1
|
Wang X, Gao Y, Wang D, Du X, Liu S. Bioinformatics Screening and Experimental Validation for Deciphering the Immune Signature of Late-Onset Depression. Neuropsychiatr Dis Treat 2024; 20:2347-2361. [PMID: 39628902 PMCID: PMC11611703 DOI: 10.2147/ndt.s490717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Background Late-onset depression (LOD) is often associated with more severe cognitive impairment and a higher risk of disability and suicide. Emerging evidence suggests that immune system problems may be involved. This study aims to systematically characterize the genetic signature of LOD based on the immune landscape. Methods The expression profile of GSE76826 was obtained from the Gene Expression Omnibus (GEO) database to gather gene expression data for 10 LOD patients and 12 healthy controls (HC). Various analyses, such as Single-Sample Gene Set Enrichment Analysis (ssGSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), were used to mine key genes closely related to LOD. ImmuCellAI helped us understand differences in the immune environment between LOD patients and controls, and we used an LOD animal model to validate the relevant immune characteristics. Results We found enriched immune pathways linked to LOD and adaptive immune responses. Using advanced bioinformatics techniques, we identified two key genes: apelin (APLN) and leptin (LEP), which have good diagnostic efficacy (AUC=0.925, 95% CI=1.00-0.83) for LOD. Neutrophil infiltration increased significantly in LOD, while CD8+ T lymphocytes (CD8_T) decreased. We finally constructed an animal model of LOD, validated two key genes and microglia marker genes in blood and hippocampus, and detected elevated pro-inflammatory factors such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Conclusion We identified and validated the presence of aberrant expression of APLN and LEP in LOD and described a possible immune mechanism involving increased release of IL-6 and TNF-α, leading to decreased CD8_T infiltration and increased neutrophil infiltration. Meanwhile, peripheral inflammation across the blood-brain barrier further promotes microglia activation, leading to neuronal damage.
Collapse
Affiliation(s)
- Xinxia Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Dan Wang
- Shanxi Provincial Integrated TCM and WM Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
2
|
Seong SJ, Kim KW, Song JY, Park KJ, Jo YT, Han JH, Yoo KH, Jo HJ, Hwang JY. Inflammatory Cytokines and Cognition in Alzheimer's Disease and Its Prodrome. Psychiatry Investig 2024; 21:1054-1064. [PMID: 39465234 PMCID: PMC11513865 DOI: 10.30773/pi.2024.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the association between blood levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and cognitive impairments among elderly individuals. METHODS Peripheral concentration of TNF-α and IL-6 were measured in all subjects. To assess individual cognitive function, the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery (CERAD-NP) was used, and standardized scores (z-scores) were calculated for each test. Cytokine levels were compared between the diagnostic groups, and correlations between blood inflammatory factor levels and z-scores were analyzed. RESULTS The 37 participants included 8 patients with Alzheimer's disease (AD), 15 subjects with mild cognitive impairment (MCI), and 14 cognitively healthy controls. TNF-α and IL-6 levels were higher in patients with AD than in healthy controls. TNF-α levels were higher in the AD group than in the MCI group. However, after adjusting for age, the associations between diagnosis and TNF-α and IL-6 were not significant. The higher the plasma IL-6 level, the lower the z-scores on the Boston Naming Test, Word List Learning, Word List Recognition, and Constructional Recall. The higher the serum TNF-α level, the lower the z-scores on the Word List Learning and Constructional Recall. Negative correlation between serum TNF-α level and the z-score on Word List Learning remained significant when age was adjusted. CONCLUSION The difference in the blood levels of TNF-α and IL-6 between the diagnostic groups may be associated with aging. However, elevated TNF-α levels were associated with worse immediate memory performance, even after adjusting for age.
Collapse
Affiliation(s)
- Su Jeong Seong
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University, College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Joo Yun Song
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Kee Jeong Park
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Young Tak Jo
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Jae Hyun Han
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, College of Medicine, Cheonan, Republic of Korea
| | - Ka Hee Yoo
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Hyun Jun Jo
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Jae Yeon Hwang
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Jiang L, Sun XY, Wang SQ, Liu YL, Lu LJ, Wu WH, Zhi H, Wang ZY, Liu XD, Liu L. Indoxyl sulphate-TNFα axis mediates uremic encephalopathy in rodent acute kidney injury. Acta Pharmacol Sin 2024; 45:1406-1424. [PMID: 38589687 PMCID: PMC11192958 DOI: 10.1038/s41401-024-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Ling Jiang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Ying Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qian Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan-Lin Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Jue Lu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Han Wu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zhi
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhong-Yan Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Dong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Angarita-Rodríguez A, Matiz-González JM, Pinzón A, Aristizabal AF, Ramírez D, Barreto GE, González J. Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases. Pharmaceuticals (Basel) 2024; 17:648. [PMID: 38794218 PMCID: PMC11124372 DOI: 10.3390/ph17050648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico as potential therapeutic targets, employing protein-protein and drug-protein interaction networks alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406, Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs (P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1), P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme, enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repurposing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered metabolic pathways, offering new avenues for the treatment of related human diseases such as neurological diseases.
Collapse
Affiliation(s)
- Andrea Angarita-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J. Manuel Matiz-González
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá 110121, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Andrés Felipe Aristizabal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
5
|
Grams KJ, Neumueller SE, Mouradian GC, Burgraff NJ, Hodges MR, Pan L, Forster HV. Mild and moderate chronic hypercapnia elicit distinct transcriptomic responses of immune function in cardiorespiratory nuclei. Physiol Genomics 2023; 55:487-503. [PMID: 37602394 PMCID: PMC11178267 DOI: 10.1152/physiolgenomics.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic hypercapnia (CH) is a hallmark of respiratory-related diseases, and the level of hypercapnia can acutely or progressively become more severe. Previously, we have shown time-dependent adaptations in steady-state physiology during mild (arterial Pco2 ∼55 mmHg) and moderate (∼60 mmHg) CH in adult goats, including transient (mild CH) or sustained (moderate CH) suppression of acute chemosensitivity suggesting limitations in adaptive respiratory control mechanisms as the level of CH increases. Changes in specific markers of glutamate receptor plasticity, interleukin-1ß, and serotonergic modulation within key nodes of cardiorespiratory control do not fully account for the physiological adaptations to CH. Here, we used an unbiased approach (bulk tissue RNA sequencing) to test the hypothesis that mild or moderate CH elicits distinct gene expression profiles in important brain stem regions of cardiorespiratory control, which may explain the contrasting responses to CH. Gene expression profiles from the brain regions validated the accuracy of tissue biopsy methodology. Differential gene expression analyses revealed greater effects of CH on brain stem sites compared with the medial prefrontal cortex. Mild CH elicited an upregulation of predominantly immune-related genes and predicted activation of immune-related pathways and functions. In contrast, moderate CH broadly led to downregulation of genes and predicted inactivation of cellular pathways related to the immune response and vascular function. These data suggest that mild CH leads to a steady-state activation of neuroinflammatory pathways within the brain stem, whereas moderate CH drives the opposite response. Transcriptional shifts in immune-related functions may underlie the cardiorespiratory network's capability to respond to acute, more severe hypercapnia when in a state of progressively increased CH.NEW & NOTEWORTHY Mild chronic hypercapnia (CH) broadly upregulated immune-related genes and a predicted activation of biological pathways related to immune cell activity and the overall immune response. In contrast, moderate CH primarily downregulated genes related to major histocompatibility complex signaling and vasculature function that led to a predicted inactivation of pathways involving the immune response and vascular endothelial function. The severity-dependent effect on immune responses suggests that neuroinflammation has an important role in CH and may be important in the maintenance of proper ventilatory responses to acute and chronic hypercapnia.
Collapse
Affiliation(s)
- Kirstyn J Grams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nicholas J Burgraff
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
6
|
Zimny M, Paździora P, Kocur D, Błaszczyk B, Gendosz de Carrillo D, Baron J, Jędrzejowska-Szypułka H, Rudnik A. Analysis of Serum Markers of Perioperative Brain Injury and Inflammation Associated with Endovascular Treatment of Intracranial Aneurysms: A Preliminary Study. Brain Sci 2023; 13:1308. [PMID: 37759909 PMCID: PMC10526942 DOI: 10.3390/brainsci13091308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Embolization is the preferred method for treating intracranial aneurysms due to its less invasive nature. However, recent findings suggest that even uncomplicated embolization may cause structural damage to the brain through ischemic or inflammatory mechanisms. This study aimed to find possible biomarkers of brain injury and inflammation in patients suffering from intracranial aneurysms who underwent endovascular treatment by measuring serological markers indicating brain damage. The study involved 26 patients who underwent uncomplicated intravascular stenting for unruptured intracranial aneurysms between January 2020 and December 2021. Blood samples were collected before the procedure, at 6-12 h, and at 24 h after the procedure. The following protein biomarkers levels were tested with ELISA: S100B, hNSE, TNF, hsCRP, FABP7, NFL, and GP39. Statistical analysis of the results revealed significant increases in serum levels for the four biomarkers: FABP7-before 0.25 (ng/mL) vs. 6-12 h 0.26 (p = 0.012) and vs. 24 h 0.27 (p < 0.001); GP39-before 0.03 (pg/mL) vs. 6-12 h 0.64 (p = 0.011) and vs. 24 h 0.57 (p = 0.001); hsCRP-before 1.65 (μg/mL) vs. 24 h 4.17 (p = 0.037); NFL-before 0.01 (pg/mL) vs. 6-12 h 3.99 (p = 0.004) and vs. 24 h 1.86 (p = 0.033). These biomarkers are recognized as potential indicators of neurovascular damage and should be monitored in clinical settings. Consequently, serum levels of NFL, GP39, hsCRP, and FABP7 measured before and 24 h after endovascular procedures can serve as important markers for assessing brain damage and indicate avenues for further research on biomarkers of neurovascular injury.
Collapse
Affiliation(s)
- Mikołaj Zimny
- Department of Neurosurgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Piotr Paździora
- Department of Neurosurgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Damian Kocur
- Department of Neurosurgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Bartłomiej Błaszczyk
- Department of Neurosurgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Daria Gendosz de Carrillo
- Department of Physiology, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Jan Baron
- Department of Radiodiagnostics, Interventional Radiology and Nuclear Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | | | - Adam Rudnik
- Department of Neurosurgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
7
|
Neutrophil gelatinase-associated lipocalin (NGAL) and tumor necrosis factor-α (TNF-α) levels in patients with schizophrenia. Psychopharmacology (Berl) 2023; 240:1091-1101. [PMID: 36877232 DOI: 10.1007/s00213-023-06346-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/22/2023] [Indexed: 03/07/2023]
Abstract
RATIONALE Although the immune system is thought to contribute to the etiology of schizophrenia, the mechanism has not been elucidated. Clarifying the relationship between them is important in terms of diagnosis, treatment, and prevention approaches. OBJECTIVE In this study, it is aimed to determine whether there is any difference in serum levels of neutrophil gelatinase-associated lipocalin (NGAL) and tumor necrosis factor-alpha (TNF-α) in the group of patients with schizophrenia and healthy volunteers, whether these values are changed by medical treatment, whether there is any relation between these values and the severity of the symptoms of patients with schizophrenia, and whether NGAL can be used as a biomarker in the diagnosis and the follow-up of the schizophrenia. METHODS A total of 64 patients who were hospitalized in the Psychiatry Clinic of Ankara City Hospital and diagnosed with schizophrenia and 55 healthy volunteers were included in the study. A sociodemographic information form was given to all participants and TNF-α and NGAL values were measured. Positive and Negative Symptoms Rating Scale (PANSS) were applied to the schizophrenia group on admission and follow-up. TNF-α and NGAL levels were re-measured in the 4th week after the start of antipsychotic treatment. RESULTS As a result of the present study, it was found that NGAL levels decreased significantly after antipsychotic treatment of schizophrenia patients hospitalized with exacerbation. There was no significant correlation between NGAL and TNF-α levels among schizophrenia and the control group. CONCLUSION In psychiatric diseases, especially schizophrenia, there may be differences in immune and inflammatory markers compared to the healthy population. After treatment, the NGAL levels of the patients at follow-up were reduced compared to the levels at admission. It can be thought that NGAL may be related to psychopathology in schizophrenia and antipsychotic treatment. This is the first follow-up study for NGAL levels in schizophrenia.
Collapse
|
8
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
9
|
Jansen van Vuuren J, Pillay S, Naidoo A. Circulating Biomarkers in Long-Term Stroke Prognosis: A Scoping Review Focusing on the South African Setting. Cureus 2022; 14:e23971. [PMID: 35547443 PMCID: PMC9090128 DOI: 10.7759/cureus.23971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular disease, including both ischaemic and haemorrhagic strokes, remains one of the highest causes of global morbidity and mortality. Developing nations, such as South Africa (SA), are affected disproportionately. Early identification of stroke patients at risk of poor clinical prognosis may result in improved outcomes. In addition to conventional neuroimaging, the role of predictive biomarkers has been shown to be important. Little data exist on their applicability within SA. This scoping review aimed to evaluate the currently available data pertaining to blood biomarkers that aid in the long-term prognostication of patients following stroke and its potential application in the South African setting. This scoping review followed a 6-stage process to identify and critically review currently available literature pertaining to prognostic biomarkers in stroke. An initial 1191 articles were identified and, following rigorous review, 41 articles were included for the purposes of the scoping review. A number of potential biomarkers were identified and grouped according to the function or origin of the marker. Although most biomarkers showed great prognostic potential, the cost and availability will likely limit their application within SA. The burden of stroke is increasing worldwide and appears to be affecting developing countries disproportionately. Access to neuroradiological services is not readily available in all settings and the addition of biomarkers to assist in the long-term prognostication of patients following a stroke can be of great clinical value. The cost and availability of many of the reviewed biomarkers will likely hinder their use in the South African setting.
Collapse
Affiliation(s)
- Juan Jansen van Vuuren
- Department of Neurology, Grey's Hospital, Pietermaritzburg, ZAF
- School of Clinical Medicine, PhD programme, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Member, Royal Society of South Africa, Cape Town, ZAF
| | | | - Ansuya Naidoo
- Neurology, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Department of Neurology, Grey's Hospital, University of KwaZulu-Natal, Pietermaritzburg, ZAF
| |
Collapse
|
10
|
Rudge JD. A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model. J Alzheimers Dis Rep 2022; 6:129-161. [PMID: 35530118 PMCID: PMC9028744 DOI: 10.3233/adr-210299] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
This paper proposes a new hypothesis for Alzheimer's disease (AD)-the lipid invasion model. It argues that AD results from external influx of free fatty acids (FFAs) and lipid-rich lipoproteins into the brain, following disruption of the blood-brain barrier (BBB). The lipid invasion model explains how the influx of albumin-bound FFAs via a disrupted BBB induces bioenergetic changes and oxidative stress, stimulates microglia-driven neuroinflammation, and causes anterograde amnesia. It also explains how the influx of external lipoproteins, which are much larger and more lipid-rich, especially more cholesterol-rich, than those normally present in the brain, causes endosomal-lysosomal abnormalities and overproduction of the peptide amyloid-β (Aβ). This leads to the formation of amyloid plaques and neurofibrillary tangles, the most well-known hallmarks of AD. The lipid invasion model argues that a key role of the BBB is protecting the brain from external lipid access. It shows how the BBB can be damaged by excess Aβ, as well as by most other known risk factors for AD, including aging, apolipoprotein E4 (APOE4), and lifestyle factors such as hypertension, smoking, obesity, diabetes, chronic sleep deprivation, stress, and head injury. The lipid invasion model gives a new rationale for what we already know about AD, explaining its many associated risk factors and neuropathologies, including some that are less well-accounted for in other explanations of AD. It offers new insights and suggests new ways to prevent, detect, and treat this destructive disease and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D’Arcy Rudge
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
11
|
Xue Y, Zeng X, Tu WJ, Zhao J. Tumor Necrosis Factor- α: The Next Marker of Stroke. DISEASE MARKERS 2022; 2022:2395269. [PMID: 35265224 PMCID: PMC8898850 DOI: 10.1155/2022/2395269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023]
Abstract
Although there is no shortage of research on the markers for stroke, to our knowledge, there are no clear markers that can meet the needs of clinical prediction and treatment. The inflammatory cascade is a critical process that persists and functions throughout the stroke process, ultimately worsening stroke outcomes and increasing mortality. Numerous inflammatory factors, including tumor necrosis factor (TNF), are involved in this process. These inflammatory factors play a dual role during stroke, and their mechanisms are complex. As one of the representatives, TNF is the primary regulator of the immune system and plays an essential role in the spread of inflammation. In researches done over the last few years, tumor necrosis factor-alpha (TNF-α) has emerged as a potential marker for stroke because of its essential role in stroke. This review summarizes the latest research on TNF-α in stroke and explores its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yimeng Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xianwei Zeng
- Rehabilitation Hospital of the National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
12
|
Mennink LM, Aalbers MW, van Dijk P, van Dijk JMC. The Role of Inflammation in Tinnitus: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:1000. [PMID: 35207270 PMCID: PMC8878384 DOI: 10.3390/jcm11041000] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Subjective tinnitus is the perception of sound without the presence of an external source. Increasing evidence suggests that tinnitus is associated with inflammation. In this systematic review, the role of inflammation in subjective tinnitus was studied. Nine animal and twenty human studies reporting inflammatory markers in both humans and animals with tinnitus were included. It was established that TNF-α and IL-1β are increased in tinnitus, and that microglia and astrocytes are activated as well. Moreover, platelet activation may also play a role in tinnitus. In addition, we elaborate on mechanisms of inflammation in tinnitus, and discuss potential treatment options targeting inflammatory pathways.
Collapse
Affiliation(s)
- Lilian M. Mennink
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.W.A.); (J.M.C.v.D.)
- Department of Otorhinolaryngology/Head & Neck Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Research School of Behavioral and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Marlien W. Aalbers
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.W.A.); (J.M.C.v.D.)
- Research School of Behavioral and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology/Head & Neck Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Research School of Behavioral and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - J. Marc C. van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.W.A.); (J.M.C.v.D.)
- Research School of Behavioral and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
13
|
Cohrs G, Blumenröther AK, Sürie JP, Synowitz M, Held-Feindt J, Knerlich-Lukoschus F. Fetal and perinatal expression profiles of proinflammatory cytokines in the neuroplacodes of rats with myelomeningoceles: A contribution to the understanding of secondary spinal cord injury in open spinal dysraphism. J Neurotrauma 2021; 38:3376-3392. [PMID: 34541905 DOI: 10.1089/neu.2021.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular and molecular mechanisms that presumably underlie the progressive functional decline of the myelomeningocele (MMC) placode are not well understood. We previously identified key players in posttraumatic spinal cord injury cascades in human MMC tissues obtained during postnatal repair. In this study we conducted experiments to further investigate these mediators in the prenatal time course under standardized conditions in a retinoic-acid-induced MMC rat model. A retinoic acid MMC model was established using time-dated Sprague-Dawley rats, which were gavage-fed with all-trans retinoic acid (RA; 60 mg/kg) dissolved in olive oil at E10. Control animals received olive oil only. Fetuses from both groups were obtained at E16, E18, E22. The spinal cords (SCs) of both groups were formalin-fixed or snap-frozen. Tissues were screened by real-time RT-PCR for the expression of cytokines and chemokines known to play a role in the lesion cascades of the central nervous system after trauma. MMC placodes exhibited inflammatory cells and glial activation in the later gestational stages. At the mRNA level, IL-1b, TNFa, and TNF-R1 exhibited significant induction at E22. IL1-R1 mRNA was induced significantly at E16 and E22. Double labeling experiments confirmed the costaining of these cytokines and their receptors with Iba1 (i.e., inflammatory cells), Vimentin, and Nestin in different anatomical SC areas and NeuN in ventral horn neurons. CXCL12 mRNA was elevated in control and MMC animals at E16 compared to E18 and E22. CX3CL1 mRNA was lower in MMC tissues than in control tissues on E16. The presented findings contribute to the concept that pathophysiological mechanisms, such as cytokine induction in the neuroplacode, in addition to the "first hit", promote secondary spinal cord injury with functional loss in the late fetal time course. Furthermore, these mediators should be taken into consideration in the development of new therapeutic approaches for open spinal dysraphism.
Collapse
Affiliation(s)
- Gesa Cohrs
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Dept. of Neurosurgery, Arnold-Heller-Straße 3, Kiel, Germany, 24105;
| | - Ann-Kathrin Blumenröther
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Jan-Philip Sürie
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Michael Synowitz
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Janka Held-Feindt
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Friederike Knerlich-Lukoschus
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany.,Asklepios Kinderklinik Sankt Augustin, 248587, Pediatric Neurosurgery, Sankt Augustin, Nordrhein-Westfalen, Germany;
| |
Collapse
|
14
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
15
|
Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis. Brain Behav Immun 2019; 80:859-870. [PMID: 31145977 DOI: 10.1016/j.bbi.2019.05.038] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) manifested clinically in acute and long-term cognitive impairments and associated with increased morbidity and mortality worldwide. The potential pathological changes of SAE are complex and remain to be elucidated. Pyroptosis, a novel programmed cell death, is executed by caspase-1-cleaved GSDMD N-terminal (GSDMD-NT) and we investigated it in peripheral blood immunocytes of septic patients previously. Here, a caspase-1 inhibitor VX765 was treated with CLP-induced septic mice. Novel object recognition test indicated that VX765 treatment reversed cognitive dysfunction in septic mice. Elevated plus maze, tail suspension test and open field test revealed that depressive-like behaviors of septic mice were relieved. Inhibited caspase-1 suppressed the expressions of GSDMD and its cleavage form GSDMD-NT, and reduced pyroptosis in brain at day 1 and day 7 after sepsis. Meantime, inhibited caspase-1 mitigated the expressions of IL-1β, MCP-1 and TNF-α in serum and brain, diminished microglia activation in septic mice, and reduced sepsis-induced brain-blood barrier disruption and ultrastructure damages in brain as well. Inhibited caspase-1 protected the synapse plasticity and preserved long-term potential, which may be the possible mechanism of cognitive functions protective effects of septic mice. In conclusion, caspase-1 inhibition exerts brain-protective effects against SAE and cognitive impairments in a mouse model of sepsis.
Collapse
|
16
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
17
|
Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav Immun 2019; 79:75-90. [PMID: 31029798 DOI: 10.1016/j.bbi.2019.04.037] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social communication and restricted or repetitive behaviours. The clinical presentation of ASD is highly variable and diagnosis is based on the presence of impaired social communication and repetitive and/or restricted behaviours. Although the precise pathophysiologies underlying ASD are unclear, growing evidence supports a role for dysregulated neuroinflammation. The potential involvement of microglia and astrocytes reactive to inflammatory stimuli in ASD has generated much interest due to their varied roles including in mounting an immune response and regulating synaptic function. Increased numbers of reactive microglial and astrocytes in both ASD postmortem tissue and animal models have been reported. Whether dysregulation of glial subtypes exacerbates alterations in neural connectivity in the brain of autistic patients is not well explored. A role for the gut-brain axis involving microbial-immune-neuronal cross talk is also a growing area of neuroinflammation research. Greater understanding of these interactions under patho/physiological conditions and the identification of consistent immune profile abnormalities can potentially lead to more reliable diagnostic measures and treatments in ASD.
Collapse
Affiliation(s)
- Samantha M Matta
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elisa L Hill-Yardin
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Grant JE, Chamberlain SR. Salivary Inflammatory Markers in Trichotillomania: A Pilot Study. Neuropsychobiology 2018; 76:182-186. [PMID: 29920483 PMCID: PMC6098693 DOI: 10.1159/000489865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Immune dysregulation has been hypothesized to be important in the development and pathophysiology of compulsive disorders such as obsessive compulsive disorder (OCD), which has a high comorbid overlap with trichotillomania (both are OC-related disorders). The role of inflammation in the pathophysiology of trichotillomania has garnered little research to date. METHODS Individuals with trichotillomania provided saliva sample for analysis of inflammatory cytokines. Additionally, these participants were examined on a variety of demographic variables (including body mass index [BMI], previously found to relate to inflammation) along with clinical measures (symptom severity, functioning, and comorbidity). RESULTS Thirty-one participants, mean age of 24.7 (±10.2) years, 27 (87.1%) females were -included. The mean score on the Massachusetts General Hospital Hair Pulling Scale was 15.7 (±4.2), reflective of moderate symptom severity. Compared to normative data, the mean inflammatory marker levels in the trichotillomania sample had the following Z scores: interleukin-1β (IL-1β) Z = -0.26, IL-6 Z = -0.39, IL-8 Z = -0.32, and tumor necrosis factor-α Z = -0.83. Levels of inflammatory markers did not correlate significantly with BMI, depressive mood, symptom severity, or disability. CONCLUSIONS The relatively low level of inflammatory saliva cytokines observed in the current study (negative z scores versus normative data with medium effect sizes) indicates that evaluation of blood inflammatory levels in trichotillomania versus matched controls would be valuable in future work. If a hypoinflammatory state is confirmed -using blood samples, this would differentiate trichotillomania from other mental disorders (such as OCD, schizophrenia, and depression), which have typically been linked with high inflammatory measures in the literature, at least in some cases.
Collapse
Affiliation(s)
- Jon E. Grant
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA,*Jon E. Grant, JD, MD, MPH, Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Pritzker School of Medicine, 5841 S. Maryland Avenue, MC 3077, Chicago, IL 60637 (USA), E-Mail
| | - Samuel R. Chamberlain
- Department of Psychiatry, University of Cambridge, Cambridge and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
19
|
Yang Y, Zong Y, Sun Q, Jia Y, Zhao R. White light emitting diode suppresses proliferation and induces apoptosis in hippocampal neuron cells through mitochondrial cytochrome c oxydase-mediated IGF-1 and TNF-α pathways. Free Radic Biol Med 2017; 113:413-423. [PMID: 29106990 DOI: 10.1016/j.freeradbiomed.2017.10.382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
Abstract
Light emitting diode (LED) light has been tested to treat traumatic brain injury, neural degenerative diseases and psychiatric disorders. Previous studies indicate that blue LED light affects cell proliferation and apoptosis in photosensitive cells and cancer cells. In this study, we demonstrate that white LED light exposure impaired proliferation and induced apoptosis in HeLa and HT-22 hippocampal neural cells, but not C2C12 cells. Furthermore, the mechanisms underlying the effect of white LED light exposure on HT-22 cells were elucidated. In HeLa and HT-22 cells, white LED light activated mitochondrial cytochrome c oxidase (Cco), in association with enhanced ATP synthase activity and elevated intracellular ATP concentration. Also, reactive oxygen species (ROS) and nitric oxide (NO) production were increased, accompanied by higher calcium concentration and lower mitochondrial membrane potential. HT-22 cells exposed to white LED light for 24h showed reduced viability, with higher apoptotic rate and a cell cycle arrest at G0/G1 phase. Concurrently, the mRNA expression and the concentration of IGF-1 were decreased, while that of TNF-α were increased, in light-exposed cells, which was supported by the luciferase activity of both gene promoters. The down-stream mitogen-activated protein kinase (MAPK), AKT/mTOR pathways were inhibited, in association with an activation of apoptotic caspase 3. N-Acetylcysteine, a ROS scavenger, protected the cells from LED light-induced cellular damage, with rescued cell viability and restored mRNA expression of IGF-1 and TNF-α. Our data demonstrate that white LED light suppresses proliferation and induces apoptosis in hippocampal neuron cells through mitochondrial Cco/ROS-mediated IGF-1 and TNF-α pathways.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yibo Zong
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China.
| |
Collapse
|
20
|
D'Mello C, Swain MG. Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression. Curr Top Behav Neurosci 2017; 31:73-94. [PMID: 27677781 DOI: 10.1007/7854_2016_37] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
A growing body of evidence now highlights a key role for inflammation in mediating sickness behaviors and depression. Systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and chronic liver disease have high comorbidity with depression. How the periphery communicates with the brain to mediate changes in neurotransmission and thereby behavior is not completely understood. Traditional routes of communication between the periphery and the brain involve neural and humoral pathways with TNFα, IL-1β, and IL-6 being the three main cytokines that have primarily been implicated in mediating signaling via these pathways. However, in recent years communication via peripheral immune-cell-to-brain and the gut-microbiota-to-brain routes have received increasing attention for their ability to modulate brain function. In this chapter we discuss periphery-to-brain communication pathways and their potential role in mediating inflammation-associated sickness behaviors and depression.
Collapse
Affiliation(s)
- Charlotte D'Mello
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1
| | - Mark G Swain
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
21
|
You W, Zuo G, Shen H, Tian X, Li H, Zhu H, Yin J, Zhang T, Wang Z. Potential dual role of nuclear factor-kappa B in experimental subarachnoid hemorrhage-induced early brain injury in rabbits. Inflamm Res 2016; 65:975-984. [PMID: 27554683 DOI: 10.1007/s00011-016-0980-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN Nuclear factor-kappa B (NF-κB) has multiple physiological and pathological functions. The role of NF-κB can be protective or destructive. We aim to investigate the biphasic activation of NF-κB in brain after subarachnoid hemorrhage (SAH). MATERIAL OR SUBJECTS Eighty male New Zealand rabbits are assigned to control, SAH, vehicle, and pyrrolidine dithiocarbamate (PDTC) groups. TREATMENT PDTC (3 mg/kg, dissolved in saline) was injected into cisterna magna. METHODS Immunofluorescence and electrophoretic mobility shift assay experiments were performed to assess the activation of NF-κB. The levels of inflammatory and apoptosis mediators were detected by ELISA and real-time polymerase chain reaction. Nissl and immunofluorescent stain was performed to evaluate neuron injury. RESULTS NF-κB activity in the brain cortex showed two peaks after SAH. Inflammatory mediators exhibited similar time course. PDTC could significantly inhibit the NF-κB activity and inflammatory mediators. Suppressing the early NF-κB activity significantly decreased neuron injury, while inhibiting the late one could statistically increase neuron injury. CONCLUSIONS The biphasic NF-κB activation in the brain cortex after SAH played a decisive role on neuronal fate through the inflammatory signaling pathway. The early NF-κB activity contributed to neuron damage after SAH. Nevertheless, the late activated NF-κB may serve as a protector.
Collapse
Affiliation(s)
- Wanchun You
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Gang Zuo
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.,Department of Neurosurgery, The First People's Hospital of Taicang City, Taicang, 215400, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiaodi Tian
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haiping Zhu
- Department of Neurosurgery, Changshu No. 1 People's Hospital, Changshu, 215500, China.
| | - Jun Yin
- Department of Neurosurgery, Taixing Chinese Medicine Hospital, Taixing, 225400, China.
| | - Tiejun Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
22
|
Abstract
Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.
Collapse
Affiliation(s)
- Weihong Pan
- 1 Biopotentials Sleep Center, Baton Rouge, LA 70809
| | - Abba J Kastin
- 2 Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
23
|
Abstract
Tumor necrosis factor-α (TNFα) is a prototypic inflammatory cytokine up-regulated in most if not all neurodegenerative diseases. Many studies have reported variable roles in the adult or pathological brain. In contrast, the implication of TNFα in developmental neuronal cell death has been well documented in few studies. In sympathetic and trigeminal neurons, TNFα acts in an autocrine manner to induce immediate cell death on neurotrophic factor deprivation. In the spinal cord, TNFα is transiently produced by macrophages and commits motoneurons to become competent to die 2 days later. TNFα is also likely to induce immediate and delayed prodeath effects in adult and pathological tissues. Data obtained in embryonic systems will thus help to develop new therapeutic approaches to pathological neuronal death in adults.
Collapse
Affiliation(s)
- Alain Bessis
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, INSERM U497 Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
24
|
Panek M, Jonakowski M, Zioło J, Pietras T, Wieteska Ł, Małachowska B, Mokros Ł, Szemraj J, Kuna P. Identification of Relationships Between Interleukin 15 mRNA and Brain-Derived Neurotrophic Factor II mRNA Levels With Formal Components of Temperament in Asthmatic Patients. Mol Neurobiol 2016; 54:1733-1744. [PMID: 26874516 DOI: 10.1007/s12035-016-9768-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/01/2016] [Indexed: 11/30/2022]
Abstract
Asthma is a chronic inflammatory and heterogeneous disease developing mostly through allergic inflammation, which modifies the expression of various cytokines and neurotrophins. Previous studies suggest the involvement of interleukin (IL)-15 in the regulation of immune response in asthma. Brain-derived neurotrophic factor (BDNF) II plays an important role as a regulator of development and survival of neurons as well as maintenance of their physiological activity. Chronic stress associated with asthma and elevated IL-15 mRNA and BDNFII mRNA levels may affect the mood and a subjective sensation of dyspnoea-inducing anxiety. Psychopathological variables and numerous cytokine/neurotrophin interactions influence the formation of temperament and strategies of coping with stress. The aim of the study was to identify the role of IL-15 mRNA and BDNFII mRNA expressions and their effect on components of temperament and strategies of coping with stress in asthmatics. A total of 352 subjects (176 healthy volunteers and 176 asthmatic patients) participated in the study. The Formal Characteristic of Behaviour-Temperament Inventory (FCB-TI), Coping Inventory for Stressful Situations (CISS), Beck Depression Inventory, State-Trait Anxiety Inventory, and Borg Rating of Perceived Exertion (RPE) Scale were applied in all the subjects. The expression of IL-15 and BDNFII gene was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Different levels of IL-15 and BDNFII expressions between healthy volunteers and patients were revealed in the study. IL-15 enhanced the BDNFII mRNA expression among patients with bronchial asthma. The depression level negatively correlated with the BDNFII mRNA expression. This neurotrophin modified the temperament variable. BDNFII significantly affected (proportional relationship) the level of briskness in asthmatic patients. BDNFII might influence the level and style of coping with stress (emotion-oriented style). This hypothesis requires further studies on protein functional models. The obtained data confirms the role of IL-15 and BDNFII in the pathomechanisms of depression and formation of selected traits defining the temperament in asthmatics.
Collapse
Affiliation(s)
- Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland.
| | - Mateusz Jonakowski
- Students Research Group at the Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| | - Jan Zioło
- Students Research Group at the Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| | - Tadeusz Pietras
- Department of Pneumology and Allergology, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| | - Łukasz Wieteska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka St., 92-215, Lodz, Poland
| | - Beata Małachowska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St., 91-738, Lodz, Poland
| | - Łukasz Mokros
- Students Research Group at the Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland.,Department of Pneumology and Allergology, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka St., 92-215, Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| |
Collapse
|
25
|
Depression, Cytokine, and Cytokine by Treatment Interactions Modulate Gene Expression in Antipsychotic Naïve First Episode Psychosis. Mol Neurobiol 2015; 53:5701-9. [PMID: 26491028 DOI: 10.1007/s12035-015-9489-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
In schizophrenia, genetic and environmental factors affect neurodevelopment and neuroprogressive trajectory. Altered expression of neuro-immune genes and increased levels of cytokines are observed, especially in patients with comorbid depression. However, it remains unclear whether circulating levels of cytokines and expression of these genes are associated, and how antipsychotic treatments impact this association. Relationships between messenger RNA (mRNA) expression of 11 schizophrenia-related genes and circulating levels of cytokines (interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α) were analyzed in 174 antipsychotic naïve first episode psychosis (FEP) and in 77 healthy controls. A subgroup of 72 patients was reassessed after treatment with risperidone. FEP patients were divided into those with and without depression. FEP patients with depression showed increased COMT expression and decreased NDEL1 expression. Increased IL-6 was associated with lowered AKT1 and DROSHA expression, while increased IL-10 was associated with increased NDEL1, DISC1, and MBP expression. IL-6 levels significantly increased the risperidone-induced expression of AKT1, DICER1, DROSHA, and COMT mRNA. The differential mRNA gene expression in FEP is largely associated with increased cytokine levels. While increased IL-6 may downregulate AKT-mediated cellular functions and dysregulate genes involved in microRNA (miRNA) machinery, increased IL-10 has neuroprotective properties. Increased IL-6 levels may prime the expression of genes (AKT1, DICER1, DROSHA, and COMT) in response to risperidone, suggesting that cytokine × treatment × gene interactions may improve cell function profiles. FEP patients with depression show a different gene expression profile reinforcing the theory that depression in FEP is a different phenotype.
Collapse
|
26
|
Nascimento FP, Macedo-Júnior SJ, Borges FRM, Cremonese RP, da Silva MD, Luiz-Cerutti M, Martins DF, Rodrigues ALS, Santos ARS. Thalidomide reduces mechanical hyperalgesia and depressive-like behavior induced by peripheral nerve crush in mice. Neuroscience 2015; 303:51-8. [PMID: 26126925 DOI: 10.1016/j.neuroscience.2015.06.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND It has been shown that chronic pain is able to induce depressive disorders in humans, in part, due to peripheral inflammation that reaches the central nervous system. However, the mechanisms involved remain to be established. The purpose of this study was to investigate whether sciatic nerve crush could produce depression-like behaviors, in addition to pain-related behaviors, in mice. Once confirmed, this model was used to investigate tumor necrosis factor-α (TNF-α) as a key mediator involved in the pathophysiology of both pain and depression. EXPERIMENTAL APPROACH Male Swiss mice were divided into three groups, naïve, sham and operated. In the operated group, the sciatic nerve was crushed. Following surgery, animals from the operated group were treated daily by oral gavage (p.o.) with saline (10 ml/kg), fluoxetine (20 mg/kg) or thalidomide (10 mg/kg) for 15 days. Mechanical hyperalgesia was evaluated every 3 days by von Frey filaments and depressive-like behavior was assessed at the end of day 15, using the tail suspension test (TST) and the forced swimming test (FST). Then, samples from the prefrontal cortex, hippocampus and sciatic nerve were processed to measure TNF-α levels by enzyme-linked immunosorbent assay (ELISA). RESULTS Crush caused significant mechanical hyperalgesia and depressive-like behaviors and increased TNF-α levels in the sciatic nerve, prefrontal cortex and hippocampus of operated animals. Treatment with fluoxetine or thalidomide reversed crush-induced mechanical hyperalgesia, depressive-like behaviors and the increased TNF-α levels in the sciatic nerve, prefrontal cortex and hippocampus. CONCLUSIONS The sciatic nerve crush model represents a good model to study to mechanisms underlying both pain and depressive-like behaviors. Furthermore, inhibitors of TNF-α synthesis, like thalidomide, have a potential to treat depressive disorders associated with neuropathic pain.
Collapse
Affiliation(s)
- F P Nascimento
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - S J Macedo-Júnior
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - F R M Borges
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - R P Cremonese
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - M D da Silva
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Physiotherapy, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - M Luiz-Cerutti
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - D F Martins
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratory of Experimental Neurosciences, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC, Brazil
| | - A L S Rodrigues
- Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - A R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
27
|
Lv MH, Tan YL, Yan SX, Tian L, Chen DC, Tan SP, Wang ZR, Yang FD, Yoon JH, Zunta-Soares GB, Soares JC, Zhang XY. Decreased serum TNF-alpha levels in chronic schizophrenia patients on long-term antipsychotics: correlation with psychopathology and cognition. Psychopharmacology (Berl) 2015; 232:165-72. [PMID: 24958229 DOI: 10.1007/s00213-014-3650-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/30/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE A substantial body of evidence implicates TNF-alpha (TNFα) and TNFα-related signaling pathways in the pathophysiology of schizophrenia. The current study examined the relationship between TNFα serum levels and both psychopathological as well as cognitive symptoms in schizophrenia. MATERIALS AND METHODS Serum TNFα levels were assessed in 89 patients diagnosed with schizophrenia and compared to 43 healthy control subjects matched for age and gender. Schizophrenic symptomatology was assessed with the Positive and Negative Syndrome Scale (PANSS), and serum TNFα levels were measured by sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS TNFα levels were significantly lower in patients with chronic schizophrenia relative to healthy control subjects (p<0.01). Correlation analysis revealed a significant negative correlation between the TNFα levels and the PANSS total score (p<0.01). Additionally, TNFα levels were significantly negatively correlated with scores on general psychopathology (p<0.01), positive (p<0.05) and cognitive subscales (p<0.05). Stepwise multiple regression analysis identified TNFα levels as a significant predictor of scores on the general psychopathology subscale of the PANSS. CONCLUSION The significant relations observed in the current study between TNFα and the PANSS and its subscales suggest that immune disturbance may be involved in the psychopathology and cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Meng Han Lv
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dohi K, Kraemer BC, Erickson MA, McMillan PJ, Kovac A, Flachbartova Z, Hansen KM, Shah GN, Sheibani N, Salameh T, Banks WA. Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS One 2014; 9:e108034. [PMID: 25251220 PMCID: PMC4176020 DOI: 10.1371/journal.pone.0108034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1-40 or 1-42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI.
Collapse
Affiliation(s)
- Kenji Dohi
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Department of Emergency Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
| | - Michelle A. Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
| | - Pamela J. McMillan
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Andrej Kovac
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Zuzana Flachbartova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Kim M. Hansen
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Gul N. Shah
- Division of Endocrinology, Department of Internal Medicine, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States of America
| | - Nader Sheibani
- Opthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Therese Salameh
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
29
|
Janata A, Magnet IAM, Uray T, Stezoski JP, Janesko-Feldman K, Tisherman SA, Kochanek PM, Drabek T. Regional TNFα mapping in the brain reveals the striatum as a neuroinflammatory target after ventricular fibrillation cardiac arrest in rats. Resuscitation 2014; 85:694-701. [PMID: 24530249 PMCID: PMC4034695 DOI: 10.1016/j.resuscitation.2014.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/22/2014] [Accepted: 01/31/2014] [Indexed: 12/14/2022]
Abstract
Cardiac arrest (CA) triggers neuroinflammation that could play a role in a delayed neuronal death. In our previously established rat model of ventricular fibrillation (VF) CA characterized by extensive neuronal death, we tested the hypothesis that individual brain regions have specific neuroinflammatory responses, as reflected by regional brain tissue levels of tumor necrosis factor (TNF)α and other cytokines. In a prospective study, rats were randomized to 6min (CA6), 8min (CA8) or 10min (CA10) of VF CA, or sham group. Cortex, striatum, hippocampus and cerebellum were evaluated for TNFα and interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12 and interferon gamma at 3h, 6h or 14 d after CA by ELISA and Luminex. Immunohistochemistry was used to determine the cell source of TNFα. CA resulted in a selective TNFα response with significant regional and temporal differences. At 3h after CA, TNFα-levels increased in all regions depending on the duration of the insult. The most pronounced increase was observed in striatum that showed 20-fold increase in CA10 vs. sham, and 3-fold increase vs. CA6 or CA8 group, respectively (p<0.01). TNFα levels in striatum decreased between 3h and 6h, but increased in other regions between 3h and 14 d. TNFα levels remained twofold higher in CA6 vs. shams across brain regions at 14 d (p<0.01). In contrast to pronounced TNFα response, other cytokines showed only a minimal increase in CA6 and CA8 groups vs. sham in all brain regions with the exception that IL-1β increased twofold in cerebellum and striatum (p<0.01). TNFα colocalized with neurons. In conclusion, CA produced a duration-dependent acute TNFα response, with dramatic increase in the striatum where TNFα colocalized with neurons. Increased TNFα levels persist for at least two weeks. This TNFα surge contrasts the lack of an acute increase in other cytokines in brain after CA. Given that striatum is a selectively vulnerable brain region, our data suggest possible role of neuronal TNFα in striatum after CA and identify therapeutic targets for future experiments. This study was approved by the University of Pittsburgh IACUC 1002340A-3.
Collapse
Affiliation(s)
- Andreas Janata
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ingrid A M Magnet
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas Uray
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jason P Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel A Tisherman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Drabek T, Janata A, Wilson CD, Stezoski J, Janesko-Feldman K, Tisherman SA, Foley LM, Verrier J, Kochanek PM. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats. Resuscitation 2014; 85:284-291. [PMID: 24513126 PMCID: PMC3952024 DOI: 10.1016/j.resuscitation.2013.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/14/2022]
Abstract
Neuro-cognitive disabilities are a well-recognized complication of hypothermic circulatory arrest. We and others have reported that prolonged cardiac arrest (CA) produces neuronal death and microglial proliferation and activation that are only partially mitigated by hypothermia. Microglia, and possibly other cells, are suggested to elaborate tumor necrosis factor alpha (TNF-α), which can trigger neuronal death cascades and exacerbate edema after CNS insults. Minocycline is neuroprotective in some brain ischemia models in part by blunting the microglial response. We tested the hypothesis that minocycline would attenuate neuroinflammation as reflected by brain tissue levels of TNF-α after hypothermic CA in rats. Rats were subjected to rapid exsanguination, followed by a 6 min normothermic CA. Hypothermia (30 °C) was then induced by an aortic saline flush. After a total of 20 min CA, resuscitation was achieved via cardiopulmonary bypass (CPB). After 5 min reperfusion, minocycline (90 mg kg−1; n = 6) or vehicle (PBS; n = 6) was given. Hypothermia (34 °C) was maintained for 6 h. Rats were sacrificed at 6 or 24 h. TNF-α was quantified (ELISA) in four brain regions (cerebellum, CEREB; cortex, CTX; hippocampus, HIP; striatum, STRI). Naïve rats (n = 6) and rats subjected to the same anesthesia and CPB but no CA served as controls (n = 6). Immunocytochemistry was used to localize TNF-α. Naïve rats and CPB controls had no detectable TNF-α in any brain region. CA markedly increased brain TNF-α. Regional differences were seen, with the highest TNF-α levels in striatum in CA groups (10-fold higher, P < 0.05 vs. all other brain regions). TNF-α was undetectable at 24 h. Minocycline attenuated TNF-α levels in CTX, HIP and STRI (P < 0.05). TNF-α showed unique co-localization with neurons. In conclusion, we report region-dependent early increases in brain TNF-α levels after prolonged hypothermic CA, with maximal increases in striatum. Surprisingly, TNF-α co-localized in neurons and not microglia. Minocycline attenuated TNF-α by approximately 50% but did not totally ablate its production. That minocycline decreased brain TNF-α levels suggests that it may represent a therapeutic adjunct to hypothermia in CA neuroprotection. University of Pittsburgh IACUC 0809278B-3.
Collapse
Affiliation(s)
- Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andreas Janata
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caleb D. Wilson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samuel A. Tisherman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lesley M. Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan Verrier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun 2014; 35:9-20. [PMID: 24140301 DOI: 10.1016/j.bbi.2013.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/28/2013] [Accepted: 10/09/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory liver diseases are often accompanied by behavior alterations including fatigue, mood disorders, cognitive dysfunction and sleep disturbances. These altered behaviors can adversely affect patient quality of life. The communication pathways between the inflamed liver and the brain that mediate changes in central neural activity leading to behavior alterations during liver inflammation are poorly understood. Neural and humoral communication pathways have been most commonly implicated as driving peripheral inflammation to brain signaling. Classically, the cytokines TNFα, IL-1β and IL-6 have received the greatest scientific attention as potential mediators of this communication pathway. In mice with liver inflammation we have identified a novel immune-mediated liver-to-brain communication pathway whereby CCR2(+) monocytes found within the peripheral circulation transmigrate into the brain parenchyma in response to MCP-1/CCL2 expressing activated microglia. Inhibition of cerebral monocyte infiltration in these mice significantly improved liver inflammation associated sickness behaviors. Importantly, in recent work we have found that at an earlier time point, when cerebral monocyte infiltration is not evident in mice with liver inflammation, increased monocyte:cerebral endothelial cell adhesive interactions are observed using intravital microscopy of the brain. These monocyte:cerebral endothelial cell adhesive interactions are P-selectin mediated, and inhibition of these interactions attenuated microglial activation and sickness behavior development. Delineating the pathways that the periphery uses to communicate with the brain during inflammatory liver diseases, and the central neurotransmitter systems that are altered through these communication pathways (e.g., serotonin, corticotrophin releasing hormone) to give rise to liver inflammation-associated sickness behaviors, will allow for the identification of novel therapeutic targets to decrease the burden of debilitating symptoms in these patients.
Collapse
|
32
|
Oishi N, Chen J, Zheng HW, Hill K, Schacht J, Sha SH. Tumor necrosis factor-alpha-mutant mice exhibit high frequency hearing loss. J Assoc Res Otolaryngol 2013; 14:801-11. [PMID: 23996384 DOI: 10.1007/s10162-013-0410-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
Exogenous tumor necrosis factor-alpha (TNF-α) plays a role in auditory hair cell death by altering the expression of apoptosis-related genes in response to noxious stimuli. Little is known, however, about the function of TNF-α in normal hair cell physiology. We, therefore, investigated the cochlear morphology and auditory function of TNF-α-deficient mice. Auditory evoked brainstem response showed significantly higher thresholds, especially at higher frequencies, in 1-month-old TNF-α(-/-) mice as compared to TNF-α(+/-) and wild type (WT); hearing loss did not progress further from 1 to 4 months of age. There was no difference in the gross morphology of the organ of Corti, lateral wall, and spiral ganglion cells in TNF-α(-/-) mice compared to WT mice at 4 months of age, nor were there differences in the anatomy of the auditory ossicles. Outer hair cells were completely intact in surface preparations of the organ of Corti of TNF-α(-/-) mice, and synaptic ribbon counts of TNF-α(-/-) and WT mice at 4 months of age were similar. Reduced amplitudes of distortion product otoacoustic emissions, however, indicated dysfunction of outer hair cells in TNF-α(-/-) mice. Scanning electron microscopy revealed that stereocilia were sporadically absent in the basal turn and distorted in the middle turn. In summary, our results demonstrate that TNF-α-mutant mice exhibit early hearing loss, especially at higher frequencies, and that loss or malformation of the stereocilia of outer hair cells appears to be a contributing factor.
Collapse
Affiliation(s)
- Naoki Oishi
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI, 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
33
|
Morris GP, Clark IA, Zinn R, Vissel B. Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 2013; 105:40-53. [PMID: 23850597 DOI: 10.1016/j.nlm.2013.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022]
Abstract
We focus on emerging roles for microglia in synaptic plasticity, cognition and disease. We outline evidence that ramified microglia, traditionally thought to be functionally "resting" (i.e. quiescent) in the normal brain, in fact are highly dynamic and plastic. Ramified microglia continually and rapidly extend processes, contact synapses in an activity and experience dependent manner, and play a functionally dynamic role in synaptic plasticity, possibly through release of cytokines and growth factors. Ramified microglial also contribute to structural plasticity through the elimination of synapses via phagocytic mechanisms, which is necessary for normal cognition. Microglia have numerous mechanisms to monitor neuronal activity and numerous mechanisms also exist to prevent them transitioning to an activated state, which involves retraction of their surveying processes. Based on the evidence, we suggest that maintaining the ramified state of microglia is essential for normal synaptic and structural plasticity that supports cognition. Further, we propose that change of their ramified morphology and function, as occurs in inflammation associated with numerous neurological disorders such as Alzheimer's and Parkinson's disease, disrupts their intricate and essential synaptic functions. In turn altered microglia function could cause synaptic dysfunction and excess synapse loss early in disease, initiating a range of pathologies that follow. We conclude that the future of learning and memory research depends on an understanding of the role of non-neuronal cells and that this should include using sophisticated molecular, cellular, physiological and behavioural approaches combined with imaging to causally link the role of microglia to brain function and disease including Alzheimer's and Parkinson's disease and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gary P Morris
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
34
|
Leone MJ, Marpegan L, Duhart JM, Golombek DA. Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm. Chronobiol Int 2012; 29:715-23. [PMID: 22734572 DOI: 10.3109/07420528.2012.682681] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome.
Collapse
Affiliation(s)
- M Juliana Leone
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
35
|
Tumor necrosis factor activation of vagal afferent terminal calcium is blocked by cannabinoids. J Neurosci 2012; 32:5237-41. [PMID: 22496569 DOI: 10.1523/jneurosci.6220-11.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The early proinflammatory cytokine tumor necrosis factor (TNF) is released in significant quantities by the activated immune system in response to infection, leukemia, autoimmune disorders, and radiation sickness. Nausea, emesis, and anorexia are common features of these disorders. TNF action on vagal afferent terminals in the brainstem is a likely cause of the malaise associated with these disorders. Our previous work has shown that TNF action to excite vagal afferents occurs as a result of sensitization of ryanodine channels in afferent nerve terminals. For millennia, cannabinoids (CB) have been used to combat the visceral malaise associated with chronic disease, although the mechanism of action has not been clear. Previous work in culture systems suggests that CB1 agonists can suppress neurotransmission by downregulating ryanodine channels through a protein kinase A (PKA)-dependent mechanism. Laser confocal calcium imaging methods were used to directly examine effects of CB1 cannabinoid agonists and TNF on visceral afferent signaling in the rat hindbrain. CB1 agonists blocked the effects of TNF to amplify vagal afferent responsiveness; blockade of PKA with H89 also eliminated the TNF amplification effect. These results help to explain the effectiveness of cannabinoids in blocking the malaise generated by TNF-releasing disease processes by opposing effects on ryanodine channels.
Collapse
|
36
|
Abstract
Several studies have examined levels of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. This meta-analysis was conducted to examine the association between obsessive-compulsive disorder (OCD) and plasma serum levels of proinflammatory cytokines. Twelve studies met inclusion criteria. The meta-analysis demonstrated a significant reduction in IL-1β levels in OCD. No significant difference in plasma levels of IL-6 or TNF-α was demonstrated. Stratified subgroup analysis revealed possible moderating effects of age and medication use on IL-6 levels. Studies including children on psychotropic medication had lower plasma IL-6 levels. Stratified subgroup analysis revealed a moderating effect of comorbid depression on TNF-α levels. Elevated TNF-α levels were reported in studies that included individuals with comorbid depression. Future studies examining immune function in OCD should adjust for potential confounding due to medication use and comorbid depression. Further studies assessing cerebrospinal fluid cytokine levels in OCD are also needed.
Collapse
|
37
|
Sharma A, Sharma HS. Monoclonal antibodies as novel neurotherapeutic agents in CNS injury and repair. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:23-45. [PMID: 22748825 DOI: 10.1016/b978-0-12-386986-9.00002-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Central nervous system (CNS) injury is a complex in which numerous neurochemicals and other vasoactive agents actively contribute towards the development of posttraumatic brain pathology and/or repair mechanisms. A focal trauma to the brain or spinal cord releases several endogenous neurodestructive agents within the CNS, resulting in adverse cellular reactions. Our laboratory is engaged in identifying these endogenous neurodestructive signals in the CNS following injury caused by trauma or hyperthermia. Our observations show that serotonin (5-HT), dynorphin A (Dyn A 1-17), nitric oxide synthase (NOS), and tumor necrosis factor-α (TNF-α) could be potential neurodestructive signals in the CNS injury. Thus, neutralization of these agents using monoclonal antibodies directed against 5-HT, NOS, Dyn A (1-17), and TNF-α in vivo will result in marked neuroprotection and enhance neurorepair after trauma. In addition, a suitable combination of monoclonal antibodies, for example, NOS and TNF-α, when applied 60-90 min after trauma, is capable to enhance neuroprotective ability and thwart cell and tissue injury after spinal cord insult. Taken together, our novel observations suggest a potential use of monoclonal antibodies as suitable therapeutic agents in CNS injuries to achieve neuroprotection and/or neurorepair.
Collapse
Affiliation(s)
- Aruna Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
38
|
Intrathecal Etanercept Partially Restores Morphine's Antinociception in Morphine-Tolerant Rats via Attenuation of the Glutamatergic Transmission. Anesth Analg 2011; 113:184-90. [DOI: 10.1213/ane.0b013e318217f7eb] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. J Neuroinflammation 2011; 8:65. [PMID: 21645364 PMCID: PMC3141503 DOI: 10.1186/1742-2094-8-65] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
The progranulin gene (PGRN) encodes a pleiotropic molecule with anti-inflammatory actions and neuronal protective effects. Accordingly, PGRN-deficient mice have been demonstrated to develop enhanced inflammation and progressive neurodegeneration. Loss of function mutations of the PGRN gene have been also reported to cause frontotemporal lobar degeneration (FTLD), a neurodegenerative disease leading to dementia generally in the presenium. Since neurodegeneration might be negatively impacted by chronic inflammation, the possible influence of PGRN defects on inflammatory pathways appears to be of great relevance for the understanding of neurodegeneration pathogenic processes in those patients. However, no data about the inflammatory profile of PGRN-defective subjects have been so far provided. In this study, we analyzed serum levels of the pro-inflammatory mediators IL-6, TNF-α and IL-18 in FTLD patients with or without PGRN mutations, at both pre-symptomatic and symptomatic stages. We provide evidence that circulating IL-6 is increased in PGRN-mutated FTLD patients, as compared to both PGRN non-mutated FTLD patients and controls. In contrast, levels of IL-6 were not altered in asymptomatic subjects carrying the PGRN mutations. Finally, TNF-α and IL-18 serum levels did not differ among all groups of included subjects. We conclude that the profile of circulating pro-inflammatory cytokines is altered in PGRN-related symptomatic FTLD. Thus, our findings point to IL-6 as a possible specific mediator and a potential therapeutic target in this monogenic disease, suggesting that an enhanced inflammatory response might be indeed involved in its progression.
Collapse
|
40
|
Wu X, Hsuchou H, Kastin AJ, He Y, Khan RS, Stone KP, Cash MS, Pan W. Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor. Psychoneuroendocrinology 2011; 36:266-78. [PMID: 20724079 PMCID: PMC3015024 DOI: 10.1016/j.psyneuen.2010.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/18/2010] [Accepted: 07/21/2010] [Indexed: 01/23/2023]
Abstract
Contrary to the reduction of depressive-like behavior observed in several strains of cytokine receptor knockout mice, mice lacking the specific receptor for interleukin (IL)-15 showed increased immobility in tail suspension and modified forced swimming tests. There was also a reduction in social interactions. The hippocampus of the IL15Rα knockout mice had decreased mRNA for 5-HT(1A), increased mRNA for 5-HT(2C), and region-specific changes of serotonin reuptake transporter (SERT) immunoreactivity. Fluoxetine (the classic antidepressant Prozac, which inhibits 5-HT(2C) and SERT) reduced the immobility of the IL15Rα knockout mice in comparison with their pretreatment baseline. Together with the unchanged performance of the IL15Rα knockout mice on the rotarod, this response to fluoxetine indicates that the immobility reflects depression. Wildtype mice responded to IL15 treatment with improvement of immobility induced by forced swimming, whereas the knockout mice failed to respond. Thus, the cognate IL15 receptor is necessary for the antidepressive activity of IL15. In ex vivo studies, IL15 decreased synaptosomal uptake of 5-HT, and modulated the expression of 5-HT(2C) and SERT in cultured neurons in a dose- and time-dependent manner. Thus, the effect of IL15 on serotonin transmission may underlie the depressive-like behavior of IL15Rα knockout mice. We speculate that IL15 is essential to maintain neurochemical homeostasis and thereby plays a role in preventing neuropsychiatric symptoms.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Cells, Cultured
- Depression/genetics
- Depression/metabolism
- Depression/pathology
- Depression/prevention & control
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Fluoxetine/pharmacology
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Interleukin-15/pharmacology
- Interleukin-15/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nervous System/drug effects
- Nervous System/metabolism
- Receptors, Interleukin-15/agonists
- Receptors, Interleukin-15/genetics
- Receptors, Interleukin-15/metabolism
- Receptors, Interleukin-15/physiology
- Serotonin/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Xiaojun Wu
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Hung Hsuchou
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Abba J. Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Yi He
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Reas S. Khan
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Kirsten P. Stone
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Michael S. Cash
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
41
|
Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S. Interleukin-6, a mental cytokine. ACTA ACUST UNITED AC 2011; 67:157-83. [PMID: 21238488 DOI: 10.1016/j.brainresrev.2011.01.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
Almost a quarter of a century ago, interleukin-6 (IL-6) was discovered as an inflammatory cytokine involved in B cell differentiation. Today, IL-6 is recognized to be a highly versatile cytokine, with pleiotropic actions not only in immune cells, but also in other cell types, such as cells of the central nervous system (CNS). The first evidence implicating IL-6 in brain-related processes originated from its dysregulated expression in several neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. In addition, IL-6 was shown to be involved in multiple physiological CNS processes such as neuron homeostasis, astrogliogenesis and neuronal differentiation. The molecular mechanisms underlying IL-6 functions in the brain have only recently started to emerge. In this review, an overview of the latest discoveries concerning the actions of IL-6 in the nervous system is provided. The central position of IL-6 in the neuroinflammatory reaction pattern, and more specifically, the role of IL-6 in specific neurodegenerative processes, which accompany Alzheimer's disease, multiple sclerosis and excitotoxicity, are discussed. It is evident that IL-6 has a dichotomic action in the CNS, displaying neurotrophic properties on the one hand, and detrimental actions on the other. This is in agreement with its central role in neuroinflammation, which evolved as a beneficial process, aimed at maintaining tissue homeostasis, but which can become malignant when exaggerated. In this perspective, it is not surprising that 'well-meant' actions of IL-6 are often causing harm instead of leading to recovery.
Collapse
Affiliation(s)
- Anneleen Spooren
- Laboratory of Eukaryotic Signal Transduction and Gene Expression, University of Ghent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
42
|
Stellwagen D. The contribution of TNFα to synaptic plasticity and nervous system function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:541-57. [PMID: 21153360 DOI: 10.1007/978-1-4419-6612-4_57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David Stellwagen
- Centre for Research in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
43
|
Shen CH, Tsai RY, Shih MS, Lin SL, Tai YH, Chien CC, Wong CS. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg 2010; 112:454-9. [PMID: 21081778 DOI: 10.1213/ane.0b013e3182025b15] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In the present study we examined the effect of the tumor necrosis factor (TNF)-α antagonist etanercept on the antinociceptive effect of morphine in morphine-tolerant rats. METHODS Male Wistar rats were implanted with 2 intrathecal catheters, and 1 was connected to a mini-osmotic pump for either morphine (15 μg/h) or saline (1 μL/h) infusion for 5 days. On day 5, either etanercept (5 μg, 25 μg, and 50 μg/10 μL) or saline (10 μL) was injected via the other catheter after morphine infusion was discontinued. Three hours later, morphine (15 μg/10 μL, intrathecally) was given and tail-flick latency was measured to evaluate the antinociceptive effect of morphine. Rats were then killed and their spinal cords were removed for quantitative real-time polymerase chain reaction and immunohistochemistry to measure proinflammatory cytokines expression. RESULTS We found that acute etanercept (50 μg) treatment preserved a significant antinociceptive effect of morphine in morphine-tolerant rats. In addition, the expression of TNFα mRNA was increased by 2.5-fold, interleukin (IL)-1β mRNA increased by 13-fold and IL-6 mRNA by 111-fold in the dorsal spinal cord of morphine-tolerant rats. The increase in TNFα, IL-1β, and IL-6 mRNA expression was blocked by 50 μg etanercept pretreatment. The immunohistochemistry analysis revealed that 50 μg etanercept suppressed proinflammatory cytokines expression and neuroinflammation in the microglia. CONCLUSIONS The present study demonstrates that etanercept restores the antinociceptive effect of morphine in morphine-tolerant rats by inhibition of proinflammatory cytokine TNF-α, IL-1β, and IL-6 expression and spinal neuroinflammation. The results suggest that etanercept could also be an adjuvant therapy for morphine tolerance, which extends the effectiveness of opioids in clinical pain management.
Collapse
Affiliation(s)
- Ching-Hui Shen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
He Y, Hsuchou H, Wu X, Kastin AJ, Khan RS, Pistell PJ, Wang WH, Feng J, Li Z, Guo X, Pan W. Interleukin-15 receptor is essential to facilitate GABA transmission and hippocampal-dependent memory. J Neurosci 2010; 30:4725-34. [PMID: 20357123 PMCID: PMC2862729 DOI: 10.1523/jneurosci.6160-09.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/06/2010] [Accepted: 02/26/2010] [Indexed: 11/21/2022] Open
Abstract
Interleukin-15 (IL15) is a cytokine produced by normal brain, but the functions of the IL15 system in normal adults are not yet clear. The hypothesis that the hippocampal IL15 system is essential for memory consolidation was tested by use of IL15Ralpha knock-out mice in behavioral, biochemical, immunohistological, and electron microscopic analyses. The knock-out mice showed deficits in memory, determined by the Stone T-maze and fear conditioning. In their hippocampi, the concentration of GABA was significantly lower. There were region-specific changes of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), with increased GAD-67-immunopositive interneurons in the stratum oriens of the CA1 region of the hippocampus, accompanied by nonsignificant reduction of GAD-67 synapses in the CA3 region. Western blotting showed an increase of GAD-65, but not GAD-67, in the hippocampal homogenate. The ultrastructure of the hippocampus remained intact in the knock-out mice. To further test the hypothesis that IL15 directly modulates GABA turnover by reuptake mechanisms, the dose-response relationship of IL15 on (3)H-GABA uptake was determined in two neuronal cell lines. The effective and nontoxic dose was further used in the synaptosomal uptake studies. IL15 decreased the uptake of (3)H-GABA in synaptosomes from the forebrain of wild-type mice. Consistent with this, IL15Ralpha knock-out mice had increased synaptosomal uptake of (3)H-GABA. Overall, the results show novel functions of a unique cytokine in normal hippocampal activity by regulating GABA transmission.
Collapse
Affiliation(s)
- Yi He
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Hung Hsuchou
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Xiaojun Wu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Abba J. Kastin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Reas S. Khan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Paul J. Pistell
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | | | - Jiming Feng
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, and
| | - Zengbiao Li
- Drumetix Laboratories, Greensboro, North Carolina 27409
| | - Xiaochuan Guo
- Drumetix Laboratories, Greensboro, North Carolina 27409
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| |
Collapse
|
45
|
Medhi B, Prakash A, Avti PK, Chakrabarti A, Khanduja KL. Intestinal inflammation and seizure susceptibility: understanding the role of tumour necrosis factor-alpha in a rat model. J Pharm Pharmacol 2010. [PMID: 19814869 DOI: 10.1211/jpp.61.10.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The aim of the study was to evaluate the correlation between colitis and susceptibility to seizures. METHODS Colitis was induced in Wistar rats by a single intracolonic administration of trinitrobenzene sulfonic acid (TNBS; 20 mg in 35% ethanol). The control group were given intracolonic vehicle. One group of rats with colitis were treated with thalidomide (150 mg/kg p.o.) daily for 14 days. The other colitis group received vehicle only. On day 15, seizure susceptibility was tested by administration of pentylenetetrazole (40 mg/kg i.p.). Colonic tissue was collected for estimation of morphological score, and malondialdehyde, superoxide dismutase, catalase and glutathione peroxidase. Tumour necrosis factor (TNF)-alpha levels were measured in serum and brain samples. KEY FINDINGS The colitis group showed a significant increase in seizure score and reduction in onset time compared with the control group. Thalidomide was protective against seizures, resulting in decreased seizure score and significantly delaying the onset of seizures. Thalidomide also provided significant protection against TNBS-induced colonic damage in terms of morphological and histological score and levels of lipid peroxidation, superoxide dismutase, catalase and glutathione peroxidase in colonic tissue. The level of TNF-alpha in serum was also reduced significantly whereas brain TNF-alpha level was reduced but not significantly. CONCLUSIONS TNBS-induced colitis increased seizure susceptibility to a subconvulsive dose of pentylenetetrazole; the immunomodulator thalidomide was protective.
Collapse
Affiliation(s)
- Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, India.
| | | | | | | | | |
Collapse
|
46
|
Pan W, Yu C, Hsuchou H, Khan RS, Kastin AJ. Cerebral microvascular IL15 is a novel mediator of TNF action. J Neurochem 2009; 111:819-27. [PMID: 19719822 DOI: 10.1111/j.1471-4159.2009.06371.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The blood-brain barrier is a gatekeeper and modulatory interface for the CNS. Cerebral endothelial cells are the major component of the blood-brain barrier, and they modify inflammatory signals from the circulation to the CNS by production and secretion of secondary substances. The inflammatory mediators induced by tumor necrosis factor alpha (TNF) were determined by microarray analysis of RBE4 cerebral endothelial cells, at 0, 6, 12, or 24 h after TNF treatment. Interleukin (IL)-15 and its receptors were among the most robustly up-regulated genes. This was confirmed by real-time RT-PCR and western blotting. The three subunits of the IL15 receptor complex (IL15Ralpha, IL2Rbeta, and IL2Rgamma) showed differential regulation by TNF in their time course and amplitude of increased expression. Consistent with increased expression of the specific high affinity receptor IL15Ralpha, TNF increased cellular uptake of (125)I-IL15 and enhanced the fluorescent intensity of Alexa568-IL15 in RBE4 cells. TNF treatment in mice also increased the level of expression of IL15 receptors in enriched cerebral microvessels. We conclude that the cerebral microvascular IL15 system is a novel inflammatory mediator that transduces the actions of TNF.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | | | | | | | |
Collapse
|
47
|
Kubota K, Inoue K, Hashimoto R, Kumamoto N, Kosuga A, Tatsumi M, Kamijima K, Kunugi H, Iwata N, Ozaki N, Takeda M, Tohyama M. Tumor necrosis factor receptor-associated protein 1 regulates cell adhesion and synaptic morphology via modulation of N-cadherin expression. J Neurochem 2009; 110:496-508. [PMID: 19490362 DOI: 10.1111/j.1471-4159.2009.06099.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An increase in serum tumor necrosis factor-alpha (TNF-alpha) levels is closely related to the pathogenesis of major depression. However, the underlying molecular mechanism between this increase and impairment of brain function remains elusive. To better understand TNF-alpha/TNF receptor 1 signaling in the brain, we analyzed the brain distribution and function of tumor necrosis factor receptor-associated protein 1 (TRAP1). Here we show that TRAP1 is broadly expressed in neurons in the mouse brain, including regions that are implicated in the pathogenesis of major depression. We demonstrate that small interfering RNA-mediated knockdown of TRAP1 in a neuronal cell line decreases tyrosine phosphorylation of STAT3, followed by a reduction of the transcription factor E2F1, resulting in a down-regulation of N-cadherin, and affects the adhesive properties of the cells. In addition, in cultured hippocampal neurons, reduced expression of N-cadherin by TRAP1 knockdown influences the morphology of dendritic spines. We also report a significant association between several single nucleotide polymorphisms in the TRAP1 gene and major depression. Our findings indicate that TRAP1 mediates TNF-alpha/TNF receptor 1 signaling to modulate N-cadherin expression and to regulate cell adhesion and synaptic morphology, which may contribute to the pathogenesis of major depression.
Collapse
Affiliation(s)
- Kyoko Kubota
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tian DS, Liu JL, Xie MJ, Zhan Y, Qu WS, Yu ZY, Tang ZP, Pan DJ, Wang W. Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J Neurochem 2009; 109:1658-67. [PMID: 19457130 DOI: 10.1111/j.1471-4159.2009.06077.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood-spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1beta (IL-1beta) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.
Collapse
Affiliation(s)
- Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Song XQ, Lv LX, Li WQ, Hao YH, Zhao JP. The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry 2009; 65:481-8. [PMID: 19058794 DOI: 10.1016/j.biopsych.2008.10.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 09/08/2008] [Accepted: 10/13/2008] [Indexed: 12/24/2022]
Abstract
BACKGROUND Many reports suggest that schizophrenia is associated with the inflammatory response mediated by cytokines, and nuclear factor-kappa B (NF-kappaB) regulates the expression of cytokines. However, it remains unclear whether the interaction between NF-kappaB and cytokines is implicated in schizophrenia and whether the effect of neuroleptics treatment for 4 weeks is associated with the alteration of cytokines. METHODS Sixty-five healthy subjects and 83 first-episode schizophrenic patients who met DSM-IV criteria and who were never treated with neuroleptics previously were included. Serum levels of cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were examined by using sandwich enzyme immunoassay (EIA). Peripheral blood mononuclear cell (PBMC) mRNA expressions of cytokines (IL-1beta, TNF-alpha) and NF-kappaB were detected by using semiquantitative reverse transcription polymerase chain reaction (RT-PCR). NF-kappaB activation was examined by using transcription factor assay kits. RESULTS Schizophrenic patients showed significantly higher serum levels and PBMC mRNA expressions of IL-1beta and TNF-alpha compared with healthy subjects. However, treatment with the neuroleptic risperidone for 4 weeks significantly decreased serum levels and PBMC mRNA expressions of IL-1beta in schizophrenic patients. NF-kappaB activation and PBMC mRNA expression in patients were significantly higher than those in healthy subjects. Furthermore, PBMC mRNA expressions of IL-1beta and TNF-alpha were positively correlated to NF-kappaB activation in both schizophrenic patients and healthy control subjects. CONCLUSIONS Schizophrenic patients showed activation of the cytokine system and immune disturbance. NF-kappaB activation may play a pivotal role in schizophrenia through interaction with cytokines.
Collapse
Affiliation(s)
- Xue-Qin Song
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
50
|
Ding Y, Li L. Lipopolysaccharide preconditioning induces protection against lipopolysaccharide-induced neurotoxicity in organotypic midbrain slice culture. Neurosci Bull 2008; 24:209-18. [PMID: 18668149 DOI: 10.1007/s12264-008-0408-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To identify the protective effect of lipopolysaccharide (LPS) preconditioning against LPS-induced inflammatory damage in dopaminergic neurons of midbrain slice culture and the possible mechanisms. METHODS After cultured in vitro for 14 d, the rat organotypic midbrain slices were pretreated with different concentrations (0, 1, 3, 6 or 10 ng/mL) of LPS for 24 h followed by treatment with 100 ng/mL LPS for 72 h. The whole slice viability was determined by measurement of the activity of lactic acid dehydrogenase (LDH). Tyrosine hydroxylase-immunoreactive (TH-IR) neurons and CD11b/c equivalent-immunoreactive (OX-42-IR) microglia in the slices were observed by immunohistochemical method, and tumor necrosis factor-alpha (TNF-alpha) levels in the culture media were detected by enzyme-linked immunosorbent assays (ELISA). RESULTS In the slices treated with 100 ng/mL LPS for 72 h, the number of TH-IR neurons reduced from 191+/-12 in the control slices to 46+/-4, and the LDH activity elevated obviously (P < 0.01), along with remarkably increased number of OX-42-IR cells and production of TNF-alpha (P < 0.01). Preconditioning with 3 or 6 ng/mL LPS attenuated neuron loss (the number of TH-IR neurons increased to 126+/-12 and 180+/-13, respectively) and markedly reduced LDH levels (P < 0.05), accompanied by significant decreases of OX-42-IR microglia activation and TNF-alpha production (P < 0.05). CONCLUSION Low-dose LPS preconditioning could protect dopaminergic neurons against inflammatory damage in rat midbrain slice culture, and inhibition of microglial activation and reduction of the proinflammatory factor TNF-alpha production may contribute to this protective effect. Further understanding the underlying mechanism of LPS preconditioning may open a new window for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Ye Ding
- Department of Pathology, Capital Medical University, Beijing, China
| | | |
Collapse
|