1
|
Sheikh HK, Ortiz CJC, Arshad T, Padrón JM, Khan H. Advancements in steroidal Pt(II) & Pt(IV) derivatives for targeted chemotherapy (2000-2023). Eur J Med Chem 2024; 271:116438. [PMID: 38685141 DOI: 10.1016/j.ejmech.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
One of the key strategies in chemotherapy involves crosslinking the DNA strands of cancer cells to impede their replication, with platinum (Pt) coordination compounds being a prominent class and cisplatin being its major representative. Steroidal ligands tethered to DNA interactive Pt core act as drug carriers for targeted therapy. While crosslinking of nuclear or mitochondrial DNA strands using coordination complexes has been studied for years, there remains a lack of comprehensive reviews addressing the advancements made in steroidal-Pt derivatives. This review specifically focuses on advancements made in steroid-tethered structural derivatives of Pt(II) or prodrug Pt(IV) for targeted chemotherapy, synthesized between 2000 and 2023. This period was deliberately chosen due to the widespread use of computational techniques for more accurate structure-based drug-design in last two decades. This review discusses the strategy behind tethering steroidal ligands such as testosterone, estrogen, bile acids, and cholesterol to the central DNA interactive Pt core through specific linker groups. The steroidal ligands function as drug delivery vehicles of DNA interactive Pt core and bind with their respective target receptors or proteins that are often overexpressed in cancer cells, thus enabling targeted delivery of Pt moiety to interact with DNA. We discussed structural features such as the location of the linker group on the steroid, the mono, bi, and tridentate configuration of the chelating arm in coordination with Pt, and the rigidity and flexibility of the linker group. The comparative in vitro, in vivo activities, and relative binding affinities of the designed compounds against standard Pt drugs are also discussed. We also provided a critique of observed trends and shortcomings. Our review will provide insights into future molecular designing of targeted DNA crosslinkers and their structural optimization to achieve desired drug properties. From this analysis, we proposed further research directions leading to the future of targeted chemotherapy.
Collapse
Affiliation(s)
- Hamdullah Khadim Sheikh
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Spain; Faculty of Pharmacy, University of Karachi, Pakistan
| | | | | | - José M Padrón
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
2
|
Gurba A, Taciak P, Sacharczuk M, Młynarczuk-Biały I, Bujalska-Zadrożny M, Fichna J. Gold (III) Derivatives in Colon Cancer Treatment. Int J Mol Sci 2022; 23:724. [PMID: 35054907 PMCID: PMC8775370 DOI: 10.3390/ijms23020724] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second in women. Standard patterns of antitumor therapy, including cisplatin, are ineffective due to their lack of specificity for tumor cells, development of drug resistance, and severe side effects. For this reason, new methods and strategies for CRC treatment are urgently needed. Current research includes novel platinum (Pt)- and other metal-based drugs such as gold (Au), silver (Ag), iridium (Ir), or ruthenium (Ru). Au(III) compounds are promising drug candidates for CRC treatment due to their structural similarity to Pt(II). Their advantage is their relatively good solubility in water, but their disadvantage is an unsatisfactory stability under physiological conditions. Due to these limitations, work is still underway to improve the formula of Au(III) complexes by combining with various types of ligands capable of stabilizing the Au(III) cation and preventing its reduction under physiological conditions. This review summarizes the achievements in the field of stable Au(III) complexes with potential cytotoxic activity restricted to cancer cells. Moreover, it has been shown that not nucleic acids but various protein structures such as thioredoxin reductase (TrxR) mediate the antitumor effects of Au derivatives. The state of the art of the in vivo studies so far conducted is also described.
Collapse
Affiliation(s)
- Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Mariusz Sacharczuk
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
- Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Izabela Młynarczuk-Biały
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
3
|
Frutos M, de la Torre MC, Sierra MA. Steroid Derived Mesoionic Gold and Silver Mono- and Polymetallic Carbenes. Inorg Chem 2015; 54:11174-85. [DOI: 10.1021/acs.inorgchem.5b01524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- María Frutos
- Instituto de Química Orgánica General, Consejo Superior
de Investigaciones Científicas (CSIC), Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Juan de la Cierva 3, 28006-Madrid, Spain
| | - María C. de la Torre
- Instituto de Química Orgánica General, Consejo Superior
de Investigaciones Científicas (CSIC), Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Juan de la Cierva 3, 28006-Madrid, Spain
| | - Miguel A. Sierra
- Departamento de Química Orgánica, Facultad
de Química, Universidad Complutense, Centro de Innovación en Química Avanzada (ORFEO-CINQA), 28040-Madrid, Spain
| |
Collapse
|
4
|
Sabounchei SJ, Shahriary P, Salehzadeh S, Gholiee Y, Nematollahi D, Chehregani A, Amani A. Gold(iii) complexes of 5-methyl-5-(pyridyl)-2,4-imidazolidenedione: synthesis, physicochemical, theoretical, antibacterial, and cytotoxicity investigation. NEW J CHEM 2014. [DOI: 10.1039/c3nj01042b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Affiliation(s)
- Franck Le Bideau
- Institut de Chimie de Strasbourg (UMR 7177), CNRS-Université de Strasbourg , Strasbourg 67000, France
| | | |
Collapse
|
6
|
Marin JJG. Plasma membrane transporters in modern liver pharmacology. SCIENTIFICA 2012; 2012:428139. [PMID: 24278693 PMCID: PMC3820525 DOI: 10.6064/2012/428139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 06/02/2023]
Abstract
The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca and CIBERehd, Spain
- Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.D. S09, 37007 Salamanca, Spain
| |
Collapse
|
7
|
|
8
|
Shaik N, Martínez A, Augustin I, Giovinazzo H, Varela-Ramírez A, Sanaú M, Aguilera RJ, Contel M. Synthesis of apoptosis-inducing iminophosphorane organogold(III) complexes and study of their interactions with biomolecular targets. Inorg Chem 2009; 48:1577-87. [PMID: 19146434 PMCID: PMC2765490 DOI: 10.1021/ic801925k] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New stable cationic organogold(III) complexes containing the "pincer" iminophosphorane ligand (2-C(6)H(4)-PPh(2)=NPh) have been prepared by reaction of the previously described [Au{kappa(2)-C,N-C(6)H(4)(PPh(2)=N(C(6)H(5))-2}Cl(2)] 1 and a combination of sodium or silver salts and appropriate ligands. The presence of the P atom in the PR(3) fragment has been used as a "spectroscopic marker" to study the in vitro stability (and oxidation state) of the new organogold complexes in solvents like dimethyl sulfoxide and water. Compounds with dithiocarbamato ligands and water-soluble phosphines of the general type [Au{kappa(2)-C,N-C(6)H(4)(PPh(2)=N(C(6)H(5))-2}(S(2)CN-R(2))]PF(6) (R = Me 2; Bz 3) and [Au{kappa(2)-C,N-C(6)H(4)(PPh(2)=N(C(6)H(5))-2}(PR(3))(n)Cl]PF(6) (PR(3) = P{Cp(m-C(6)H(4)-SO(3)Na)(2)} n = 1 4, n = 2 TPA {1,3,5-triaza-7-phosphaadamantane} 5) have been synthesized and characterized in solution and in the solid state (the crystal structure of 2 has been determined by X-ray diffraction studies). Complexes 1-5 have been tested as potential anticancer agents, and their cytotoxicity properties were evaluated in vitro against HeLa human cervical carcinoma and Jurkat-T acute lymphoblastic leukemia cells. Compounds 2 and 3 are quite cytotoxic for these two cell lines. There is a preferential induction of apoptosis in HeLa cells after treatment with 1-5. However in the case of the more cytotoxic complex (2), cell death is activated because of both apoptosis and necrosis. The interactions of 1-5 with Calf Thymus DNA have been evaluated by Thermal Denaturation methods. All these complexes show no or little (electrostatic) interaction with DNA. The interaction of 2 with two model proteins (cytochrome c and thioredoxin reductase) has been analyzed by spectroscopic methods (vis-UV and fluorescence). Compound 2 manifests a high reactivity toward both proteins. The mechanistic implications of these results are discussed here.
Collapse
Affiliation(s)
- Neha Shaik
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| | - Alberto Martínez
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| | - Idline Augustin
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| | - Hugh Giovinazzo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, US
| | - Armando Varela-Ramírez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, US
| | - Mercedes Sanaú
- Departamento de Química Inorgánica, Universidad de Valencia, Burjassot, Valencia, 46100, Spain
| | - Renato J. Aguilera
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, US
| | - María Contel
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| |
Collapse
|
9
|
Sievänen E. Exploitation of bile acid transport systems in prodrug design. Molecules 2007; 12:1859-89. [PMID: 17960093 DOI: 10.3390/12081859] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 11/16/2022] Open
Abstract
The enterohepatic circulation of bile acids is one of the most efficient recycling routes in the human body. It is a complex process involving numerous transport proteins, which serve to transport bile acids from the small intestine into portal circulation, from the portal circulation into the hepatocyte, from the hepatocyte into the bile, and from the gall bladder to the small intestine. The tremendous transport capacity and organ specificity of enterohepatic circulation combined with versatile derivatization possibilities, rigid steroidal backbone, enantiomeric purity, availability, and low cost have made bile acids attractive tools in designing pharmacological hybrid molecules and prodrugs with the view of improving intestinal absorption, increasing the metabolic stability of pharmaceuticals, specifically targeting drugs to organs involved in enterohepatic circulation, as well as sustaining therapeutically reasonable systemic concentrations of active agents. This article briefly describes bile acid transport proteins involved in enterohepatic circulation, summarizes the key factors affecting on the transport by these proteins, and reviews the use of bile acids and their derivatives in designing prodrugs capable of exploiting the bile acid transport system.
Collapse
Affiliation(s)
- Elina Sievänen
- University of Jyväskylä, Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland.
| |
Collapse
|
10
|
Gao D, Tian Y, Liang F, Ding L, Bi S, Chen Y, Zhang H, Yu A. Investigation on the interaction between colloidal gold and human complement factor 4 at different pH by spectral methods. Colloids Surf B Biointerfaces 2006; 47:71-7. [PMID: 16406519 DOI: 10.1016/j.colsurfb.2005.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Revised: 11/18/2005] [Accepted: 11/29/2005] [Indexed: 01/24/2023]
Abstract
The interaction between colloidal gold and human complement factor 4 (human C4) at different pH was investigated by spectral methods, including absorption and resonance light-scattering spectrometry. According to the changes of color and absorption spectra of colloidal gold solution in presence of human C4, the interaction between colloidal gold and human C4 was quantitatively investigated using a semi-empirical "flocculation parameter". At the same time, the changes of resonance light-scattering spectra and transmission electron microscopy (TEM) images indicate that the aggregation of colloidal gold happens by electrostatic interaction in presence of human C4 in the pH range 5-6. However, the colloidal gold solution remains stable at pH >6 and pH <5 due to the repulsive electrostatic interaction between colloidal gold and human C4. The flocculation parameter is directly proportional to the concentration of human C4 in the range from 9.7 to 233.0 microgl(-1). In addition, the interactions between the colloidal gold and bovine serum albumin (BSA) as well as human serum albumin (HSA) were also investigated using the same methods. It was found that there was no aggregation of colloidal gold in presence of BSA and HSA in the pH range 5-6. However, when the pH of solution is 4, the aggregation of colloidal gold happens. Because BSA and HSA have different structure, the intensity of aggregation of colloidal gold in presence of BSA is greater than that in presence of HSA at pH 4.
Collapse
Affiliation(s)
- Dejiang Gao
- College of Chemistry, Jilin University, Changchun 130012, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Synthesis, characterization, and aqueous chemistry of cytotoxic Au(III) polypyridyl complexes. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2005.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Virtanen E, Kolehmainen E. Use of Bile Acids in Pharmacological and Supramolecular Applications. European J Org Chem 2004. [DOI: 10.1002/ejoc.200300699] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Elina Virtanen
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, 40014 University of Jyväskylä, Finland, Fax: (internat.) +358‐14‐260‐2501
| | - Erkki Kolehmainen
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, 40014 University of Jyväskylä, Finland, Fax: (internat.) +358‐14‐260‐2501
| |
Collapse
|