1
|
Pradhan S, Mishra DK, Gurung P, Chettri A, Singha UK, Dutta T, Sinha B. An In-Silico Drug Designing Approach Attempted on a Newly Synthesized Co(II) Complex along with its Other Biological Activities: A Combined Investigation of both Experimental and Theoretical Aspects. J Fluoresc 2024:10.1007/s10895-024-03852-0. [PMID: 39031237 DOI: 10.1007/s10895-024-03852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
A new Co (II) complex incorporating a novel Schiff base ligand acquired from the condensation of 3,3'-Methylenedianiline and 2-Hydroxy-5-bromobenzaldehyde was synthesized and characterized. The synthesized complex was air and moisture stable, monomeric, and non-electrolytic in nature. Based on physical and spectral studies, tetrahedral conformation was ascribed to the synthesized Co (II) complex.Density Functional Theory (DFT) was used to analysis different electronic parameters of the optimized structure of Co(II) complex to reveal its stability.Using different analytic and spectroscopic techniques, the new Co (II) complex was established to interact with DNA quite effectively and works as an efficient metallo intercalators. The synthesized complex was discovered to cleave DNA significantly, so it can be inferred that the complex will inhibit the growth of pathogens. Molecular docking was performed to check the binding affinity of the cobalt complex with different receptors, responsible for different diseases. Proteins like progesterone receptor and induced myeloid leukemia cell differentiation Mcl-1 protein showed high binding affinity with this complex, and hence the complex might have some implications for inhibition of progesterone hormones in biological systems. Biological activity of the Co (II) complex was also predicted through computational analysis with SwissADME.Using strains of Escherichia coli, Klebsiella pneumoniae, Bacillus subtilis, and Staphylococcus aureus, an in vitro antibacterial activity of the ligand and Co (II) complex was carried out. This activity was further validated by a molecular docking investigation.
Collapse
Affiliation(s)
- Sudarshan Pradhan
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Dipu Kumar Mishra
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Pritika Gurung
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Anmol Chettri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Uttam Kumar Singha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
| |
Collapse
|
2
|
Burguera S, Frontera A, Bauza A. Regium-π Bonds Involving Nucleobases: Theoretical Study and Biological Implications. Inorg Chem 2023; 62:6740-6750. [PMID: 37083254 PMCID: PMC10155183 DOI: 10.1021/acs.inorgchem.3c00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In this study, we provide crystallographic (Protein Data Bank (PDB) inspection) and theoretical (RI-MP2/def2-TZVP//PBE0-D3/def2-SVP level of theory) evidence of the involvement of nucleobases in Regium-π bonds (RgBs). This noncovalent interaction involves an electrophilic site located on an element of group 11 (Cu, Ag, and Au) and an electron-rich species (lone pair, LP donor, or π-system). Concretely, an initial PDB search revealed several examples where RgBs were undertaken involving DNA bases and Cu(II), Ag(I), and Au(I/III) ions. While coordination positions (mainly at the N atoms of the base) are well known, the noncovalent binding force between these counterparts has been scarcely studied in the literature. In this regard, computational models shed light on the strength and directionality properties of the interaction, which was also further characterized from a charge-density perspective using Bader's "atoms in molecules" (AIM) theory, noncovalent interaction plot (NCIplot) visual index, and natural bonding orbital (NBO) analyses. As far as our knowledge extends, this is the first time that RgBs in metal-DNA complexes are systematically analyzed, and we believe the results might be useful for scientists working in the field of nucleic acid engineering and chemical biology as well as to increase the visibility of the interaction among the biological community.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Bauza
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| |
Collapse
|
3
|
Pan A, Bhaduri R, Mandal S, Kumar Tarai S, Bagchi A, Biswas A, Moi SC. Photophysical study on DNA & BSA binding and cytotoxic behaviour of piperidine-Pt(II) complexes: their kinetics & mechanism and molecular docking. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Al-Rashdi KS, Babgi BA, Ali EMM, Jedidi A, Emwas AHM, Davaasuren B, Jaremko M, Humphrey MG. Tuning anticancer properties and DNA-binding of Pt( ii) complexes via alteration of nitrogen softness/basicity of tridentate ligands †. RSC Adv 2023; 13:9333-9346. [PMID: 36959884 PMCID: PMC10028500 DOI: 10.1039/d3ra00395g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Nine tridentate Schiff base ligands of the type (N^N^O) were synthesized from reactions of primary amines {2-picolylamine (Py), N-phenyl-1,2-diaminobenzene (PhN), and N-phenyl-1,2-diaminoethane(EtN)} and salicylaldehyde derivatives {3-ethoxy (OEt), 4-diethylamine (NEt2) and 4-hydroxy (OH)}. Complexes with the general formula Pt(N^N^O)Cl were synthesized by reacting K2PtCl4 with the ligands in DMSO/ethanol mixtures. The ligands and their complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis. The DNA-binding behaviours of the platinum(ii) complexes were investigated by two techniques, indicating good binding affinities and a two-stage binding process for seven complexes: intercalation followed by switching to a covalent binding mode over time. The other two complexes covalently bond to ct-DNA without intercalation. Theoretical calculations were used to shed light on the electronic and steric factors that lead to the difference in DNA-binding behavior. The reactions of some platinum complexes with guanine were investigated experimentally and theoretically. The binding of the complexes with bovine serum albumin (BSA) indicated a static interaction with higher binding affinities for the ethoxy-containing complexes. The half maximal inhibitory concentration (IC50) values against MCF-7 and HepG2 cell lines suggest that platinum complexes with tridentate ligands of N-phenyl-o-phenylenediamine or pyridyl with 3-ethoxysalicylimine are good chemotherapeutic candidates. Pt-Py-OEt and Pt-PhN-OEt have IC50 values against MCF-7 of 13.27 and 10.97 μM, respectively, compared to 18.36 μM for cisplatin, while they have IC50 values against HepG2 of 6.99 and 10.15 μM, respectively, compared to 19.73 μM for cisplatin. The cell cycle interference behaviour with HepG2 of selected complexes is similar to that of cisplatin, suggesting apoptotic cell death. The current work highlights the impact of the tridentate ligand on the biological properties of platinum complexes. The article illustrates the design flexibility of tridentate ligands and the resultant platinum complexes, highlighting the impact of this design flexibility on the anticancer potential.![]()
Collapse
Affiliation(s)
- Kamelah S. Al-Rashdi
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityP.O. Box 80203Jeddah 21589Saudi Arabia+966 555563702
- Department of Chemistry, Al-Qunfudah University College, Umm Al-Qura UniversityAl-Qunfudah 1109Saudi Arabia
| | - Bandar A. Babgi
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityP.O. Box 80203Jeddah 21589Saudi Arabia+966 555563702
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityP.O. Box 80203Jeddah 21589Saudi Arabia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta UniversityTanta 31527Egypt
| | - Abdesslem Jedidi
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityP.O. Box 80203Jeddah 21589Saudi Arabia+966 555563702
| | - Abdul-Hamid M. Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Bambar Davaasuren
- Core Labs, King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
5
|
K.M. PK, B.C. VK, M.N. SK, P. RK, S. D, R.J. B, H.D. R. Synthesis, structural characterization, CT-DNA interaction study and antithrombotic activity of new ortho-vanillin-based chiral (Se,N,O) donor ligands and their Pd complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Kava HW, Leung WY, Galea AM, Murray V. The DNA binding properties of 9-aminoacridine carboxamide Pt complexes. Bioorg Med Chem 2021; 40:116191. [PMID: 33965841 DOI: 10.1016/j.bmc.2021.116191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
Cisplatin analogues with an attached DNA-binding moiety represent a potentially effective class of DNA-damaging anti-tumour agents because they possess higher affinities for DNA and different DNA damage profiles compared with cisplatin. In this study, the interaction of four 9-aminoacridine carboxamide Pt complexes with purified DNA was investigated: firstly, using a fluorescent intercalator displacement (FID) assay with ethidium bromide; and secondly, with a DNA unwinding assay. The relative capacity of these compounds to perturb the fluorescence induced by DNA-bound ethidium bromide at clinically relevant drug concentrations was assessed over a 24-h period using an FID assay. All analogues were found to reduce the level of ethidium bromide-induced fluorescence in a concentration-dependent manner from the earliest time point of 10 min onwards. Cisplatin, however, showed a markedly slower reduction in ethidium bromide-induced fluorescence from 2 h onwards, producing a similar level of fluorescence reduction as that produced by the analogues from 6 h onwards. These results suggest that the altered DNA-binding modes of the DNA-targeted analogues confer a more efficient mechanism for DNA binding compared with cisplatin. Relative DNA binding coefficients were also determined for each of the compounds studied. With the DNA unwinding assay, an unwinding angle can be calculated from the coalescence point of plasmids in an agarose gel. It was found that all 9-aminoacridine carboxamide analogues had a greater unwinding angle compared with cisplatin. The knowledge obtained from these two assays has helped to further characterise the cisplatin analogues and could facilitate the development of more effective anti-tumour agents.
Collapse
Affiliation(s)
- Hieronimus W Kava
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wai Y Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anne M Galea
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
CpG methylation increases the DNA binding of 9-aminoacridine carboxamide Pt analogues. Bioorg Med Chem 2016; 24:4701-4710. [DOI: 10.1016/j.bmc.2016.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/25/2022]
|
8
|
Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 2016; 77:1103-24. [PMID: 26886018 DOI: 10.1007/s00280-016-2976-z] [Citation(s) in RCA: 548] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022]
Abstract
Platinum-based drugs cisplatin, carboplatin and oxaliplatin are widely used in the therapy of human neoplasms. Their clinical success is, however, limited due to severe side effects and intrinsic or acquired resistance to the treatment. Much effort has been put into the development of new platinum anticancer complexes, but none of them has reached worldwide clinical application so far. Nedaplatin, lobaplatin and heptaplatin received only regional approval. Some new platinum complexes and platinum drug formulations are undergoing clinical trials. Here, we review the main classes of new platinum drug candidates, such as sterically hindered complexes, monofunctional platinum drugs, complexes with biologically active ligands, trans-configured and polynuclear platinum complexes, platinum(IV) prodrugs and platinum-based drug delivery systems. For each class of compounds, a detailed overview of the mechanism of action is given, the cytotoxicity is compared to that of the clinically used platinum drugs, and the clinical perspectives are discussed. A critical analysis of lessons to be learned is presented. Finally, a general outlook regarding future directions in the field of new platinum drugs is given.
Collapse
|
9
|
Pages BJ, Ang DL, Wright EP, Aldrich-Wright JR. Metal complex interactions with DNA. Dalton Trans 2015; 44:3505-26. [DOI: 10.1039/c4dt02700k] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing numbers of DNA structures are being revealed using a diverse range of transition metal complexes and biophysical spectroscopic techniques. Here we present a review of metal complex-DNA interactions in which several binding modes and DNA structural forms are explored.
Collapse
Affiliation(s)
- Benjamin J. Pages
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Dale L. Ang
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Elisé P. Wright
- School of Medicine
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Janice R. Aldrich-Wright
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| |
Collapse
|
10
|
Teixeira C, Vale N, Pérez B, Gomes A, Gomes JRB, Gomes P. "Recycling" classical drugs for malaria. Chem Rev 2014; 114:11164-220. [PMID: 25329927 DOI: 10.1021/cr500123g] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Teixeira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal.,CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Bianca Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Ana Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - José R B Gomes
- CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| |
Collapse
|
11
|
D'Errico S, Oliviero G, Borbone N, Piccialli V, Pinto B, De Falco F, Maiuri MC, Carnuccio R, Costantino V, Nici F, Piccialli G. Synthesis and pharmacological evaluation of modified adenosines joined to mono-functional platinum moieties. Molecules 2014; 19:9339-53. [PMID: 24995920 PMCID: PMC6271865 DOI: 10.3390/molecules19079339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 12/23/2022] Open
Abstract
The synthesis of four novel platinum complexes, bearing N6-(6-amino-hexyl)adenosine or a 1,6-di(adenosin-N6-yl)-hexane respectively, as ligands of mono-functional cisplatin or monochloro(ethylendiamine)platinum(II), is reported. The chemistry exploits the high affinity of the charged platinum centres towards the N7 position of the adenosine base system and a primary amine of an alkyl chain installed on the C6 position of the purine. The cytotoxic behaviour of the synthesized complexes has been studied in A549 adenocarcinomic human alveolar basal epithelial and MCF7 human breast adenocarcinomic cancer cell lines, in order to investigate their effects on cell viability and proliferation.
Collapse
Affiliation(s)
- Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Giorgia Oliviero
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", via Cintia, 21, 80126 Napoli, Italy.
| | - Brunella Pinto
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Francesca De Falco
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Maria Chiara Maiuri
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Rosa Carnuccio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Valeria Costantino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Fabrizia Nici
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", via D. Montesano, 49, 80131 Napoli, Italy.
| |
Collapse
|
12
|
Kava HW, Galea AM, Md. Jamil F, Feng Y, Murray V. Characterising the atypical 5′-CG DNA sequence specificity of 9-aminoacridine carboxamide Pt complexes. J Biol Inorg Chem 2014; 19:997-1007. [DOI: 10.1007/s00775-014-1144-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
|
13
|
Emmerich D, Vanchanagiri K, Baratto LC, Schmidt H, Paschke R. Synthesis and studies of anticancer properties of lupane-type triterpenoid derivatives containing a cisplatin fragment. Eur J Med Chem 2014; 75:460-6. [PMID: 24561674 DOI: 10.1016/j.ejmech.2014.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Both betulinic acid 1 and cisplatin are promising antitumor agents, which induce apoptotic cell death of cancer cells. In the present investigation a new series of betulinic acid-cisplatin conjugates were synthesized and cytotoxicity and selectivity were assessed against five different tumor cell lines. The aim was to combine two structural units, both related with apoptosis induction. The derivatives exerted a dose-dependent antiproliferative action at micromolar concentrations and the effect of these structural variations on anticancer activity was studied and discussed. Several compounds revealed significant antitumor activity, as the most active substance 3-O-acetylbetulinic (2-(2-aminoethyl)aminoethyl)amide (IC50=1.30-2.24 μM). Interestingly, Betulinic acid-cisplatin conjugates were less cytotoxic than the precursors.
Collapse
Affiliation(s)
- Daniel Emmerich
- Biozentrum, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Kranthi Vanchanagiri
- Biozentrum, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Leopoldo C Baratto
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Centro Politécnico, 81531-970 Curitiba, PR, Brazil
| | - Harry Schmidt
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany
| | - Reinhard Paschke
- Biozentrum, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany.
| |
Collapse
|
14
|
Desbois N, Pertuit D, Moretto J, Cachia C, Chauffert B, Bouyer F. cis-Dichloroplatinum(II) complexes tethered to dibenzo[c,h][1,6]naphthyridin-6-ones: Synthesis and cytotoxicity in human cancer cell lines in vitro. Eur J Med Chem 2013; 69:719-27. [DOI: 10.1016/j.ejmech.2013.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022]
|
15
|
Synthesis, Characterization, and Interaction with Biomolecules of Platinum(II) Complexes with Shikimic Acid-Based Ligands. Bioinorg Chem Appl 2013; 2013:565032. [PMID: 23533373 PMCID: PMC3603162 DOI: 10.1155/2013/565032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/03/2013] [Indexed: 12/11/2022] Open
Abstract
Starting from the active ingredient shikimic acid (SA) of traditional Chinese medicine and NH2(CH2)nOH, (n = 2–6), we have synthesized a series of new water-soluble Pt(II) complexes PtLa–eCl2, where La–e are chelating diamine ligands with carbon chain covalently attached to SA (La–e = SA-NH(CH2)nNHCH2CH2NH2; La, n = 2; Lb, n = 3; Lc, n = 4; Ld, n = 5; Le, n = 6). The results of the elemental analysis, LC-MS, capillary electrophoresis, and 1H, 13C NMR indicated that there was only one product (isomer) formed under the present experimental conditions, in which the coordinate mode of PtLa–eCl2 was two-amine bidentate. Their in vitro cytotoxic activities were evaluated by MTT method, where these compounds only exhibited low cytotoxicity towards BEL7404, which should correlate their low lipophilicity. The interactions of the five Pt(II) complexes with DNA were investigated by agarose gel electrophoresis, which suggests that the Pt(II) complexes could induce DNA alteration. We also studied the interactions of the Pt(II) complexes with 5′-GMP with ESI-MS and 1H NMR and found that PtLbCl2, PtLcCl2, and PtLdCl2 could react with 5′-GMP to form mono-GMP and bis-GMP adducts. Furthermore, the cell-cycle analysis revealed that PtLbCl2, PtLcCl2 cause cell G2-phase arrest after incubation for 72 h. Overall, these water-soluble Pt(II) complexes interact with DNA mainly through covalent binding, which blocks the DNA synthesis and replication and thus induces cytotoxicity that weakens as the length of carbon chain increases.
Collapse
|
16
|
Murray V, Campbell HM, Gero AM. Plasmodium falciparum: The potential of the cancer chemotherapeutic agent cisplatin and its analogues as anti-malarials. Exp Parasitol 2012; 132:440-3. [DOI: 10.1016/j.exppara.2012.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
17
|
Duskova K, Sierra S, Fernández MJ, Gude L, Lorente A. Synthesis and DNA interaction of ethylenediamine platinum(II) complexes linked to DNA intercalants. Bioorg Med Chem 2012; 20:7112-8. [DOI: 10.1016/j.bmc.2012.09.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
|
18
|
Bouyer F, Moretto J, Pertuit D, Szollosi A, Lacaille-Dubois MA, Blache Y, Chauffert B, Desbois N. Synthesis, cytotoxicity and structure-activity relationships between ester and amide functionalities in novel acridine-based platinum(II) complexes. J Inorg Biochem 2012; 110:51-7. [PMID: 22459174 DOI: 10.1016/j.jinorgbio.2012.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 11/18/2022]
Abstract
In order to improve the pharmacological profile of the anticancer drug cisplatin, several new acridine-based tethered (ethane-1,2-diamine)platinum(II) complexes connected by a polymethylene chain were synthetized. Activity-structure relationship between amide or ester functionalities was explored by changing acridine-9-carboxamide into acridine-9-carboxylate chromophore. The in vitro cytotoxicity of these new complexes was assessed in human colic HCT 116, SW480 and HT-29 cancer cell lines. Series of complexes bearing the acridine-9-carboxylate chromophore displayed higher cytotoxic effect than acridine-9-carboxamide complexes, with gradual effect according to the size of the polymethylene linker.
Collapse
Affiliation(s)
- Florence Bouyer
- INSERM UMR U866, Facultés de Médecine & Pharmacie, 7 boulevard Jeanne d'Arc, BP 89700, 21079 Dijon cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Complexes of Pd(II) and Pt(II) with 9-aminoacridine: reactions with DNA and study of their antiproliferative activity. Bioinorg Chem Appl 2011:98732. [PMID: 18364995 PMCID: PMC2266976 DOI: 10.1155/2007/98732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 05/10/2007] [Indexed: 12/05/2022] Open
Abstract
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were
prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was
also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the
compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Collapse
|
20
|
Murray V, Campbell HM, Gero AM. Plasmodium falciparum: DNA sequence specificity of cisplatin and cisplatin analogues. Exp Parasitol 2011; 128:396-400. [PMID: 21616072 DOI: 10.1016/j.exppara.2011.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 11/27/2022]
Abstract
In this paper, we provided evidence that cisplatin is able to form adducts with cellular DNA in Plasmodium falciparum. The DNA sequence specificity of cisplatin adduct formation was determined in trophozoite-enriched P. falciparum cells and this paper represents the first occasion that the sequence specificity of cisplatin DNA damage has been observed in malaria cells. Utilising a sub-telomeric, 692 bp repeat sequence in the P. falciparum genome, we were able to investigate the DNA adducts formed by cisplatin and five analogues. A run of eight consecutive guanines was the most prominent site of DNA damage in the malarial cells. This study suggests that the mechanism of P. falciparum cell death caused by cisplatin involves damage to DNA and hence inhibition of DNA replication and cell division.
Collapse
Affiliation(s)
- Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
21
|
The sequence selectivity of DNA-targeted 9-aminoacridine cisplatin analogues in a telomere-containing DNA sequence. J Biol Inorg Chem 2011; 16:735-43. [DOI: 10.1007/s00775-011-0774-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
|
22
|
Substituted 9-aminoacridine-4-carboxamides tethered to platinum(II)diamine complexes: Chemistry, cytotoxicity and DNA sequence selectivity. J Inorg Biochem 2010; 104:815-9. [PMID: 20494445 DOI: 10.1016/j.jinorgbio.2010.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/16/2010] [Accepted: 03/19/2010] [Indexed: 11/24/2022]
|
23
|
Wang X, Guo Z. Towards the rational design of platinum(ii) and gold(iii) complexes as antitumour agents. Dalton Trans 2008:1521-32. [DOI: 10.1039/b715903j] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Hoog PD, Boldron C, Gamez P, Sliedregt-Bol K, Roland I, Pitié M, Kiss R, Meunier B, Reedijk J. New approach for the preparation of efficient DNA cleaving agents: ditopic copper-platinum complexes based on 3-Clip-Phen and cisplatin. J Med Chem 2007; 50:3148-52. [PMID: 17521178 DOI: 10.1021/jm0614331] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and synthesis of new heterodinuclear DNA-targeting agents are described. The abilities of cisplatin and Cu(3-Clip-Phen) [Cu(1-(1,10-phenanthrolin-3-yloxy)-3-(1,10-phenanthrolin-8-yloxy)propan-2-amine)Cl2], an artificial DNA-cleaving agent, have been combined through their "covalent coupling". This strategy has led to bifunctional complexes that are able to cleave the DNA in a double-stranded fashion in contrast to Cu(3-Clip-Phen) alone and have promising cytotoxicities compared to cisplatin in several cell lines.
Collapse
Affiliation(s)
- Paul de Hoog
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yousouf SJ, Brodie CR, Wheate NJ, Aldrich-Wright JR. Synthesis of a heterodinuclear ruthenium(II)–platinum(II) complex linked by l-cysteine methyl ester. Polyhedron 2007. [DOI: 10.1016/j.poly.2006.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Moura C, Vítor RF, Maria L, Paulo A, Santos IC, Santos I. Rhenium(v) oxocomplexes with novel pyrazolyl-based N4- and N3S-donor chelators. Dalton Trans 2006:5630-40. [PMID: 17225899 DOI: 10.1039/b611034g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel pyrazolyl-based ligands 3,5-Me2pz(CH2)2NH(CH2)2NH(CH2)2NH2 and pz*(CH2)2NH-Gly-CH2STrit (pz*=pz, 3,5-Me2pz, 4-(EtOOC)CH(2)-3,5-Me2pz) were synthesized, and their suitability to stabilize Re(V) oxocomplexes was evaluated using different starting materials, namely (NBu4)[ReOCl4], [ReOCl3(PPh3)2] and trans-[ReO2(py)4]Cl. Compound reacts with trans-[ReO2(py)4]Cl yielding the cationic compound [ReO(OMe){3,5-Me2pz(CH2)2N(CH2)2NH(CH2)2NH2}](BPh4) in a low isolated yield. In contrast, the neutral complexes [ReO{pz*(CH2)2NH-Gly-CH2S}] (pz*=pz, 3,5-Me2pz, 4-(EtOOCCH2)-3,5-Me2pz) were synthesized almost quantitatively by reacting [ReOCl3(PPh3)2] or (NBu4)[ReOCl4] with the trityl-protected chelators. The X-ray diffraction analysis of and confirmed the tetradentate coordination mode of the respective ancillary ligands. In the monoanionic chelator coordinates to the metal through four nitrogen atoms, while in the chelator is trianionic, coordinating to the metal through three nitrogens and one sulfur atom. Solution NMR studies of , including two-dimensional NMR techniques (1H COSY and 1H/13C HSQC), confirmed that the N3S coordination mode of the chelators is retained in solution. Unlike , complexes may be considered relevant in the development of radiopharmaceuticals, as further corroborated by the synthesis of the congener [99mTcO{pz(CH2)2-NH-Gly-CH2S}]. This radioactive compound was obtained from 99mTcO4- in aqueous medium, in almost quantitative yield and with high specific activity and radiochemical purity.
Collapse
Affiliation(s)
- Carolina Moura
- Departamento de Química, ITN, Estrada Nacional 10, 2686-953, Sacavém Codex, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Targeting platinum anti-tumour drugs: Overview of strategies employed to reduce systemic toxicity. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.03.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Brabec V, Kasparkova J. Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 2005; 8:131-46. [PMID: 15894512 DOI: 10.1016/j.drup.2005.04.006] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/26/2022]
Abstract
The importance of platinum drugs in cancer chemotherapy is underscored by the clinical success of cisplatin [cis-diamminedichloroplatinum(II)] and its analogues and by clinical trials of other, less toxic platinum complexes that are active against resistant tumors. The antitumor effect of platinum complexes is believed to result from their ability to form various types of adducts with DNA. Nevertheless, drug resistance can occur by several ways: increased drug efflux, drug inactivation, alterations in drug target, processing of drug-induced damage, and evasion of apoptosis. This review focuses on mechanisms of resistance and sensitivity of tumors to conventional cisplatin associated with DNA modifications. We also discuss molecular mechanisms underlying resistance and sensitivity of tumors to the new platinum compounds synthesized with the goal to overcome resistance of tumors to established platinum drugs. Importantly, a number of new platinum compounds were designed to test the hypothesis that there is a correlation between the extent of resistance of tumors to these agents and their ability to induce a certain kind of damage or conformational change in DNA. Hence, information on DNA-binding modes, as well as recognition and repair of DNA damage is discussed, since this information may be exploited for improved structure-activity relationships.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | |
Collapse
|
29
|
Gao J, Woolley FR, Zingaro RA. In Vitro Anticancer Activities and Optical Imaging of Novel Intercalative Non-Cisplatin Conjugates. J Med Chem 2005; 48:7192-7. [PMID: 16279777 DOI: 10.1021/jm050497t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first pi-conjugated macrocyclic diimine and triaza DNA-binding intercalators and their platinum(II) conjugates have been synthesized by direct Schiff base cyclocondensation. The in vitro anticancer activities of compounds 3, 4, and 5 were tested on five cancer cell lines: MCF-7, A549, P388, A2780, and A2780cisR. Ovarian tumors were included specifically to evaluate the new conjugates' ability to circumvent A2780cisR resistance. Antitumor effects of the newly conjugated compounds were compared to those of cisplatin. The data clearly indicate that improved drug efficiencies are achieved as a result of the intercalative moieties. The luminescent probe that was integrated in complexes 8-10 made it possible to monitor drug penetration using optical imaging. Enhanced targeting of tumor nuclei by the study compounds was confirmed by confocal microscopy. This paper describes a new class of platinum-based antitumorals differing from cisplatin in several critical aspects with the potential for significantly improving clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Jian Gao
- Department of Radiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas 78229-3900, USA.
| | | | | |
Collapse
|
30
|
Baruah H, Bierbach U. Biophysical characterization and molecular modeling of the coordinative-intercalative DNA monoadduct of a platinum-acridinylthiourea agent in a site-specifically modified dodecamer. J Biol Inorg Chem 2004; 9:335-44. [PMID: 15024635 DOI: 10.1007/s00775-004-0534-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
The guanine- N7 monoadduct of [Pt(en)Cl(ACRAMTU)](NO(3))(2) (PT-ACRAMTU; en=ethane-1,2-diamine, ACRAMTU=1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea), a dual metalating/intercalating cytotoxic agent, was generated in a double-stranded dodecamer, d(CCTCTCG*TCTCC/GGAGACGAGAGG) (III*), and isolated by preparative reverse-phase high-performance liquid chromatography (HPLC). The adduct was characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), circular-dichroism spectropolarimetry (CD), UV-melting curves, and NMR spectroscopy. In addition, a molecular mechanics/restrained molecular dynamics (MM/rMD) study was performed for this adduct using the AMBER force field. Monoadduction of the sequence leads to a pronounced increase in melting temperature, Delta T(m)= T(m)(III*)- T(m)(III)=9.7 degrees C. Because there is complete enthalpy-entropy compensation, binding occurs without noticeable thermodynamic destabilization. This feature and the CD (induced-ligand circular dichroism) and NMR (upfield shifts of aromatic acridine proton signals) data are indicative of a unique, nondenaturing dual-binding mode that involves partial intercalation of the acridine chromophore. An energy-minimized AMBER model ofIII* demonstrates that platination of G7- N7 of guanine in the major groove and partial insertion of the acridine moiety into the C6G19/G7C18 base step on the 5' face of the modified purine base is feasible and supportive of the experimental results. Differences in the biophysical properties betweenIII* and duplexes containing adducts of the clinical-drug cisplatin are outlined, and possible biological consequences are discussed.
Collapse
Affiliation(s)
- Hemanta Baruah
- Department of Chemistry, Wake Forest University, PO Box 7486 Reynolda Station, Winston-Salem, NC 27109, USA
| | | |
Collapse
|
31
|
Abstract
The many activities of metal ions in biology have stimulated the development of metal-based therapeutics. Cisplatin, as one of the leading metal-based drugs, is widely used in treatment of cancer, being especially effective against genitourinary tumors such as testicular. Significant side effects and drug resistance, however, have limited its clinical applications. Biological carriers conjugated to cisplatin analogs have improved specificity for tumor tissue, thereby reducing side effects and drug resistance. Platinum complexes with distinctively different DNA binding modes from that of cisplatin also exhibit promising pharmacological properties. Ruthenium and gold complexes with antitumor activity have also evolved. Other metal-based chemotherapeutic compounds have been investigated for potential medicinal applications, including superoxide dismutase mimics and metal-based NO donors/scavengers. These compounds have the potential to modulate the biological properties of superoxide anion and nitric oxide.
Collapse
Affiliation(s)
- Christiana Xin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | |
Collapse
|
32
|
Robillard MS, Davies NP, van der Marel GA, van Boom JH, Reedijk J, Murray V. The interaction of peptide-tethered platinum(II) complexes with DNA. J Inorg Biochem 2003; 96:331-8. [PMID: 12888268 DOI: 10.1016/s0162-0134(03)00180-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sequence specificity and intensity of DNA damage induced by six peptide-tethered platinum complexes was compared to cisplatin and Pt(en)Cl(2). DNA damage was investigated in pUC19 plasmid and in intact HeLa cells, and quantitatively analyzed using a Taq DNA polymerase/linear amplification assay. The DNA sequence specificity of the peptide-platinum compounds was found to be very similar to cisplatin and Pt(en)Cl(2), with runs of consecutive guanines being the most intensely damaged sites. The observed reactivity of the peptide-platinum complexes towards plasmid DNA was lower compared to cisplatin and Pt(en)Cl(2), with the glycine-tethered complex 3 and the phenylalanine-tethered complex 4 producing the highest relative damage intensity, followed by (in decreasing order) lysine-tethered (5), arginine-tethered (6), serine-tethered (7) and glutamate-tethered (8). The reactivity of the peptide-platinum complexes towards cellular DNA was also lower compared to cisplatin and Pt(en)Cl(2). For most investigated complexes, the relative damage intensities were found to be similar in cells compared to plasmid DNA, but were greatly reduced for 3 and 4. The lysine-tethered 5 complex produced the highest DNA damage intensity in cells followed by (in decreasing order) 6, 7, 3, 4 and 8.
Collapse
Affiliation(s)
- Marc S Robillard
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Gude L, Fernández MJ, Grant KB, Lorente A. DNA Interaction and photonicking properties of DNA-targeted acridine (2,2'-Bipyridine)platinum(II) complexes. Bioorg Med Chem Lett 2002; 12:3135-9. [PMID: 12372518 DOI: 10.1016/s0960-894x(02)00657-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of two (2,2'-bipyridine)platinum(II) complexes tethered to one or two acridine chromophores is reported. These acridine complexes efficiently unwind and photocleave supercoiled plasmid DNA under physiological conditions of temperature and pH.
Collapse
Affiliation(s)
- Lourdes Gude
- Departamento de Qui;mica Orgánica, Universidad de Alcalá, 28871-Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Anthracene and naphthalene (2,2′-bipyridine)platinum(II) conjugates: synthesis and DNA photocleavage. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00937-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
|