1
|
Mohr A, Renaudineau Y, Bagacean C, Pers JO, Jamin C, Bordron A. Regulatory B lymphocyte functions should be considered in chronic lymphocytic leukemia. Oncoimmunology 2016; 5:e1132977. [PMID: 27467951 DOI: 10.1080/2162402x.2015.1132977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an abnormal expansion of mature B cells in the bone marrow and their accumulation in blood and secondary lymphoid organs. Tumor CLL cells share expression of various surface molecules with many subsets of B cells and have several common characteristics with regulatory B cells (B regs). However, the identification of B regs and their role in CLL remain elusive. The aim of this review is to summarize recent works regarding the regulatory and phenotypic characteristic of B regs and their associated effects on the immune system. It is also meant to highlight their potential importance with regards to the immunotherapeutic response.
Collapse
Affiliation(s)
- Audrey Mohr
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| | - Yves Renaudineau
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Cristina Bagacean
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Jacques-Olivier Pers
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| | - Christophe Jamin
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Anne Bordron
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| |
Collapse
|
2
|
Clark EA. A Short History of the B-Cell-Associated Surface Molecule CD40. Front Immunol 2014; 5:472. [PMID: 25324844 PMCID: PMC4179537 DOI: 10.3389/fimmu.2014.00472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/14/2014] [Indexed: 12/28/2022] Open
Abstract
This perspective traces developments using monoclonal antibody technology that led to the discovery of CD40, a receptor that on B cells mediates “T cell help” and on dendritic cells helps to program CD8 T cell responses. I discuss some things that we got right during the path of discovery and some things we missed. Immunotherapies that block or stimulate the CD40 pathway hold great promise for treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Edward A Clark
- Department of Immunology, University of Washington , Seattle, WA , USA
| |
Collapse
|
3
|
Bishop GA. The Power of Monoclonal Antibodies as Agents of Discovery: CD40 Revealed as a B Lymphocyte Costimulator. THE JOURNAL OF IMMUNOLOGY 2012; 188:4127-9. [DOI: 10.4049/jimmunol.1200775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
CD40-mediated cell death requires TRAF6 recruitment. Immunobiology 2011; 217:375-83. [PMID: 21813202 DOI: 10.1016/j.imbio.2011.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/15/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022]
Abstract
CD40 has an important role in T cell-B cell interaction which rescues B lymphocytes from undergoing apoptosis. However, various studies have demonstrated that CD40 can also play a direct role in the induction of specific cell death and thus in the inhibition of tumour cell proliferation. Our previous studies showed that CD40-mediated cell death was independent of caspases and required no de novo protein synthesis. Knowing that CD40 signaling is mediated by its association with several intracellular effectors, including members of TNFR-associated factors (TRAFs) family, the goal of the present study is to investigate the mechanisms involved in the induction of cell death by CD40. Our data reveals that CD40-mediated cell death required lysosomal membrane permeabilization and the subsequent cathepsin B release. In addition, CD40 homodimer formation, a phenomenon known to be necessary for some CD40-mediated signals, was shown to negatively regulate cell death induced by CD40. Moreover, using HEK293 cells ectopically expressing CD40 deficient in TRAF binding, we showed that CD40-mediated apoptosis occurred in the absence of TRAF2 and TRAF3 association, but was significantly reduced when CD40 was deficient in its TRAF6 binding. Therefore, by outlining the role of lysosomal pathways and intracellular effectors, namely TRAF6 in CD40-mediated cell death, our study identifies new targets for anti-cancer therapy.
Collapse
|
5
|
Hollmann A, Aloyz R, Baker K, Dirnhofer S, Owens T, Sladek R, Tzankov A. Vav-1 expression correlates with NFκB activation and CD40-mediated cell death in diffuse large B-cell lymphoma cell lines. Hematol Oncol 2010; 28:142-50. [PMID: 20155735 DOI: 10.1002/hon.935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy with a variable response to therapy. We have previously shown that DLBCL cell lines differ in their susceptibility to CD40-mediated cell death, and that resistance to CD40-targeted antibodies correlated with increased expression of markers of immature B-cell and absence of Vav-1 mRNA. We used gene expression profiling to investigate the mechanism of CD40 resistance in these cell lines, and found that resistance correlated with lack of Vav-1 and inability to activate NFκB upon CD40 ligation. Analysis of tissue microarrays of 213 DLBCL cases revealed that Vav-1 expression correlated with a higher proliferative index and the presence of the post-germinal centre marker Irf-4. Our results suggest that Vav-1 expression may be associated with activated B-cell DLBCL origin and higher proliferative activity, and indicate Vav-1 as a potential marker to identify tumours likely to respond to CD40-targeted therapies.
Collapse
Affiliation(s)
- Annette Hollmann
- Montreal Center for Experimental Therapeutics in Cancer, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
6
|
Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, Richards JO, Vostiar I, Joyce PF, Repp R, Desjarlais JR, Zhukovsky EA. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 2008; 68:8049-57. [PMID: 18829563 DOI: 10.1158/0008-5472.can-08-2268] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD19 is a pan B-cell surface receptor expressed from pro-B-cell development until its down-regulation during terminal differentiation into plasma cells. CD19 represents an attractive immunotherapy target for cancers of lymphoid origin due to its high expression levels on the vast majority of non-Hodgkin's lymphomas and some leukemias. A humanized anti-CD19 antibody with an engineered Fc domain (XmAb5574) was generated to increase binding to Fcgamma receptors on immune cells and thus increase Fc-mediated effector functions. In vitro, XmAb5574 enhanced antibody-dependent cell-mediated cytotoxicity 100-fold to 1,000-fold relative to an anti-CD19 IgG1 analogue against a broad range of B-lymphoma and leukemia cell lines. Furthermore, XmAb5574 conferred antibody-dependent cell-mediated cytotoxicity against patient-derived acute lymphoblastic leukemia and mantle cell lymphoma cells, whereas the IgG1 analogue was inactive. XmAb5574 also increased antibody-dependent cellular phagocytosis and apoptosis. In vivo, XmAb5574 significantly inhibited lymphoma growth in prophylactic and established mouse xenograft models, and showed more potent antitumor activity than its IgG1 analogue. Comparisons with a variant incapable of Fcgamma receptor binding showed that engagement of these receptors is critical for optimal antitumor efficacy. These results suggest that XmAb5574 exhibits potent tumor cytotoxicity via direct and indirect effector functions and thus warrants clinical evaluation as an immunotherapeutic for CD19(+) hematologic malignancies.
Collapse
|
7
|
Wang J, Zhu X. The role of pathogenic B-cell clones in antibody mediated autoimmune disorders. J Dermatol Sci 2004; 36:141-8. [PMID: 15541635 DOI: 10.1016/j.jdermsci.2004.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 06/17/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Our understanding of the role of B-cells in the immunopathogenesis of certain antibody mediated diseases has developed remarkably in the past few years. In this review, autoantibody mediated immune disorders associated with pathogenic B-cell clones are discussed. We have focused on the roles and pathogenic mechanisms of B-cell clones in autoantibodyimmune diseases. The roles of pathogenic B-cells in Castleman's disease in PNP patients is used as one example. The developments in the treatment of B-cell mediated autoimmune diseases, such as intravenous immunoglobulin (IVIg), targets the regulatory pathway of B-cells, using anti-CD20, CD19, CD22 and, CD95 monoclonal antibody therapy, etc. are also discussed. Immunotherapy, targeting specific pathogenic B-cells, is believed to be one approach in the management of autoimmune diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Dermatology, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
8
|
Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I. Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 2000; 204:55-63. [PMID: 11006018 DOI: 10.1006/cimm.2000.1693] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With a new flow cytometric cytotoxicity assay, we examined the mechanism of action of chimeric mouse human anti-CD20 monoclonal antibody IDEC-C2B8. IDEC-C2B8 alone induced direct cytotoxicity in four of eight examined CD20-expressing lymphoma cell lines (RAJI, DAUDI, JOK-1, and WT100) at a concentration above 100 ng/ml. Moreover, after 4 h incubation in human serum, only a moderate complement-dependent cellular cytotoxicity (CDCC) was observed, whereas cytotoxicity increased markedly after 3 days of culture, indicating that combined direct cytotoxicity and CDCC were responsible. IDEC-C2B8 induced an effective antibody-dependent cellular cytotoxicity (ADCC) in seven of eight tested lymphoma cell lines when peripheral blood mononuclear cells were used as effector cells. ADCC was moderately enhanced by cytokine interleukin-2, whereas interleukin-12, interferon-alpha, and GM-CSF had no influence. Interestingly, we could demonstrate a correlation between CD32 expression on lymphoma cell lines and IDEC-C2B8-induced direct cytotoxicity, indicating that crosslinking of CD20 with CD32 may be involved in the mechanism of cytotoxicity. We propose that direct cytotoxicity, CDCC, and ADCC result in the marked elimination of CD20-expressing tumor cells observed after treatment with IDEC-C2B8.
Collapse
Affiliation(s)
- D Flieger
- Medizinische Klinik und Poliklinik I, Allgemeine Innere Medizin, Universität Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany.
| | | | | | | | | |
Collapse
|
9
|
Kitada S, Zapata JM, Andreeff M, Reed JC. Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 106:995-1004. [PMID: 10520003 DOI: 10.1046/j.1365-2141.1999.01642.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Modulating signal transduction pathways represents a promising approach for altering the biological behaviour of haemopoietic malignancies. B-cell chronic lymphocytic leukaemia (B-CLL) cells were treated in vitro with CD40-ligand (CD40L) (CD154) or the protein kinase C modulator Bryostatin-1, exploring the effects on: (a) sensitivity to apoptosis induction by chemotherapeutic drugs (fludarabine, dexamethasone) or anti-Fas antibody; (b) expression of apoptosis-regulatory proteins (Bcl-2, Bcl-X, Mcl-1, Bax, Bak, BAG-1, Flip, XIAP); (c) expression of cell surface co-stimulatory antigens (CD80 [B7.1]; CD54 [ICAM-1]; CD70); and (d) expression of immune modulatory receptors (CD27, CD40, CD95 [Fas]). CD40L and Bryostatin decreased both spontaneous and drug-induced apoptosis in most B-CLL specimens tested. Apoptosis resistance was associated with CD40L- and Bryostatin-induced elevations in the anti-apoptotic Bcl-2 family protein Mcl-1. CD40L also induced striking increases in the levels of the anti-apoptotic protein Bcl-XL in B-CLLs. CD40L stimulated increases in the surface expression of CD40, CD54, CD69, CD70, CD80 and CD95, whereas Bryostatin induced expression of CD40, CD54, CD69 and CD95 but not the co-stimulatory molecules CD70 and CD80. Despite elevations in the expression of CD95 (Fas), anti-Fas antibodies failed to induce apoptosis of CD40L- and Bryostatin-treated B-CLL cells. This Fas-resistance was associated with increased expression of the Fas-antagonist Flip in CD40L-treated, and with elevations in the caspase inhibitor XIAP in Bryostatin-treated B-CLLs. The potential anti-apoptotic properties of CD40L and Bryostatin should be taken into consideration when employing these agents in clinical trials involving patients with B-CLL.
Collapse
Affiliation(s)
- S Kitada
- The Burnham Institute, Program on Apoptosis and Cell Death Research, La Jolla, California, USA
| | | | | | | |
Collapse
|
10
|
Abstract
CD20 is a nonglycosylated 33 to 37 kD phosphoprotein involved in B-cell signaling that subserves important functions in the regulation of B-cell proliferation and differentiation. In addition, this B-cell surface antigen has been shown recently to be an effective target for immunotherapy of B-cell malignancies using chimeric (mouse/human) or radiolabeled murine monoclonal anti-CD20 antibodies. In this report we show that extensive crosslinking of CD20 with murine anti-CD20 monoclonal antibodies (MoAbs) in the presence of either goat anti-mouse IgG or Fc receptor (FcR)-expressing cells directly inhibits B-cell proliferation, induces nuclear DNA fragmentation, and leads to cell death by apoptosis. The apoptotic effects of these MoAbs can be inhibited by chelation of extracellular or intracellular Ca2+ by EGTA or Bapta AM, indicating that anti-CD20–mediated apoptosis may be related to changes in Ca2+ concentration. These findings suggest that ligation of CD20 in vivo by anti-CD20 antibodies in the presence of FcR-expressing cells may initiate signal transduction events that induce elevation of [Ca2+]i and lead to apoptosis of malignant B cells, thereby contributing to the impressive tumor regressions observed in mouse models and clinical trials using anti-CD20 MoAbs.
Collapse
|
11
|
Abstract
Abstract
CD20 is a nonglycosylated 33 to 37 kD phosphoprotein involved in B-cell signaling that subserves important functions in the regulation of B-cell proliferation and differentiation. In addition, this B-cell surface antigen has been shown recently to be an effective target for immunotherapy of B-cell malignancies using chimeric (mouse/human) or radiolabeled murine monoclonal anti-CD20 antibodies. In this report we show that extensive crosslinking of CD20 with murine anti-CD20 monoclonal antibodies (MoAbs) in the presence of either goat anti-mouse IgG or Fc receptor (FcR)-expressing cells directly inhibits B-cell proliferation, induces nuclear DNA fragmentation, and leads to cell death by apoptosis. The apoptotic effects of these MoAbs can be inhibited by chelation of extracellular or intracellular Ca2+ by EGTA or Bapta AM, indicating that anti-CD20–mediated apoptosis may be related to changes in Ca2+ concentration. These findings suggest that ligation of CD20 in vivo by anti-CD20 antibodies in the presence of FcR-expressing cells may initiate signal transduction events that induce elevation of [Ca2+]i and lead to apoptosis of malignant B cells, thereby contributing to the impressive tumor regressions observed in mouse models and clinical trials using anti-CD20 MoAbs.
Collapse
|