1
|
Wei H, Vuorenpää A, Laurila J, Domanskyi A, Koivisto A, Pertovaara A. Indirect involvement of α 2-adrenoceptors in the mechanical antihypersensitivity effect induced by the spinally administered imidazoline I 1 receptor ligand LNP599 in a rat model of experimental neuropathy. Brain Res Bull 2024; 217:111089. [PMID: 39341510 DOI: 10.1016/j.brainresbull.2024.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Here we assess whether neuropathic pain hypersensitivity is attenuated by spinal administration of the imidazoline I1-receptor agonist LNP599 and whether the attenuation involves co-activation of α2-adrenoceptors. Spared nerve injury (SNI) model of neuropathy was used to induce mechanical hypersensitivity in male and female rats with a chronic catheter for intrathecal drug administrations. Mechanical sensitivity and heat nociception were assessed behaviorally in the injured limb. Additionally, GTPγS radioligand binding assay, β-arrestin recruitment and intracellular cAMP levels were used for receptor profiling in vitro. LNP599 (imidazoline I1 receptor agonist) and clonidine (α2-adrenoceptor agonist) produced equal dose-related mechanical antihypersensitivity effects in both sexes. LNP599 attenuated heat nociception preferentially in males, while clonidine reduced heat nociception equally in males and females. Carbophenyline (another imidazoline I1 receptor agonist) had no significant effect on mechanical hypersensitivity or heat nociception in males or females. Mechanical antihypersensitivity and heat antinociception induced by LNP599 in SNI males was prevented by pretreatments with yohimbine or atipamezole (two α2-adrenoceptor antagonists) but not by efaroxan (a mixed imidazoline I1 receptor/α2-adrenoceptor antagonist). In vitro assays indicated that LNP599 does not activate α2A- or other subtypes of α2-adrenoceptors. However, LNP599 was a weak partial agonist for 5-HT2B receptors and bound to sigma-1 and sigma-2 receptors that all are involved in modulation of spinal nociception. The results indicate that the suppression of neuropathic pain hypersensitivity by LNP599 is not due to action on spinal imidazoline I1 receptors, but rather due to indirect activation of spinal α2-adrenoceptors.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Vuorenpää
- Pain Research Unit, Orion Pharma, Orion Corporation, Turku, Finland
| | - Jonne Laurila
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Andrii Domanskyi
- Pain Research Unit, Orion Pharma, Orion Corporation, Turku, Finland
| | - Ari Koivisto
- Pain Research Unit, Orion Pharma, Orion Corporation, Turku, Finland.
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Szabo B. Presynaptic Adrenoceptors. Handb Exp Pharmacol 2024; 285:185-245. [PMID: 38755350 DOI: 10.1007/164_2024_714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Presynaptic α2-adrenoceptors are localized on axon terminals of many noradrenergic and non-noradrenergic neurons in the peripheral and central nervous systems. Their activation by exogenous agonists leads to inhibition of the exocytotic release of noradrenaline and other transmitters from the neurons. Most often, the α2A-receptor subtype is involved in this inhibition. The chain of molecular events between receptor occupation and inhibition of the exocytotic release of transmitters has been determined. Physiologically released endogenous noradrenaline elicits retrograde autoinhibition of its own release. Some clonidine-like α2-receptor agonists have been used to treat hypertension. Dexmedetomidine is used for prolonged sedation in the intensive care; It also has a strong analgesic effect. The α2-receptor antagonist mirtazapine increases the noradrenaline concentration in the synaptic cleft by interrupting physiological autoinhibion of release. It belongs to the most effective antidepressive drugs. β2-Adrenoceptors are also localized on axon terminals in the peripheral and central nervous systems. Their activation leads to enhanced transmitter release, however, they are not activated by endogenous adrenaline.
Collapse
MESH Headings
- Animals
- Humans
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/physiology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Receptors, Presynaptic/metabolism
- Synaptic Transmission/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
Collapse
Affiliation(s)
- Bela Szabo
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Wang H, Niu W, He Y, Wei Y, Li X, Lin YW. Synthesis of CF 3-Containing 2-Imidazolines and Imidazoles via a Iodide-Promoted [3 + 2] Cyclization Reaction. J Org Chem 2023; 88:15282-15287. [PMID: 37824681 DOI: 10.1021/acs.joc.3c01768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
We report herein a general and effective system achieving cyclization of β-trifluoromethyl enones with amidines in the presence of 1,3-diiodo-5,5-dimethylhydantoin (DIH), which affords a range of trifluoromethylated 2-imidazolines in synthetically useful yields with good diastereoselectivities (up to 95% yield, up to 98:2 dr) and good functional group tolerance. Furthermore, the one-pot synthesis of trifluoromethylated imidazoles via sequential cyclization and oxidation is demonstrated. More significantly, the reaction mechanism was verified by ESI-MS studies of possible intermediates, and a reasonable reaction mechanism was proposed.
Collapse
Affiliation(s)
- Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang421001,P. R. China
| | - Wenjing Niu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang421001,P. R. China
| | - Yongjun He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang421001,P. R. China
| | - Yibo Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang421001,P. R. China
| | - Xianxian Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang421001,P. R. China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang421001,P. R. China
- Hengyang Medical College, University of South China, Hengyang 421001,P. R. China
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang421001,P. R. China
| |
Collapse
|
4
|
Chaidali AG, Lykakis IN. Simple Synthetic Approach to N-(Pyridin-2-yl)imidates from Nitrostyrenes and 2-Aminopyridines via the N-(Pyridin-2-yl)iminonitriles as Intermediates. Molecules 2023; 28:molecules28083321. [PMID: 37110555 PMCID: PMC10147006 DOI: 10.3390/molecules28083321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A facile, green, synthetic protocol of several substituted N-(pyridin-2-yl)imidates from nitrostyrenes and 2-aminopyridines via the corresponding N-(pyridin-2-yl)iminonitriles as intermediates is reported. The reaction process involved the in situ formation of the corresponding α-iminontriles under heterogeneous Lewis acid catalysis in the presence of Al2O3. Subsequently, α-iminonitriles were selectively transformed into the desired N-(pyridin-2-yl)imidates under ambient conditions and in the presence of Cs2CO3 in alcoholic media. Under these conditions, 1,2- and 1,3-propanediols also led to the corresponding mono-substituted imidates at room temperature. The present synthetic protocol was also developed on one mmol scale, providing access to this important scaffold. A preliminary synthetic application of the present N-(pyridin-2-yl)imidates was carried out for their facile conversion into the N-heterocycles 2-(4-chlorophenyl)-4,5-dihydro-1H-imidazole and 2-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine in the presence of the corresponding ethylenediamine and 1,3-diaminopropane.
Collapse
Affiliation(s)
- Andriani G Chaidali
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
GÜLSEVEN SIDIR Y, SIDIR İ. The study on QSAR and relations between molecular descriptors of 5, 8-quinoline quinones derivatives. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1051216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstract
In this study, some electronic, hydrophobic and thermochemical parameters of 28 different 5,8-quinolinequinone derivatives having diverse substituents have been calculated by using DFT (B3LYP)/6-31G(d, p) method and basis set. Relationships between different molecular descriptors have been studied by using molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), molar refractivity (MR), octanol–water partition coefficient (log P), thermochemical properties (entropy (Se), capacity of heat (C)); as to investigate activity relationships with molecular structure. In addition, the QSAR/QSPR between molecular properties and biological activity (anti-proliferative and anti-inflammatory activity) has been investigated, where R, R2, F, P and RMSE have taken into account in order to find a statistically correct model in QSAR studies. The dependence of the electronegativity parameter on both electronic and thermochemical parameters is found to be the most correlated parameter.
Collapse
|
6
|
Small Molecules Containing Amphoteric Imidazole Motifs as Sensitizers for Dye-Sensitized Solar Cells: An Overview. Top Curr Chem (Cham) 2022; 380:49. [PMID: 36123408 DOI: 10.1007/s41061-022-00404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
Organic dyes, porphyrins and inorganic complexes containing imidazole (IM) motifs have been demonstrated as a new class of sensitizers in dye-sensitized solar cells (DSSCs). Particularly, the amphoteric nature of IM-based motifs allows them to be used as donors (D), auxiliary donors (DA), linker/branch (π), or acceptors (A) in D-π-A-based organic dyes and porphyrins and also employed as cyclometalated heteroleptic and ancillary ligands in the Ru(II) and Ir(III) complexes for DSSCs. It is noteworthy that the introduction of IM chromophores in the dyes of D-π-A configuration can improve the light-harvesting properties and prohibit the charge recombination reactions due to the extension of the π-conjugated structures and hydrophobic nature. Similarly, in the case of inorganic complexes, the presence of IM motifs as ligands can improve the light-harvesting ability, give facilely tuned HOMO and LUMO energy levels, increase the charge recombination resistance and photostability. This results in enhanced photocurrent (JSC) and photovoltage (VOC) and consequently solar-to-power conversion efficiency (η) of DSSC devices based on Ru(II) and Ir(III) complexes. Considering the interesting DSSC applications of IM-derived molecules, in this review, we therefore comprehensively discuss their photophysical, electrochemical and photovoltaic properties reported so far and establish their structure-activity relationship to further advance the η of DSSCs. To the best of our knowledge, there is no such a review interpreting the importance of molecules possessing IM-motifs for DSSC applications to date.
Collapse
|
7
|
Poon L, Hum JR, Weiss RG. Effects of cyclic and acyclic amidine side-chains on the properties of polysiloxane ionomers constructed in situ from three uncharged components. SOFT MATTER 2022; 18:5502-5508. [PMID: 35848508 DOI: 10.1039/d2sm00382a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionomers, polysiloxanes with imidazolinium dithiocarbamate side chains, have been synthesized in situ from three uncharged components-a polysiloxane with imidazole side chains, CS2, and hexylamine or octadecylamine. Their structural and dynamic properties are compared over a temperature range of 0-50 °C with those of the analogous ionomers in which the polysiloxanes have amidinium side chains. The results, primarily from differential scanning calorimetry, powder X-ray diffraction measurements, and rheology show that the small structural (and smaller electronic) differences between the cyclic 5-membered ring imidazolinium and acyclic amidinium groups have marked effects on the bulk properties of the ionomers. These include their shear strengths and the manner in which the microcrystalline portions of the ionomers with dithiooctadecylcarbamate anions are packed. Thus, it is possible to finely tune the natures of the ionomers from one polysiloxane by changing temperature, the chain length of the alkylamine, and the nature of the base attached to the polysiloxane chain. Why these changes occur to the various properties is discussed.
Collapse
Affiliation(s)
- Louis Poon
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057-1227, USA.
| | - Jacob R Hum
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057-1227, USA.
| | - Richard G Weiss
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057-1227, USA.
| |
Collapse
|
8
|
Gupta PK, Azzam MA, Saquib M, Hussain MK. A Highly Efficient and Eco-Friendly Synthesis of Disubstituted Imidazoles in Ionic Liquid from Gem-Dibromo Vinylarenes and Amidines. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2061532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Maged A. Azzam
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Faculty of Science, Department of Chemistry, Menoufia University, Shebin El-Kom, Egypt
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), India
| | - Mohd Kamil Hussain
- Department of Chemistry, Government Raza P.G. College, Rampur, India (M.J.P. Rohilkhand University, Bareilly, India)
| |
Collapse
|
9
|
Silva RCMC, Ribeiro JS, da Silva GPD, da Costa LJ, Travassos LH. Autophagy Modulators in Coronavirus Diseases: A Double Strike in Viral Burden and Inflammation. Front Cell Infect Microbiol 2022; 12:845368. [PMID: 35433503 PMCID: PMC9010404 DOI: 10.3389/fcimb.2022.845368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses are the etiologic agents of several diseases. Coronaviruses of critical medical importance are characterized by highly inflammatory pathophysiology, involving severe pulmonary impairment and infection of multiple cell types within the body. Here, we discuss the interplay between coronaviruses and autophagy regarding virus life cycle, cell resistance, and inflammation, highlighting distinct mechanisms by which autophagy restrains inflammatory responses, especially those involved in coronavirus pathogenesis. We also address different autophagy modulators available and the rationale for drug repurposing as an attractive adjunctive therapy. We focused on pharmaceuticals being tested in clinical trials with distinct mechanisms but with autophagy as a common target. These autophagy modulators act in cell resistance to virus infection and immunomodulation, providing a double-strike to prevent or treat severe disease development and death from coronaviruses diseases.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Peixoto Duarte da Silva
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Neurosurgery. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
The Impact of α-Adrenoceptors in the Regulation of the Hypotonicity-Induced Increase in Duodenal Mucosal Permeability In Vivo. Pharmaceutics 2021; 13:pharmaceutics13122096. [PMID: 34959377 PMCID: PMC8706031 DOI: 10.3390/pharmaceutics13122096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The duodenal mucosa is regularly exposed to a low osmolality, and recent experiments suggest that hypotonicity increases mucosal permeability in an osmolality-dependent manner. The aim was to examine whether the sympathetic nervous system, via action on α-adrenoceptors, affects the hypotonicity-induced increase in duodenal mucosal permeability. The duodenum of anaesthetised rats was perfused in vivo with a 50 mM NaCl solution in the presence of adrenergic α-adrenoceptor drugs. Studied were the effects on mucosal permeability (blood-to-lumen clearance of 51Cr-EDTA), arterial blood pressure, luminal alkalinisation, transepithelial fluid flux, and motility. Hypotonicity induced a six-fold increase in mucosal permeability, a response that was reversible and repeatable. The α2-adrenoceptor agonist clonidine abolished the hypotonicity-induced increase in mucosal permeability, reduced arterial blood pressure, inhibited duodenal motility, and decreased luminal alkalinisation. The α2-adrenoceptor antagonists, yohimbine and idazoxan, prevented the inhibitory effect of clonidine on the hypotonicity-induced increase in mucosal permeability. The α1-agonist phenylephrine or the α1-antagonist prazosin elicited their predicted effect on blood pressure but did not affect the hypotonicity-induced increase in mucosal permeability. None of the α1- or α2-adrenoceptor drugs changed the hypotonicity-induced net fluid absorption. In conclusion, stimulation of the adrenergic α2-adrenoceptor prevents the hypotonicity-induced increase in mucosal permeability, suggesting that the sympathetic nervous system has the capability to regulate duodenal mucosal permeability.
Collapse
|
12
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
13
|
Bahrin LG, Nicolescu A, Shova S, Marangoci NL, Birsa LM, Sarbu LG. Nitrogen-Based Linkers with a Mesitylene Core: Synthesis and Characterization. Molecules 2021; 26:molecules26195952. [PMID: 34641496 PMCID: PMC8512016 DOI: 10.3390/molecules26195952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Mesitylene was used as a core in seven new tritopic nitrogen containing linkers. Three of the linkers, each containing three nitrile groups, were obtained through Suzuki, Sonogashira and Heck-type coupling reactions. Next, these were converted to tetrazol-5-yl moieties by the cycloaddition of sodium azide to the nitrile functionalities. The last linker, containing three 1,2,3-triazol-4-yl moieties, was synthesized by the Huisgen cycloaddition of phenyl azide to the corresponding alkyne. The latter was obtained via a Corey–Fuchs reaction sequence from the previously reported formyl derivative. As the proof of concept for their potential in MOF design, one of the nitriles was used to build an Ag-based network.
Collapse
Affiliation(s)
- Lucian Gabriel Bahrin
- Intelcentre, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania; (A.N.); (S.S.); (N.L.M.)
- Correspondence: (L.G.B.); (L.G.S.)
| | - Alina Nicolescu
- Intelcentre, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania; (A.N.); (S.S.); (N.L.M.)
| | - Sergiu Shova
- Intelcentre, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania; (A.N.); (S.S.); (N.L.M.)
| | - Narcisa Laura Marangoci
- Intelcentre, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania; (A.N.); (S.S.); (N.L.M.)
| | - Lucian Mihail Birsa
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania;
| | - Laura Gabriela Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania;
- Correspondence: (L.G.B.); (L.G.S.)
| |
Collapse
|
14
|
Bisht B, Imandi V, Pant S, Sen A. Solvent-Dependent Spectral Properties in Diverse Solvents, Light Harvesting and Antiviral Properties of Mono-Azo Dye (Direct Yellow-27): A Combined Experimental and Theoretical Study. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this paper, we have discussed for the first time a detailed electronic absorption study of the mono-azo dye Direct Yellow 27 [C[Formula: see text]H[Formula: see text]N4Na2O9S3] (DY-27) with five different homogeneous media by applying experimental and theoretical techniques along with some new characteristics of DY-27 in the field of solar cells as well as antiviral activities. A clear absorption band in the UV-visible region was observed, although the absorption maxima lie in the visible region. The electronic absorption transitions observed in our study were fully spin and symmetry allowed transitions with [Formula: see text]–[Formula: see text] character. Time-dependent density functional theory (TD-DFT) analysis has been done for understanding the electronic and the charge transfer performance. Moreover, the impacts of polar protic and polar aprotic solvents in the structural variation of DY-27 have been reported here. Further, applications of the dye in the field of solar cell, as well as antiviral activity, were performed using molecular modeling approaches. The dye exhibited a D–[Formula: see text]–A–A structure with a high light-harvesting efficiency (LHE) and good injection efficiency acts as an effective dye sensitized solar cell (DSSC). Molecular docking studies of the dye DY-27 performed with M-protease of the different corona viruses, MERS, SARS-CoV-1 and SARS-CoV-2 indicated comparable binding energies with the controlled inhibitors and best interactions are observed for the SARS-CoV-1.
Collapse
Affiliation(s)
- Babita Bisht
- Photophysics Laboratory, Department of Physics, Centre of Advance Study, DSB Campus, Kumaun University, Nainital 263002, India
| | - Venkataramana Imandi
- Center for Computational Biology and Bioinformatics School of Computational & Integrative Sciences (SCIS), Jawaharlal Nehru University, New Delhi, India
| | - Sanjay Pant
- Photophysics Laboratory, Department of Physics, Centre of Advance Study, DSB Campus, Kumaun University, Nainital 263002, India
| | - Anik Sen
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
15
|
Michalek-Zrabkowska M, Martynowicz H, Wieckiewicz M, Smardz J, Poreba R, Mazur G. Cardiovascular Implications of Sleep Bruxism-A Systematic Review with Narrative Summary and Future Perspectives. J Clin Med 2021; 10:2245. [PMID: 34064229 PMCID: PMC8196855 DOI: 10.3390/jcm10112245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/16/2023] Open
Abstract
Sleep bruxism is a common sleep-related behavior characterized as repetitive masticatory muscle activity. Genetic vulnerability to stress and anxiety is considered a basal component in the pathogenesis of bruxism events. Dysfunction of the autonomic nervous system related with an arousal during sleep is considered an underlying cause of the cardiovascular implications of sleep bruxism. Increased cardiovascular risk was previously linked with sleep conditions: for example, obstructive sleep apnea and insomnia, and sleep bruxism. The aim of present systematic review was to evaluate the current arguments on the relationship between sleep bruxism and cardiovascular diseases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We have reviewed the Embase, PubMed (Medline) and Scopus databases to identify applicable articles (1994-2021). A total of 127 records in English language were identified, then after screening and exclusion of nonrelevant records, 19 full-text articles were evaluated. Finally, we included 12 studies for synthesis. Due to the heterogeneity of the compared studies, only a qualitative comparison and narrative summary were performed. In the majority of studies, increased sympathetic activity was successfully established to escalate heart rate variability, the inflammatory process, oxidative stress, endothelial remodeling and hormonal disturbances, leading to hypertension and other cardiovascular complications.
Collapse
Affiliation(s)
- Monika Michalek-Zrabkowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (M.M.-Z.); (R.P.); (G.M.)
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (M.M.-Z.); (R.P.); (G.M.)
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 26 Krakowska St., 50-425 Wroclaw, Poland; (M.W.); (J.S.)
| | - Joanna Smardz
- Department of Experimental Dentistry, Wroclaw Medical University, 26 Krakowska St., 50-425 Wroclaw, Poland; (M.W.); (J.S.)
| | - Rafal Poreba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (M.M.-Z.); (R.P.); (G.M.)
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (M.M.-Z.); (R.P.); (G.M.)
| |
Collapse
|
16
|
Vinoth G, Indira S, Bharathi M, Archana G, Alves LG, Martins AM, Shanmuga Bharathi K. Catalytic conversion of 2,4,5-trisubstituted imidazole and 5-substituted 1H-tetrazole derivatives using a new series of half-sandwich (η6-p-cymene)Ruthenium(II) complexes with thiophene-2-carboxylic acid hydrazone ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Eberl S, Ahne G, Toni I, Standing J, Neubert A. Safety of clonidine used for long-term sedation in paediatric intensive care: A systematic review. Br J Clin Pharmacol 2020; 87:785-805. [PMID: 33368604 DOI: 10.1111/bcp.14552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023] Open
Abstract
AIM Although not approved, the α-adrenoceptor agonist clonidine is considered an option for long-term sedation protocols in paediatric intensive care. We reviewed adverse effects of clonidine occurring in this indication. METHODS Relevant literature was systematically identified from PubMed and Embase. We included interventional and observational studies on paediatric patients admitted to intensive care units and systemically long-term sedated with clonidine-containing regimes. In duplicates, we conducted standardised and independent full-text assessment and extraction of safety data. RESULTS Data from 11 studies with 909 patients were analysed. The studies were heterogeneous regarding patient characteristics (age groups, comorbidity, or comedication) and sedation regimes (dosage, route, duration, or concomitant sedatives). Just four randomised controlled trials (RCTs) and one observational study had comparison groups, using placebo or midazolam. For safety outcomes, our validity evaluation showed low risk of bias only in three studies. All studies focused on haemodynamic problems, particularly bradycardia and hypotension. Observed incidences or subsequent interventions never caused concerns. However, only two RCTs allowed meaningful comparisons with control groups. Odds ratios showed no significant difference between the groups, but small sample sizes (50 and 125 patients) must be considered; pooled analyses were not reasonable. CONCLUSION All evaluated studies concluded that the use of clonidine in paediatric intensive care units is safe. However, a valid characterisation of the safety profile remains challenging due to limited, biased and heterogeneous data and missing investigation of long-term effects. This evaluation demonstrates the lack of data, which prevents reliable conclusions on the safety of clonidine for long-term sedation in critically ill children. For an evidence-based use, further studies are needed.
Collapse
Affiliation(s)
- Sonja Eberl
- Department of Paediatrics and Adolescents Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Gabriele Ahne
- Department of Paediatrics and Adolescents Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Irmgard Toni
- Department of Paediatrics and Adolescents Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Joseph Standing
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Antje Neubert
- Department of Paediatrics and Adolescents Medicine, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Aneeja T, Radhika S, Neetha M, Anilkumar G. An Overview of the One-pot Synthesis of Imidazolines. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201001153735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One-pot syntheses are a simple, efficient and easy methodology, which are widely
used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety
used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric
catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from
imidazolines. The one-pot method is an impressive approach to synthesize organic compounds
as it minimizes the reaction time, separation procedures, and ecological impact. Many significant
one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran,
triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis.
This review describes an overview of the one-pot synthesis of imidazolines and covers literature
up to 2020.
Collapse
Affiliation(s)
- Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
19
|
Kumar VS, Mary YS, Pradhan K, Brahman D, Mary YS, Serdaroğlu G, Rad AS, Roxy M. Conformational analysis and quantum descriptors of two new imidazole derivatives by experimental, DFT, AIM, molecular docking studies and adsorption activity on graphene. Heliyon 2020; 6:e05182. [PMID: 33072922 PMCID: PMC7548447 DOI: 10.1016/j.heliyon.2020.e05182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 10/02/2020] [Indexed: 11/15/2022] Open
Abstract
1-[2-(2-hydroxy-3-methoxy-5-(4-methoxyphenylazo)benzaldeneamino)ethyl]-3-methyl-3H-imidazole (HMY) and 1-[2-(2-hydroxy-3-methoxy-5-(4-methylphenylazo)benzaldene amino)ethyl]-3-methyl-3H-imidazole (HMM) were synthesized and characterized using spectral analysis. Conformational analysis has been achieved using potential energy scan for different rotable bonds for obtaining the lowest energy conformer. Conformer with minimum energy is obtained along the dihedral angle N30-C31-C34-N37. QTAIM analysis gives nature and strength of hydrogen bonding interactions. UV-Vis, electrostatic potential and chemical descriptors are analyzed. Interaction of HMY and HMM with graphene is analyzed in terms of SERS activity. Chemical reactivity descriptors were investigated for graphene-drug systems. NLO activity of parent drugs and its graphene complexes show good activity. The wavenumber downshift of different modes is noted. Title molecules exhibit inhibitory activity against cytochrome C peroxidase. Interactions with graphene sheets are theoretically predicted for the title compounds.
Collapse
Affiliation(s)
- Veena S. Kumar
- Department of Physics, SN College, Kollam, Research Centre, University of Kerala, Kerala, India
| | - Y. Sheena Mary
- Department of Physics, Fatima Mata National College(Autonomous), Kollam, Kerala, India
| | - Kiran Pradhan
- Department of Chemistry, St. Joseph's College, P.O. North Point, Dist. Darjeeling 734104, India
| | - Dhiraj Brahman
- Department of Chemistry, St. Joseph's College, P.O. North Point, Dist. Darjeeling 734104, India
| | - Y. Shyma Mary
- Department of Physics, Fatima Mata National College(Autonomous), Kollam, Kerala, India
| | - Goncagül Serdaroğlu
- Sivas Cumhuriyet University, Faculty of Education, Math. and Sci. Edu., 58140 Sivas TURKEY
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - M.S. Roxy
- Department of Physics, SN College, Kollam, Research Centre, University of Kerala, Kerala, India
| |
Collapse
|
20
|
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry Michigan State University East Lansing Michigan 48823
| |
Collapse
|
21
|
Micheli L, Di Cesare Mannelli L, Del Bello F, Giannella M, Piergentili A, Quaglia W, Carrino D, Pacini A, Ghelardini C. The Use of the Selective Imidazoline I 1 Receptor Agonist Carbophenyline as a Strategy for Neuropathic Pain Relief: Preclinical Evaluation in a Mouse Model of Oxaliplatin-Induced Neurotoxicity. Neurotherapeutics 2020; 17:1005-1015. [PMID: 32572830 PMCID: PMC7609613 DOI: 10.1007/s13311-020-00873-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Anti-cancer therapy based on the repeated administration of oxaliplatin is limited by the development of a disabling neuropathic syndrome with detrimental effects on the patient's quality of life. The lack of effective pharmacological approaches calls for the identification of innovative therapeutic strategies based on new targets. We focused our attention on the imidazoline I1 receptor (I1-R) and in particular on the selective I1-R agonist 2-(1-([1,1'-biphenyl]-2-yl)propan-2-yl)-4,5-dihydro-1H-imidazole) (carbophenyline). The purpose of this work was the preclinical evaluation of the efficacy of carbophenyline on oxaliplatin-induced neuropathic pain in mice. Carbophenyline, acutely per os administered (0.1-10 mg kg-1), induced a dose-dependent anti-hyperalgesic effect that was completely blocked by the pre-treatment with the I1-R antagonist 3 or the I1/α2 receptor antagonist efaroxan, confirming the I1-R-dependent mechanism. Conversely, pre-treatment with the I2-R antagonist BU224 did not block the anti-nociceptive effect evoked by carbophenyline. Repeated oral administrations of carbophenyline (1 mg kg-1) for 14 days, starting from the first day of oxaliplatin injection, counteracted the development of neuropathic pain in all behavioral tests (cold plate, Von Frey, and paw pressure tests) carried out 24 h after the last carbophenyline treatment on days 7 and 14. In the dorsal horn of the spinal cord, carbophenyline significantly decreased the oxaliplatin-induced astrocyte activation detected by immunofluorescence staining by the specific labelling with GFAP antibody. In conclusion, carbophenyline showed anti-neuropathic properties both after acute and chronic treatment with preventive effect against oxaliplatin-induced astrocyte activation in the spinal cord. Therefore, I1-R agonists emerge as a new class of candidates for the management of oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Laura Micheli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139, Florence, Italy.
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Mario Giannella
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Carla Ghelardini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
22
|
Zhou X, He D, Yan X, Chen X, Li R, Zhang G, Wang J. Moxonidine inhibits excitatory inputs to airway vagal preganglionic neurons via activation of both α 2-adrenoceptors and imidazoline I1 receptors. Brain Res 2020; 1732:146695. [PMID: 32007398 DOI: 10.1016/j.brainres.2020.146695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/26/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
As an imidazoline I1 receptor agonist with very weak binding affinity for α2-adrenoceptors, moxonidine is commonly used in the treatment of hypertension. Moxonidine also has been implicated to act centrally to reduce airway vagal outflow. However, it is unknown at which central sites moxonidine acts to affect airway vagal activity, and how moxonidine takes effect at synaptic and receptor levels. In this study, airway vagal preganglionic neurons (AVPNs) were retrogradely labeled in neonatal rats from the intrathoracic trachea; retrogradely labeled AVPNs in the external formation of the nucleus ambiguus (NA) were identified in rhythmically active medullary slices using whole-cell patch-clamp techniques; and the effects of moxonidine on the spontaneous excitatory postsynaptic currents (EPSCs) of AVPNs were observed at synaptic level. The results show that moxonidine (10 μmol·L-1) significantly inhibited the frequency of spontaneous EPSCs in both inspiratory-activated and inspiratory-inhibited AVPNs. This effect was partially blocked by SKF-86466 (10 μmol·L-1), a highly selective antagonist of α2-adrenoceptors, or AGN-192403, a selective antagonist of imidazoline I1 receptors, and was completely blocked by efaroxan (10 μmol·L-1), an antagonist of both α2-adrenoceptors and imidazoline I1 receptors. These results demonstrate that moxonidine inhibits the excitatory inputs to AVPNs via activation of both α2-adrenoceptors and imidazoline I1 receptors, and suggest that physiologically both of these two types of receptors are involved in the central regulation of airway vagal activity at preganglionic level. Moxonidine might be potentially useful in diseases with aberrant airway vagal activity such as asthma and chronic obstructive diseases.
Collapse
Affiliation(s)
- Xujiao Zhou
- Eye Institute in Eye & ENT Hospital, and NHC Key Laboratory of Myopia, Fudan University, China; Shanghai Key Laboratory of Visual Impairment and Restoration, China; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Ding He
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, China
| | - Xianxia Yan
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, China
| | - Xingxin Chen
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, China
| | - Rui Li
- Department of Nursing, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, China.
| |
Collapse
|
23
|
|
24
|
Kumar VS, Mary YS, Pradhan K, Brahman D, Mary YS, Thomas R, Roxy M, Alsenoy CV. Synthesis, spectral properties, chemical descriptors and light harvesting studies of a new bioactive azo imidazole compound. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127035] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Synthesis and vasodilator activity of some pyridazin-3(2H)-one based compounds. Future Med Chem 2020; 12:37-50. [DOI: 10.4155/fmc-2019-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Hypertension is a major health problem worldwide resulting in high death rates due to its consequences and complications. Therefore, searching for new vasorelaxants is a must to find new vasodilators efficient for the treatment of different cardiovascular diseases. Methodology: Different 6-phenyl-3-pyridazinone based derivatives were synthesized and screened for their vasorelaxant activity according to the reported method using hydralazine as a standard. Results: The tested compounds revealed potent to mild activity with EC50 values 0.339–114.300 μM compared with hydralazine EC50 = 18.210 μM. Conclusion: The most active compounds were the acid 5, its ester analog 4 and 4-methoxyphenylhydrazide derivative 10c (EC50 = 0.339, 1.225 and 1.204 μM, respectively). Therefore, 6-phenylpyridazin-3(2 H)-one can be a hit for structural optimization to obtain promising vasorelaxants.
Collapse
|
26
|
Smitha M, Mary YS, Pradhan K, Brahman D, Mary YS, Thomas R, Pavithran R, Alsenoy CV. RETRACTED: Synthesis, spectral characterisation, quantum mechanical analysis and light harvesting properties of two azoimidazole analogues. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Disturbance of I1-imidazoline receptor signal transduction in cardiomyocytes of Spontaneously Hypertensive Rats. Arch Biochem Biophys 2019; 671:62-68. [DOI: 10.1016/j.abb.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 11/19/2022]
|
28
|
Alekseev AE, Park S, Pimenov OY, Reyes S, Terzic A. Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol Ther 2019; 197:179-190. [PMID: 30703415 DOI: 10.1016/j.pharmthera.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α2-adrenoceptor (α2-AR) isoforms, abundant in sympathetic synapses and noradrenergic neurons of the central nervous system, are integral in the presynaptic feed-back loop mechanism that moderates norepinephrine surges. We recently identified that postsynaptic α2-ARs, found in the myocellular sarcolemma, also contribute to a muscle-delimited feedback control capable of attenuating mobilization of intracellular Ca2+ and myocardial contractility. This previously unrecognized α2-AR-dependent rheostat is able to counteract competing adrenergic receptor actions in cardiac muscle. Specifically, in ventricular myocytes, nitric oxide (NO) and cGMP are the intracellular messengers of α2-AR signal transduction pathways that gauge the kinase-phosphatase balance and manage cellular Ca2+ handling preventing catecholamine-induced Ca2+ overload. Moreover, α2-AR signaling counterbalances phospholipase C - PKC-dependent mechanisms underscoring a broader cardioprotective potential under sympathoadrenergic and angiotensinergic challenge. Recruitment of such tissue-specific features of α2-AR under sustained sympathoadrenergic drive may, in principle, be harnessed to mitigate or prevent cardiac malfunction. However, cardiovascular disease may compromise peripheral α2-AR signaling limiting pharmacological targeting of these receptors. Prospective cardiac-specific gene or cell-based therapeutic approaches aimed at repairing or improving stress-protective α2-AR signaling may offer an alternative towards enhanced preservation of cardiac muscle structure and function.
Collapse
Affiliation(s)
- Alexey E Alekseev
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Oleg Yu Pimenov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Santiago Reyes
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Toce MS, Chai PR, Burns MM, Boyer EW. Pharmacologic Treatment of Opioid Use Disorder: a Review of Pharmacotherapy, Adjuncts, and Toxicity. J Med Toxicol 2018; 14:306-322. [PMID: 30377951 PMCID: PMC6242798 DOI: 10.1007/s13181-018-0685-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/27/2022] Open
Abstract
Opioid use disorder continues to be a significant source of morbidity and mortality in the USA and the world. Pharmacologic treatment with methadone and buprenorphine has been shown to be effective at retaining people in treatment programs, decreasing illicit opioid use, decreasing rates of hepatitis B, and reducing all cause and overdose mortality. Unfortunately, barriers exist in accessing these lifesaving medications: users wishing to start buprenorphine therapy require a waivered provider to prescribe the medication, while some states have no methadone clinics. As such, users looking to wean themselves from opioids or treat their opioid dependence will turn to alternative agents. These agents include using prescription medications, like clonidine or gabapentin, off-label, or over the counter drugs, like loperamide, in supratherapeutic doses. This review provides information on the pharmacology and the toxic effects of pharmacologic agents that are used to treat opioid use disorder. The xenobiotics reviewed in depth include buprenorphine, clonidine, kratom, loperamide, and methadone, with additional information provided on lofexidine, akuamma seeds, kava, and gabapentin.
Collapse
Affiliation(s)
- Michael S Toce
- Harvard Medical Toxicology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Division of Emergency Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Peter R Chai
- Harvard Medical Toxicology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michele M Burns
- Harvard Medical Toxicology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Emergency Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Edward W Boyer
- Harvard Medical Toxicology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Emergency Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Martynowicz H, Dymczyk P, Dominiak M, Kazubowska K, Skomro R, Poreba R, Gac P, Wojakowska A, Mazur G, Wieckiewicz M. Evaluation of Intensity of Sleep Bruxism in Arterial Hypertension. J Clin Med 2018; 7:jcm7100327. [PMID: 30301160 PMCID: PMC6210463 DOI: 10.3390/jcm7100327] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 01/22/2023] Open
Abstract
Sleep bruxism (SB) is a masticatory muscle activity during sleep that is characterized as rhythmic (phasic) or non-rhythmic (tonic). The recent hypothesis on the etiology of SB supports the role of the central and autonomic nervous systems. Therefore, in this study, we aimed to assess the intensity of SB in patients with arterial hypertension. A total of 70 adults participated in this study: 35 patients with hypertension (study group) and 35 normotensive subjects (control group). Data were recorded using home portable cardiorespiratory polygraphy. The bruxism episode index (BEI) in the study group was found to be significantly higher compared to the control group (3.4 ± 3.25 vs. 2.35 ± 2.29, p = 0.04). Hypertension, higher body mass index (BMI), lower values of mean oxygen saturation (SpO2), and a higher percentage of SpO2 < 90% constituted independent risk factors for increased BEI. These results suggest the need for special oral care in hypertensive patients, patients with higher BMI, lower values of SpO2 and a higher percentage of SpO2 < 90%.
Collapse
Affiliation(s)
- Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland.
| | - Pawel Dymczyk
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland.
| | - Marzena Dominiak
- Department of Oral Surgery, Wroclaw Medical University, 26 Krakowska St., 50-425 Wroclaw, Poland.
| | - Klaudia Kazubowska
- Department of Oral Surgery, Wroclaw Medical University, 26 Krakowska St., 50-425 Wroclaw, Poland.
| | - Robert Skomro
- Division of Respiratory, Critical Care and Sleep Medicine, University of Saskatchewan, 107 Wiggins Road, SK S7N 5E5 Saskatoon, Saskatchewan, Canada.
| | - Rafal Poreba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland.
| | - Paweł Gac
- Department of Hygiene, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland.
| | - Anna Wojakowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland.
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland.
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 26 Krakowska St., 50-425 Wroclaw, Poland.
| |
Collapse
|
31
|
Kok GPY, Shao PL, Liao JY, Ismail SNFBS, Yao W, Lu Y, Zhao Y. Divergent, Enantioselective Synthesis of Pyrroles, 3H
-Pyrroles and Bicyclic Imidazolines by Ag- or P-Catalyzed [3+2] Cycloaddition of Allenoates with Activated Isocyanides. Chemistry 2018; 24:10513-10520. [DOI: 10.1002/chem.201801768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Germaine Pui Yann Kok
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Pan-Lin Shao
- College of Innovation and Entrepreneurship; Southern University of Science and Technology; Shenzhen 518000 P.R. China
| | - Jia-Yu Liao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | | | - Weijun Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Yixin Lu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
32
|
Hossain M, Thomas R, Mary YS, K.S.Resmi, Armaković S, Armaković SJ, Nanda AK, Vijayakumar G, Alsenoy CV. Understanding reactivity of two newly synthetized imidazole derivatives by spectroscopic characterization and computational study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Hu J, Li Z, Zhang X, Han Y, Liu Y, Zhao Y, Liu Y, Gong P. Palladium-Catalyzed Cyclization Reaction of Oxime Acetates and Aryl Iodides: Syntheses of 2-Imidazolines. Org Lett 2018; 20:2116-2119. [DOI: 10.1021/acs.orglett.8b00696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinxing Hu
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People’s Republic of China
| | - Zefei Li
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People’s Republic of China
| | - Xian Zhang
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People’s Republic of China
| | - Yufei Han
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People’s Republic of China
| | - Yue Liu
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People’s Republic of China
| | - Yanfang Zhao
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People’s Republic of China
| | - Yajing Liu
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People’s Republic of China
| | - Ping Gong
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People’s Republic of China
| |
Collapse
|
34
|
Haspula D, Clark MA. Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Auton Neurosci 2018; 210:10-17. [DOI: 10.1016/j.autneu.2018.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
|
35
|
Zhang D, Liu R, Zhou X. Intramolecular alkene hydroamination and degradation of amidines: divergent behavior of rare earth metal amidinate intermediates. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01481g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The methods for catalytic intramolecular alkene hydroamination and degradation of amidines have been established. Furthermore, a tandem reconstruction/cyclization of amidines has also been developed.
Collapse
Affiliation(s)
- Dexing Zhang
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| | - Ruiting Liu
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| | - Xigeng Zhou
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
36
|
Comparative pharmacodynamic analysis of imidazoline compounds using rat model of ocular mydriasis with a test of quantitative structure–activity relationships. J Pharm Biomed Anal 2017; 144:122-128. [DOI: 10.1016/j.jpba.2017.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/08/2017] [Accepted: 03/26/2017] [Indexed: 11/23/2022]
|
37
|
Díaz JE, Ranieri S, Gruber N, Orelli LR. Syntheses of 3,4- and 1,4-dihydroquinazolines from 2-aminobenzylamine. Beilstein J Org Chem 2017; 13:1470-1477. [PMID: 28845190 PMCID: PMC5550820 DOI: 10.3762/bjoc.13.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/30/2017] [Indexed: 11/23/2022] Open
Abstract
A straightforward strategy for the synthesis of dihydroquinazolines is presented, which allows for the preparation of 3,4- and 1,4-dihydroquinazolines with different substitution patterns from 2-aminobenzylamine (2-ABA) as common precursor. The required functionalization of both amino groups present in 2-ABA was achieved by different routes involving selective N-acylation and cesium carbonate-mediated N-alkylation reactions, avoiding protection/deprotection steps. The heterocycles were efficiently synthesized in short reaction times by microwave-assisted ring closure of the corresponding aminoamides promoted by ethyl polyphosphate (PPE).
Collapse
Affiliation(s)
- Jimena E Díaz
- Universidad de Buenos Aires. CONICET. Departamento de Química Orgánica. Facultad de Farmacia y Bioquímica. Junín 956, (1113) Buenos Aires, Argentina
| | - Silvia Ranieri
- Universidad de Buenos Aires. CONICET. Departamento de Química Orgánica. Facultad de Farmacia y Bioquímica. Junín 956, (1113) Buenos Aires, Argentina
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Nadia Gruber
- Universidad de Buenos Aires. CONICET. Departamento de Química Orgánica. Facultad de Farmacia y Bioquímica. Junín 956, (1113) Buenos Aires, Argentina
| | - Liliana R Orelli
- Universidad de Buenos Aires. CONICET. Departamento de Química Orgánica. Facultad de Farmacia y Bioquímica. Junín 956, (1113) Buenos Aires, Argentina
| |
Collapse
|
38
|
Baldenebro-López J, Báez-Castro A, Glossman-Mitnik D, Höpfl H, Cruz-Enríquez A, Miranda-Soto V, Parra-Hake M, Campos-Gaxiola JJ. Vibrational spectroscopic study, structural analysis, photophysical properties and theoretical calculations of cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Fehér Á, Tóth VE, Al-Khrasani M, Balogh M, Lázár B, Helyes Z, Gyires K, Zádori ZS. Analysing the effect of I 1 imidazoline receptor ligands on DSS-induced acute colitis in mice. Inflammopharmacology 2016; 25:107-118. [PMID: 27873165 DOI: 10.1007/s10787-016-0299-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/13/2016] [Indexed: 12/28/2022]
Abstract
Imidazoline receptors (IRs) have been recognized as promising targets in the treatment of numerous diseases; and moxonidine and rilmenidine, agonists of I1-IRs, are widely used as antihypertensive agents. Some evidence suggests that IR ligands may induce anti-inflammatory effects acting on I1-IRs or other molecular targets, which could be beneficial in patients with inflammatory bowel disease (IBD). On the other hand, several IR ligands may stimulate also alpha2-adrenoceptors, which were earlier shown to inhibit, but in more recent studies to rather aggravate colitis. Hence, this study aimed to analyse for the first time the effect of various I1-IR ligands on intestinal inflammation. Colitis was induced in C57BL/6 mice by adding dextran sulphate sodium (DSS) to the drinking water for 7 days. Mice were treated daily with different IR ligands: moxonidine and rilmenidine (I1-IR agonists), AGN 192403 (highly selective I1-IR ligand, putative antagonist), efaroxan (I1-IR antagonist), as well as with the endogenous IR agonists agmatine and harmane. It was found that moxonidine and rilmenidine at clinically relevant doses, similarly to the other IR ligands, do not have a significant impact on the macroscopic and histological signs of DSS-evoked inflammation. Likewise, colonic myeloperoxidase and serum interleukin-6 levels remained unchanged in response to these agents. Thus, our study demonstrates that imidazoline ligands do not influence significantly the severity of DSS-colitis in mice and suggest that they probably neither affect the course of IBD in humans. However, the translational value of these findings needs to be verified with other experimental colitis models and human studies.
Collapse
Affiliation(s)
- Ágnes Fehér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Bernadette Lázár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Szentagothai Research Centre and MTA-NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
40
|
Sączewski J, Hudson A, Scheinin M, Wasilewska A, Sączewski F, Rybczyńska A, Ferdousi M, Laurila JM, Boblewski K, Lehmann A, Watts H, Ma D. Transfer of SAR information from hypotensive indazole to indole derivatives acting at α-adrenergic receptors: In vitro and in vivo studies. Eur J Med Chem 2016; 115:406-15. [PMID: 27031216 DOI: 10.1016/j.ejmech.2016.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
In a search for novel antihypertensive drugs we applied scaffold hopping from the previously described α1-adrenergic receptor antagonists, 1-[(imidazolin-2-yl)methyl]indazoles. The aim was to investigate whether the α-adrenergic properties of the indazole core were transferable to the indole core. The newly obtained 1-[(imidazolin-2-yl)methyl]indole analogues were screened in vitro for their binding affinities for α1-and α2-adrenoceptors, which allowed the identification of the target-based SAR transfer (T_SAR transfer) as well as structure-based SAR transfer (S_SAR transfer) events. However, when screened in vivo with use of anaesthetized male Wistar rats, the new indole ligands showed a different hemodynamic profile than expected. Instead of the immediate hypotensive effect characteristic of peripheral vasodilatator α1 blockers, a biphasic effect was observed, reminiscent of clonidine-like centrally acting antihypertensive agents. This was supported by subsequent in vitro functional studies in [(35)S]GTPγS binding assay, where the indole analogues displayed partial agonist properties at α2-adrenergic receptors. Since no correlation was found between the in vitro binding to α-adrenoceptors and the in vivo hemodynamic effects of the two series of indazole and indole bioisosteric compounds, in a search for new imidazoline-containing adrenergic drugs, the structure-based SAR transfer information obtained from in vitro binding studies should be treated with caution.
Collapse
Affiliation(s)
- Jaroslaw Sączewski
- Department of Organic Chemistry, Medical University of Gdańsk, 80-416, Gdańsk, Poland.
| | - Alan Hudson
- Department of Pharmacology, 9-47 Medical Sciences Building, University of Alberta, Edmonton, T6G 2H7, Canada
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, and Turku University Hospital, FI-20014 Turku, Finland
| | - Aleksandra Wasilewska
- Department of Chemical Technology of Drugs, Medical University of Gdańsk, 80-416, Gdańsk, Poland
| | - Franciszek Sączewski
- Department of Chemical Technology of Drugs, Medical University of Gdańsk, 80-416, Gdańsk, Poland
| | | | - Mehnaz Ferdousi
- Department of Pharmacology, 9-47 Medical Sciences Building, University of Alberta, Edmonton, T6G 2H7, Canada
| | - Jonne M Laurila
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, and Turku University Hospital, FI-20014 Turku, Finland
| | - Konrad Boblewski
- Department of Pathophysiology, Medical University of Gdansk, Poland
| | - Artur Lehmann
- Department of Pathophysiology, Medical University of Gdansk, Poland
| | - Helena Watts
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
41
|
George RF, Saleh DO. Synthesis, vasorelaxant activity and 2D-QSAR study of some novel pyridazine derivatives. Eur J Med Chem 2016; 108:663-673. [DOI: 10.1016/j.ejmech.2015.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
|
42
|
Fagermoen E, Sulheim D, Winger A, Andersen AM, Gjerstad J, Godang K, Rowe PC, Saul JP, Skovlund E, Wyller VB. Effects of low-dose clonidine on cardiovascular and autonomic variables in adolescents with chronic fatigue: a randomized controlled trial. BMC Pediatr 2015; 15:117. [PMID: 26357864 PMCID: PMC4566847 DOI: 10.1186/s12887-015-0428-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 08/20/2015] [Indexed: 11/24/2022] Open
Abstract
Background Chronic Fatigue Syndrome (CFS) is a common and disabling condition in adolescence with few treatment options. A central feature of CFS is orthostatic intolerance and abnormal autonomic cardiovascular control characterized by sympathetic predominance. We hypothesized that symptoms as well as the underlying pathophysiology might improve by treatment with the alpha2A–adrenoceptor agonist clonidine. Methods A total of 176 adolescent CFS patients (12–18 years) were assessed for eligibility at a single referral center recruiting nation-wide. Patients were randomized 1:1 by a computer system and started treatment with clonidine capsules (25 μg or 50 μg twice daily, respectively, for body weight below/above 35 kg) or placebo capsules for 9 weeks. Double-blinding was provided. Data were collected from March 2010 until October 2012 as part of The Norwegian Study of Chronic Fatigue Syndrome in Adolescents: Pathophysiology and Intervention Trial (NorCAPITAL). Effect of clonidine intervention was assessed by general linear models in intention-to-treat analyses, including baseline values as covariates in the model. Results A total of 120 patients (clonidine group n = 60, placebo group n = 60) were enrolled and started treatment. There were 14 drop-outs (5 in the clonidine group, 9 in the placebo group) during the intervention period. At 8 weeks, the clonidine group had lower plasma norepinephrine (difference = 205 pmol/L, p = 0.05) and urine norepinephrine/creatinine ratio (difference = 3.9 nmol/mmol, p = 0.002). During supine rest, the clonidine group had higher heart rate variability in the low-frequency range (LF-HRV, absolute units) (ratio = 1.4, p = 0.007) as well as higher standard deviation of all RR-intervals (SDNN) (difference = 12.0 ms, p = 0.05); during 20° head-up tilt there were no statistical differences in any cardiovascular variable. Symptoms of orthostatic intolerance did not change during the intervention period. Conclusions Low-dose clonidine reduces catecholamine levels in adolescent CFS, but the effects on autonomic cardiovascular control are sparse. Clonidine does not improve symptoms of orthostatic intolerance. Trial registration Clinical Trials ID: NCT01040429, date of registration 12/28/2009.
Collapse
Affiliation(s)
- Even Fagermoen
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, P.O.Box 1171, Blindern, 0318, Oslo, Norway. .,Department of Anaesthesiology and Critical Care, Oslo University Hospital, P.O.Box 4950, Nydalen, 0424, Oslo, Norway.
| | - Dag Sulheim
- Department of Paediatrics, Oslo University Hospital, P.O.Box 4950, Nydalen, 0424, Oslo, Norway. .,Department of Paediatrics, Lillehammer County Hospital, P.O.Box 104, 2381, Brumunddal, Norway.
| | - Anette Winger
- Institute of Nursing Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4 St., Olavs plass, 0130, Oslo, Norway.
| | - Anders M Andersen
- Department of Pharmacology, Oslo University Hospital, P.O.Box 4950, Nydalen, 0424, Oslo, Norway.
| | - Johannes Gjerstad
- National Institute of Occupational Health, P.O Box 8149, Dep, 0033, Oslo, Norway. .,Department of Biosciences, University of Oslo, P.O.Box 1066, Blindern, 0316, Oslo, Norway.
| | - Kristin Godang
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, P.O.Box 4950, Nydalen, 0424, Oslo, Norway.
| | - Peter C Rowe
- Department of Paediatrics, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Baltimore, MD, 21287, USA.
| | - J Philip Saul
- Department of Paediatrics, Medical University of South Carolina, 169 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Eva Skovlund
- Department of Pharmaceutical Science, University of Oslo, P.O.Box 1068, Blindern, 0316, Oslo, Norway. .,Norwegian Institute of Public Health, P.O.Box 4404, Nydalen, 0403, Oslo, Norway.
| | - Vegard Bruun Wyller
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, P.O.Box 1171, Blindern, 0318, Oslo, Norway. .,Department of Paediatrics, Akershus University Hospital, P.O.Box 1000, 1478, Lørenskog, Norway.
| |
Collapse
|
43
|
Nassar NN, Abdel-Rahman AA. Brain stem adenosine receptors modulate centrally mediated hypotensive responses in conscious rats: A review. J Adv Res 2014; 6:331-40. [PMID: 26257930 PMCID: PMC4522583 DOI: 10.1016/j.jare.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Adenosine is implicated in the modulation of cardiovascular responses either at the peripheral or at central level in experimental animals. However, there are no dedicated reviews on the involvement of adenosine in mediating the hypotensive response of centrally administered clonidine in general and specifically in aortically barodenervated rats (ABD). The conscious ABD rat model exhibits surgically induced baroreflex dysfunction and exaggerated hypotensive response, compared with conscious sham-operated (SO) rats. The current review focuses on, the role of adenosine receptors in blood pressure (BP) regulation and their possible crosstalk with other receptors e.g. imidazoline (I1) and alpha (α2A) adrenergic receptor (AR). The former receptor is a molecular target for clonidine, whose hypotensive effect is enhanced approx. 3-fold in conscious ABD rats. We also discussed how the balance between the brain stem adenosine A1 and A2A receptors is regulated by baroreceptors and how such balance influences the centrally mediated hypotensive responses. The use of the ABD rat model yielded insight into the downstream signaling cascades following clonidine-evoked hypotension in a surgical model of baroreflex dysfunction.
Collapse
Key Words
- 8-SPT, 8-(p-sulfophenyl)-theophylline. Non-selective adenosine receptor blocker
- A1, adenosine subtype A1 receptor
- A2A, adenosine subtype A2A receptor
- ABC, avidin biotin complex
- ABD rat, aortic barodenervated rat
- ATP, adenosine triphosphate
- BP, blood pressure
- CGS21680, 2-[4-[(2-carboxyethyl)phenyl]ethylaminophenyl]ethylamino]-5′-N-ethylcarboxamidoadenosine. Selective A2A receptor agonist
- CNS, central nervous system
- CPA, N6-cyclopentyladenosine. Selective A1 receptor agonist
- Central adenosine receptors
- Centrally mediated hypotension
- Clonidine
- Conscious rats
- DAG, diacylglycerol
- DPCPX, 8-cyclopentyl-1,3-dipropylxanthine. Selective A1 receptor antagonist
- ERK1/2, extracellular signal regulated kinase
- I.C., intracisternal
- I.V., intravenous
- I1, imidazoline subtype 1 receptor
- IP3, Inositol Triphosphate
- Imidazoline I1-receptor
- JNK, C-Jun N-terminal kinase
- L-NAME, Nω-nitro-l-arginine methyl ester hydrochloride. Non-selective nitric oxide synthase inhibitor
- MAPK-NOS signaling
- NO, nitric oxide
- NOS, nitric oxide synthase
- NTS, nucleus tractus solitarius
- PC-PLC, phosphatidyl choline-selective phospholipase C
- PC12 cells, pheochromocytoma cells
- PD98059, selective extracellular signal regulated kinase inhibitor
- PDE, phosphodiesterase
- PKA, protein kinase A
- RVLM, rostral ventrolateral medulla
- SAPK, stress activated protein kinase
- SCH58261, 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-[Formula: see text]]-1,2,4-triazolo[1,5-c]pyrimidine. Selective adenosine A2A antagonist
- SHR, spontaneously hypertensive rat
- SND, sympathetic neuronal discharge
- SO, sham operated = conscious normotensive rats
- WKY, Wistar Kyoto rat
- cAMP, cyclic adenosine monophosphate
- α2 AR, alpha 2 adrenergic receptor
- αMNE, alpha methyl norepinephrine
Collapse
Affiliation(s)
- Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, NC, USA
| |
Collapse
|
44
|
Physicochemical properties of the antihypertensive agent 2-benzylimidazoline in aqueous and physiological solutions at 25 and 37°C. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Synthesis, biological evaluation and structure–activity relationships of new phthalazinedione derivatives with vasorelaxant activity. Eur J Med Chem 2014; 82:407-17. [DOI: 10.1016/j.ejmech.2014.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022]
|
46
|
Janssen GV, Slobbe P, Mooijman M, Kruithof A, Ehlers AW, Guerra CF, Bickelhaupt FM, Slootweg JC, Ruijter E, Lammertsma K, Orru RVA. Diastereoselective One-Pot Synthesis of Tetrafunctionalized 2-Imidazolines. J Org Chem 2014; 79:5219-26. [DOI: 10.1021/jo500790n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guido V. Janssen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Paul Slobbe
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Maurice Mooijman
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Art Kruithof
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Andreas W. Ehlers
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department
of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling
(ACMM), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - F. Matthias Bickelhaupt
- Department
of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling
(ACMM), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
- Institute
of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg
135, NL-6525 AJ Nijmegen, The Netherlands
| | - J. Chris Slootweg
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Koop Lammertsma
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
47
|
Janssen GV, Vicente-García E, Vogel W, Slootweg JC, Ruijter E, Lammertsma K, Orru RVA. Stereoselective Synthesis of β-Sulfinylamino Isocyanides and 2-Imidazolines. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
|
49
|
Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice. J Hypertens 2014; 32:575-86. [DOI: 10.1097/hjh.0000000000000036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. Suppression of the cough reflex by α 2-adrenergic receptor agonists in the rabbit. Physiol Rep 2013; 1:e00122. [PMID: 24400133 PMCID: PMC3871446 DOI: 10.1002/phy2.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 01/26/2023] Open
Abstract
The α2-adrenergic receptor agonist clonidine has been shown to inhibit citric acid-induced cough responses in guinea pigs when administered by aerosol, but not orally. In contrast, oral or inhaled clonidine had no effect on capsaicin-induced cough and reflex bronchoconstriction in humans. In addition, intravenous administration of clonidine has been shown to depress fentanyl-induced cough in humans. We investigated the effects of the α2-adrenergic receptor agonists, clonidine and tizanidine, on cough responses induced by mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nL) into the caudal nucleus tractus solitarii (cNTS) and the caudal ventral respiratory group (cVRG) as well as administered intravenously in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections of clonidine into the cNTS or the cVRG reduced cough responses at 0.5 mmol/L and abolished the cough reflex at 5 mmol/L. Bilateral microinjections of 0.5 mmol/L tizanidine into the cNTS completely suppressed cough responses, whereas bilateral microinjections of 5 mmol/L into the cVRG only caused mild reductions in them. Depressant effects on the cough reflex of clonidine and tizanidine were completely reverted by microinjections of 10 mmol/L yohimbine. Intravenous administration of clonidine (80–120 μg/kg) or tizanidine (150–300 μg/kg) strongly reduced or completely suppressed cough responses. These effects were reverted by intravenous administration of yohimbine (300 μg/kg). The results demonstrate that activation of α2-adrenergic receptors in the rabbit exerts potent inhibitory effects on the central mechanism generating the cough motor pattern with a clear action at the level of the cNTS and the cVRG.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| |
Collapse
|