-3, caspase-8, caspase-9, poly (adenosine diphosphate-ribose) polymerase, and members of the Bcl-2 family. Cotreatment with dehydrocrenatidine and mitogen-activated protein kinase (MAPK) inhibitors indicated that dehydrocrenatidine induced apoptosis through the activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). The findings provide insight into the potential of dehydrocrenatidine for a new perspective on molecular regulation.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Holistic Wellness, Mingdao University, Changhua 52345, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan.
| |
Collapse
|
3
|
Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochim Biophys Acta Gen Subj 2017; 1862:600-614. [PMID: 29196192 DOI: 10.1016/j.bbagen.2017.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells. METHODS Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study. RESULTS Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK1/2, p38, AKT and NF-κB. Moreover, macrovipecetin alone or combined with cisplatin induced the expression of TRADD, p53, Bax, Bim and Bad and down-regulated the Bcl-2 expression and ROS levels in SK-MEL-28 cells. Interestingly, these treatments impaired SK-MEL-28 cell adhesion, migration and invasion through modulating the function and expression of αvβ3 integrin along with regulating E-cadherin, vimentin, β-catenin, c-Src and RhoA expression. In silico study suggested that only the α chain of macrovipecetin interacts with a region overlapping the RGD motif binding site on this integrin. CONCLUSIONS We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells. GENERAL SIGNIFICANCE The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment.
Collapse
|
4
|
Zhang JJ, Zheng TT, Cheng FF, Zhu JJ. Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels. Chem Commun (Camb) 2010; 47:1178-80. [PMID: 21072431 DOI: 10.1039/c0cc03494k] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel electrochemical sensing platform for sensitive determination of caspase 3 activity and inhibition was developed by combining the site-specific recognition and cleavage of the DEVD-peptide with quantum dots as signal amplification.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Key Lab of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | | | | | | |
Collapse
|
5
|
Stamatopoulos B, Meuleman N, De Bruyn C, Delforge A, Bron D, Lagneaux L. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells. Haematologica 2010; 95:1136-43. [PMID: 20145270 DOI: 10.3324/haematol.2009.013847] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia is a neoplastic disorder that arises largely as a result of defective apoptosis leading to chemoresistance. Stromal cell-derived factor-1 and its receptor, CXCR4, have been shown to play an important role in chronic lymphocytic leukemia cell trafficking and survival. DESIGN AND METHODS Since histone acetylation is involved in the modulation of gene expression, we evaluated the effects of suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, on chronic lymphocytic leukemia cells and in particular on cell survival, CXCR4 expression, migration, and drug sensitization. RESULTS Here, we showed that treatment with suberoylanilide hydroxamic acid (20 microM) for 48 hours induced a decrease in chronic lymphocytic leukemia cell viability via apoptosis (n=20, P=0.0032). Using specific caspase inhibitors, we demonstrated the participation of caspases-3, -6 and -8, suggesting an activation of the extrinsic pathway. Additionally, suberoylanilide hydroxamic acid significantly decreased CXCR4 mRNA (n=10, P=0.0010) and protein expression (n=40, P<0.0001). As a result, chronic lymphocytic leukemia cell migration in response to stromal cell-derived factor-1 (n=23, P<0.0001) or through bone marrow stromal cells was dramatically impaired. Consequently, suberoylanilide hydroxamic acid reduced the protective effect of the microenvironment and thus sensitized chronic lymphocytic leukemia cells to chemotherapy such as fludarabine. CONCLUSIONS In conclusion, suberoylanilide hydroxamic acid induces apoptosis in chronic lymphocytic leukemia cells via the extrinsic pathway and down-regulates CXCR4 expression leading to decreased cell migration. Suberoylanilide hydroxamic acid in combination with other drugs represents a promising therapeutic approach to inhibiting migration, chronic lymphocytic leukemia cell survival and potentially overcoming drug resistance.
Collapse
Affiliation(s)
- Basile Stamatopoulos
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Laboratoire d'Hématologie Expérimentale -Boulevard de Waterloo n 121 - 1000 Bruxelles, Belgium.
| | | | | | | | | | | |
Collapse
|
6
|
Savickiene J, Treigyte G, Magnusson KE, Navakauskiene R. p21 (Waf1/Cip1) and FasL gene activation via Sp1 and NFkappaB is required for leukemia cell survival but not for cell death induced by diverse stimuli. Int J Biochem Cell Biol 2005; 37:784-96. [PMID: 15694838 DOI: 10.1016/j.biocel.2004.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 09/14/2004] [Accepted: 10/07/2004] [Indexed: 11/21/2022]
Abstract
The molecular mechanisms of the cellular response to different apoptotic effectors are only partially understood. Herein, the role of transcription factors, Sp1 and NFkappaB in differentiation-related and etoposide-induced apoptosis was examined in a number of human leukemia cell lines (HL-60, NB4, HEL, THP-1, K562). This was investigated with respect to the recruitment of one cell-cycle regulating gene, p21 and one cell death gene, FasL. Using electrophoretic mobility shift assay (EMSA), we consistently observed Sp1 and NFkappaB binding activity to the promoter of either gene during cell differentiation and the decrease associated with apoptosis upon long-term treatment with differentiation inducers in HL-60, NB4 and HEL cells. By contrast, Sp1 and NFkappaB binding capacities were lost in all myeloid cell lines undergoing etoposide-induced fast apoptosis. This effect was eliminated by the broad-spectrum caspase inhibitor, benzyloxycarbonyl-valinyl-alaninyl-aspartyl fluoromethylketone, thus restoring transcription factors' binding activity. However, sustained NFkappaB binding to the FasL promoter was noticed in apoptosis undergoing HEL cells treated by etoposide. Our results suggest that p21 and FasL gene activation is required for myeloid leukemia cell survival or maturation but not for cell death via Sp1 and NFkappaB as regulators of these genes. The findings also support the idea of a common mechanism for cellular responses to different apoptotic effectors in malignant hematopoietic cell lines.
Collapse
Affiliation(s)
- J Savickiene
- Department of Developmental Biology, Institute of Biochemistry, LT-08662 Vilnius, Lithuania.
| | | | | | | |
Collapse
|
7
|
Davidovich IA, Levenson AS, Levenson Chernokhvostov VV. Overexpression of DcR1 and survivin in genetically modified cells with pleiotropic drug resistance. Cancer Lett 2004; 211:189-97. [PMID: 15219942 DOI: 10.1016/j.canlet.2004.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 03/15/2004] [Accepted: 03/22/2004] [Indexed: 11/23/2022]
Abstract
A previously identified set of short cDNA fragments (genetic suppressor elements, GSEs) expressed in human HT1080 cells protects them against several chemotherapeutic drugs. We show here that DNA damaging agent cytosine arabinoside can induce apoptosis in GSE-containing drug-resistant derivatives (M125 cells) of HT1080, suggesting that apoptotic pathways are preserved in M125. We also show that both parental cells and M125 constitutively express Fas ligand and TNF-related apoptosis inducing ligand, thus pre-disposing cells to apoptosis. In both cell lines, induction of apoptosis requires simultaneous treatment with low doses of cycloheximide (CHX) and death ligands, however, drug-resistant M125 are substantially more resistant to this treatment. Expression of survivin and decoy receptor 1 (DcR1) is lower in parental cells and is further decreased by CHX. In resistant M125 cell, both survivin and DcR1 are overexpressed even after CHX treatment, which can explain relative resistance of these cells. Thus, apoptosis remains intact in cells with resistance-inducing GSE, suggesting that apoptosis inhibitors can be targeted by anti-cancer therapy in drug-resistant tumors.
Collapse
Affiliation(s)
- Irina A Davidovich
- Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine, Northwestern University, 710 N. Fairbanks Ct., Olson 8-424, Chicago, IL 60611, USA
| | | | | |
Collapse
|
8
|
Helmbach H, Kern MA, Rossmann E, Renz K, Kissel C, Gschwendt B, Schadendorf D. Drug resistance towards etoposide and cisplatin in human melanoma cells is associated with drug-dependent apoptosis deficiency. J Invest Dermatol 2002; 118:923-32. [PMID: 12060385 DOI: 10.1046/j.1523-1747.2002.01786.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anticancer drugs kill susceptible cells through induction of apoptosis. Alterations of apoptotic pathways in drug-resistant tumor cells leading to apoptosis deficiency might represent a potent mechanism conferring drug resistance. We have assessed the effect of etoposide and cisplatin on the apoptotic pathways of the drug-sensitive human melanoma cell line MeWo as well as its etoposide- and cisplatin-resistant sublines (MeWo(Eto01), MeWo(Eto1), (and) MeWoCis01, MeWo(Cis1)). Etoposide and cisplatin induced apoptosis in drug-sensitive MeWo cells as indicated by dose-dependent (i) cytochrome c release, (ii) caspase activation, (iii) DNA fragmentation, and (iv) cleavage of poly(ADP-ribose)polymerase. In contrast, whereas low etoposide-resistant cells (MeWo(Eto01)) demonstrated reduced but detectable apoptotic activities, highly etoposide-resistant cells (MeWo(Eto1)) did not exhibit any of the apoptotic events observed in etoposide-induced cell death downstream of a strongly reduced cytochrome c release. Highly cisplatin-resistant cells (MeWo(Cis1)), however, demonstrated a reduced caspase 9 activity and cytochrome c release but the extent of effector caspase activation as well as DNA fragmentation was comparable to that of sensitive MeWo cells at equitoxic concentrations. In addition, poly(ADP-ribose)polymerase cleavage was strongly reduced in highly cisplatin-resistant sublines. Taken together, sensitive and drug-resistant MeWo cells utilized different apoptotic pathways upon drug exposure in a drug-dependent fashion and apoptosis deficiency was strongly associated with the drug-resistant phenotype.
Collapse
Affiliation(s)
- Heike Helmbach
- Skin Cancer Unit at the German Cancer Research Center, University of Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Bruserud Ø, Glenjen N, Gjertsen BT, Herfindal L, Døskeland SO. Use of marine toxins in combination with cytotoxic drugs for induction of apoptosis in acute myelogenous leukaemia cells. Expert Opin Biol Ther 2002; 2:197-210. [PMID: 11849119 DOI: 10.1517/14712598.2.2.197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Intensive chemotherapy for acute myelogenous leukaemia (AML) results in an overall long-term disease-free survival of < 50%. This percentage reflects an improved survival for certain subsets of patients with low-risk cytogenetic abnormalities after treatment with high-dose cytarabine, whereas lower long-term survival is seen for other patients and especially for the large group of elderly patients. New treatment strategies are therefore considered in AML and one approach is to target the regulation of apoptosis in AML cells with new pharmacological agents. Regulation of apoptosis seems to be clinically important in AML as intracellular levels of apoptosis-regulating mediators can be used as predictors of prognosis in AML. It is also well documented that cytotoxic drugs exert important antileukaemic effects through induction of apoptosis. Marine toxins represent new pharmacological agents with proapoptotic effects and should be considered for combination therapy with cytotoxic drugs. These agents are already useful laboratory tools for in vitro studies of AML cells but it is still too early to conclude whether they will become useful in clinical therapy. One of the major problems to be investigated is the toxicity of combination therapy, although this may be solved by the coupling of toxins to antibodies or growth factors with a preferential binding to AML cells. Other problems that have to be addressed are the possible effect of the toxins' tumour promoting effects on chemosensitivity in relapsed AML and the possibility of cross-resistance between cytotoxic drugs and toxins.
Collapse
Affiliation(s)
- Øystein Bruserud
- Division for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
| | | | | | | | | |
Collapse
|
10
|
Facompre M, Goossens JF, Bailly C. Apoptotic response of HL-60 human leukemia cells to the antitumor drug NB-506, a glycosylated indolocarbazole inhibitor of topoisomerase 1. Biochem Pharmacol 2001; 61:299-310. [PMID: 11172734 DOI: 10.1016/s0006-2952(00)00553-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antitumor drug NB-506 is a glycosylated indolocarbazole derivative targeting topoisomerase I. This DNA-intercalating agent, which is currently undergoing phase I/II clinical trials, was shown to induce apoptosis in HL-60 human leukemia cells. We compared the cellular dysfunctions induced by NB-506 and the reference topoisomerase I poison camptothecin (CPT) at the nuclear, mitochondrial, and cytoplasmic levels. The two drugs NB-506 and CPT were almost equally toxic to HL-60 cells and produced similar cell cycle changes with a considerable increase in the fraction of cells with DNA content less than G1. The sub-G1 fraction, which can be considered as the apoptotic cell population, appeared more rapidly with CPT than with NB-506 but in both cases, the cell cycle perturbation was accompanied by a marked decrease in the mitochondrial transmembrane potential and the intracellular pH. In contrast, no change in the intracellular calcium concentration was detected. Treatment of HL-60 cells with NB-506 resulted in an increase in the activity of the intracellular protease caspase-3, as determined by a DEVD-based colorimetric assay and direct monitoring of poly(ADP-ribose) polymerase (PARP) cleavage by Western blot analysis. The initiator caspase-8 was also stimulated by NB-506 but, as for caspase-3, the extent of the caspase activation was weaker with NB-506 compared to CPT. With both drugs, the protease activation resulted in DNA degradation, as independently confirmed via the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and characterization of internucleosomal DNA fragmentation. Collectively, these findings identify some of the molecular events leading to NB-506-induced apoptosis and as such, provide important mechanistic insights into the mode of action of topoisomerase I-targeted indolocarbazole antitumor drugs.
Collapse
Affiliation(s)
- M Facompre
- INSERM U-524, Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, F-59045, Lille, France
| | | | | |
Collapse
|
11
|
Abstract
Death ligands (TNF, FasL, TRAIL) and their respective death receptor signaling pathways can be used to induce tumor cells to undergo apoptosis. Chemotherapeutic drugs can induce apoptosis and the upregulation of death ligands or their receptors. Downstream events following cytotoxic stress-induced DNA damage and the signaling pathways that lead to the induction of apoptosis may be either dependent or independent of death receptor signaling. The involvement of the Fas signaling pathway in chemotherapy-induced apoptosis has been the most extensively studied, with the current emergence of information on the TRAIL signaling pathway. Fas-mediated and chemotherapy-induced apoptosis can converge at the level of the receptor, FasL, DISC formation, activation of the initiator caspase-8, at the level of the mitochondria, or at the level of downstream effector caspase activation. Convergence is influenced by the specific form of DNA damage, the cellular environment, and the specific pathway(s) by which death receptor-mediated or drug-mediated apoptosis are induced. This review discusses the different levels of interaction between signaling pathways in the different forms of cell death.
Collapse
Affiliation(s)
- I Peták
- St. Jude Children s Research Hospital, Department of Hematology-Oncology 332 North Lauderdale, Memphis 38105, USA
| | | |
Collapse
|