1
|
Vargas-Rondón N, González-Giraldo Y, García Fonseca ÁY, Gonzalez J, Aristizabal-Pachon AF. MicroRNAs signatures as potential molecular markers in mild cognitive impairment: a meta-analysis. Front Aging Neurosci 2025; 16:1524622. [PMID: 39881680 PMCID: PMC11774935 DOI: 10.3389/fnagi.2024.1524622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Mild cognitive impairment (MCI) is characterized by a decline in cognitive functioning without significant interference in daily activities. Its high heterogeneity and elevated conversion rate to dementia pose challenges for accurate diagnosis and monitoring, highlighting the urgent need to identify methodologies focused on the early detection and intervention of MCI. Due to their biological characteristics, microRNAs (miRNAs) are potential candidates as non-invasive molecular markers for the identification and assessment of MCI progression. Therefore, in this study, we conducted a meta-analysis to identify the miRNAs commonly deregulated in MCI, focusing on expression profiles in plasma, serum, and extracellular vesicle samples. Our analysis identified eight upregulated miRNAs, including hsa-miR-149-3p, and four downregulated miRNAs, such as Let-7f-5p. Notably, hsa-miR-149-3p emerged as a central node in interaction networks, suggesting its crucial role in regulating cellular processes relevant to MCI. Additionally, pathway analysis revealed significant enrichment in biological processes associated with transcriptional regulation and neurodegeneration. Our results underscore the potential of circulating miRNAs as non-invasive molecular markers for MCI and open the possibility for new methodologies that enable more accurate diagnosis and monitoring of disease progression. Validating the expression of miRNAs such as hsa-miR-149-3p and Let-7f-5p, along with identifying their functional role in the specific context of MCI, is essential to establish their biological relevance. This work contributes to the understanding of the miRNA profile in mild cognitive impairment using easily accessible samples, which could be useful for the development of various strategies aimed at preventing or delaying MCI in individuals at risk of developing dementia, including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Andrés Felipe Aristizabal-Pachon
- Experimental and Computational Biochemistry, Department of Nutrition and Biochemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
2
|
Akere MT, Zajac KK, Bretz JD, Madhavaram AR, Horton AC, Schiefer IT. Real-Time Analysis of Neuronal Cell Cultures for CNS Drug Discovery. Brain Sci 2024; 14:770. [PMID: 39199464 PMCID: PMC11352746 DOI: 10.3390/brainsci14080770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
The ability to screen for agents that can promote the development and/or maintenance of neuronal networks creates opportunities for the discovery of novel agents for the treatment of central nervous system (CNS) disorders. Over the past 10 years, advances in robotics, artificial intelligence, and machine learning have paved the way for the improved implementation of live-cell imaging systems for drug discovery. These instruments have revolutionized our ability to quickly and accurately acquire large standardized datasets when studying complex cellular phenomena in real-time. This is particularly useful in the field of neuroscience because real-time analysis can allow efficient monitoring of the development, maturation, and conservation of neuronal networks by measuring neurite length. Unfortunately, due to the relative infancy of this type of analysis, standard practices for data acquisition and processing are lacking, and there is no standardized format for reporting the vast quantities of data generated by live-cell imaging systems. This paper reviews the current state of live-cell imaging instruments, with a focus on the most commonly used equipment (IncuCyte systems). We provide an in-depth analysis of the experimental conditions reported in publications utilizing these systems, particularly with regard to studying neurite outgrowth. This analysis sheds light on trends and patterns that will enhance the use of live-cell imaging instruments in CNS drug discovery.
Collapse
Affiliation(s)
- Millicent T. Akere
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Kelsee K. Zajac
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - James D. Bretz
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Anvitha R. Madhavaram
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Austin C. Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
| | - Isaac T. Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (M.T.A.); (K.K.Z.); (J.D.B.); (A.R.M.); (A.C.H.)
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Bandla AC, Sheth AS, Zarate SM, Uskamalla S, Hager EC, Villarreal VA, González-García M, Ballestero RP. Enhancing structural plasticity of PC12 neurons during differentiation and neurite regeneration with a catalytically inactive mutant version of the zRICH protein. BMC Neurosci 2023; 24:43. [PMID: 37612637 PMCID: PMC10463786 DOI: 10.1186/s12868-023-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Studies of the molecular mechanisms of nerve regeneration have led to the discovery of several proteins that are induced during successful nerve regeneration. RICH proteins were identified as proteins induced during the regeneration of the optic nerve of teleost fish. These proteins are 2',3'-cyclic nucleotide, 3'-phosphodiesterases that can bind to cellular membranes through a carboxy-terminal membrane localization domain. They interact with the tubulin cytoskeleton and are able to enhance neuronal structural plasticity by promoting the formation of neurite branches. RESULTS PC12 stable transfectant cells expressing a fusion protein combining a red fluorescent protein with a catalytically inactive mutant version of zebrafish RICH protein were generated. These cells were used as a model to analyze effects of the protein on neuritogenesis. Differentiation experiments showed a 2.9 fold increase in formation of secondary neurites and a 2.4 fold increase in branching points. A 2.2 fold increase in formation of secondary neurites was observed in neurite regeneration assays. CONCLUSIONS The use of a fluorescent fusion protein facilitated detection of expression levels. Two computer-assisted morphometric analysis methods indicated that the catalytically inactive RICH protein induced the formation of branching points and secondary neurites both during differentiation and neurite regeneration. A procedure based on analysis of random field images provided comparable results to classic neurite tracing methods.
Collapse
Affiliation(s)
- Ashoka C Bandla
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Aditya S Sheth
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Sara M Zarate
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Suraj Uskamalla
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Elizabeth C Hager
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Victor A Villarreal
- Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | | | - Rafael P Ballestero
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA.
| |
Collapse
|
4
|
Ariafar A, Karbalay-Doust S, Ahmed F, Eslahi A, Tayebi S. Penile Girth Enhancement Using Amniotic Membrane in a Rabbit Model: A stereological study. Sultan Qaboos Univ Med J 2023; 23:182-189. [PMID: 37377831 PMCID: PMC10292588 DOI: 10.18295/squmj.9.2022.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/11/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the efficacy of penile girth enhancement (PGE) using amniotic membrane (AM) as a graft in a rabbit model. Additionally, quantitative histological data of the structure of the penis were obtained by stereological studies. METHODS This study was conducted at the Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. In this study, 20 adult male rabbits of similar age and weight were allocated to two groups: sham surgery and surgery+AM. Both groups underwent surgery in which a longitudinal I-shaped midline incision was made in the tunica albuginea on the dorsal surface of the penis. The surgery+AM group underwent PGE using AM as a graft. The penile length and mid circumference were measured using a vernier caliper before and two months after the surgery. RESULTS The mean total volume and diameter of the penis significantly increased in the surgery+AM group (P <0.03 and P <0.04, respectively). On stereological evaluation, a significant increase in the mean volumes of the tunica albuginea and corpora cavernosa was observed in the surgery+AM group compared to the sham group (P <0.01 and P <0.03, respectively). Additionally, the mean volume densities of the collagen bundles, muscle fibres, cavernous sinuses, and the total number of fibroblasts and smooth muscle cells increased in the surgery+AM group compared to the sham group (P <0.05 each). No infections, bleeding or other complications were observed. CONCLUSION The use of AM as a graft is a method that shows promising results for material use in penile enhancement. Thus, it may be considered for PGE in the future.
Collapse
Affiliation(s)
| | | | - Faisal Ahmed
- Urology Research Center, Al-Thora Hospital, Department of Urology, Ibb University of Medical Sciences, Ibb, Yemen
| | - Ali Eslahi
- Departments of Urology
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
5
|
Ghosh S, Roy P, Lahiri D. Enhanced neurogenic differentiation on anisotropically conductive carbon nanotube reinforced polycaprolactone-collagen scaffold by applying direct coupling electrical stimulation. Int J Biol Macromol 2022; 218:269-284. [PMID: 35843399 DOI: 10.1016/j.ijbiomac.2022.07.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
Electrical stimulation is conducive to neural regeneration. Different types of stimuli propagation patterns are required for regenerating cells in peripheral and central nervous systems. Modulation of the pattern of stimuli propagation cannot be achieved through external means. Reinforcing scaffolds, with suitably shaped conductive second phase materials, is a promising option in this regard. The present study has taken the effort of modulating the pattern (arrangement) of reinforced phase, namely multiwalled carbon nanotubes (MWCNT), in a biodegradable scaffold made of PCL-collagen mixture, by applying an external electric field during curing. Because of their extraordinary physical properties, MWCNTs have been selected as nano-reinforcement for this study. The nature of reinforcement affects the electrical conductivity of the scaffold and also determines the type of cell it can support for regeneration. Further, electrical stimulation, applied during incubation, was observed to have a positive influence on differentiating neural cells in vitro. However, the structure of the nano-reinforcement determined the differentiated morphology of the cells. Reinforced MWCNTs being tubes, imparted bipolarity to the cells. Therefore, these scaffolds, coupled with electrical stimulation possess significant potential to be used for directional regeneration of the nerves.
Collapse
Affiliation(s)
- Souvik Ghosh
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
6
|
Soto A, Nieto-Díaz M, Reigada D, Barreda-Manso MA, Muñoz-Galdeano T, Maza RM. miR-182-5p Regulates Nogo-A Expression and Promotes Neurite Outgrowth of Hippocampal Neurons In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15050529. [PMID: 35631355 PMCID: PMC9146179 DOI: 10.3390/ph15050529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nogo-A protein is a key myelin-associated inhibitor of axonal growth, regeneration, and plasticity in the central nervous system (CNS). Regulation of the Nogo-A/NgR1 pathway facilitates functional recovery and neural repair after spinal cord trauma and ischemic stroke. MicroRNAs are described as effective tools for the regulation of important processes in the CNS, such as neuronal differentiation, neuritogenesis, and plasticity. Our results show that miR-182-5p mimic specifically downregulates the expression of the luciferase reporter gene fused to the mouse Nogo-A 3′UTR, and Nogo-A protein expression in Neuro-2a and C6 cells. Finally, we observed that when rat primary hippocampal neurons are co-cultured with C6 cells transfected with miR-182-5p mimic, there is a promotion of the outgrowth of neuronal neurites in length. From all these data, we suggest that miR-182-5p may be a potential therapeutic tool for the promotion of axonal regeneration in different diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Rodrigo M. Maza
- Correspondence: (M.N.-D.); (R.M.M.); Tel.: +34-92539-6834 (R.M.M.)
| |
Collapse
|
7
|
Mimiroglu D, Yanik T, Ercan B. Nanophase surface arrays on poly (lactic-co-glycolic acid) upregulate neural cell functions. J Biomed Mater Res A 2021; 110:64-75. [PMID: 34245100 DOI: 10.1002/jbm.a.37266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023]
Abstract
Nerve guidance channels (NGCs) promote cell-extracellular matrix (ECM) interactions occurring within the nanoscale. However, studies focusing on the effects of nanophase topography on neural cell functions are limited, and mostly concentrated on the sub-micron level (>100 nm) surface topography. Therefore, the aim of this study was to fabricate <100 nm sized structures on poly lactic-co-glycolic acid (PLGA) films used in NGC applications to assess the effects of nanophase topography on neural cell functions. For this purpose, nanopit surface arrays were fabricated on PLGA surfaces via replica molding method. The results showed that neural cell proliferation increased up to 65% and c-fos protein expression increased up to 76% on PLGA surfaces having nanophase surface arrays compared to the control samples. It was observed that neural cells spread to a greater extend and formed more neurite extensions on the nanoarrayed surfaces compared to the control samples. These results were correlated with increased hydrophilicity and roughness of the nanophase PLGA surfaces, and point toward the promise of using nanoarrayed surfaces in NGC applications.
Collapse
Affiliation(s)
- Didem Mimiroglu
- Biochemistry, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.,Biochemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tulin Yanik
- Biochemistry, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey.,BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
8
|
Bernal E, Deblais L, Rajashekara G, Francis DM. Bioluminescent Xanthomonas hortorum pv. gardneri as a Tool to Quantify Bacteria in Planta, Screen Germplasm, and Identify Infection Routes on Leaf Surfaces. FRONTIERS IN PLANT SCIENCE 2021; 12:667351. [PMID: 34211486 PMCID: PMC8239390 DOI: 10.3389/fpls.2021.667351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Imaging technology can provide insight into biological processes governing plant-pathogen interactions. We created and used a bioluminescent strain of Xanthomonas hortorum pv. gardneri (Xgb) to quantify infection processes in plants using tomato as a model. An X. hortorum pv. gardneri is one of the four Xanthomonas species that causes bacterial spots in tomatoes. We used Xgb to quantify bacterial growth in planta, to assess disease severity in resistant and susceptible tomato lines, and to observe infection routes in leaves. A positive and significant linear correlation r (67) = 0.57, p ≤ 0.0001 was observed between bioluminescence signals emitted by Xgb in planta and bacterial populations determined through dilution plating. Based on bioluminescence imaging, resistant and susceptible tomato lines had significantly different average radiances. In addition, there was a positive and significant correlation r = 0.45, p = 0.024 between X. hortorum pv. gardneri-inoculated tomato lines evaluated by bioluminescence imaging and tomatoes rated in the field using the Horsfall-Barrat Scale. Heritability was calculated to compare the genetic variance for disease severity using bioluminescence imaging and classical field ratings. The genetic variances were 25 and 63% for bioluminescence imaging and field ratings, respectively. The disadvantage of lower heritability attained by bioluminescence imaging may be offset by the ability to complete germplasm evaluation experiments within 30 days rather than 90-120 days in field trials. We further explored X. hortorum pv. gardneri infection routes on leaves using spray and dip inoculation techniques. Patterns of bioluminescence demonstrated that the inoculation technique affected the distribution of bacteria, an observation verified using scanning electron microscopy (SEM). We found significant non-random distributions of X. hortorum pv. gardneri on leaf surfaces with the method of inoculation affecting bacterial distribution on leaf surfaces at 4 h postinoculation (hpi). At 18 hpi, regardless of inoculation method, X. hortorum pv. gardneri localized on leaf edges near hydathodes based on bioluminescence imaging and confirmed by electron microscopy. These findings demonstrated the utility of bioluminescent X. hortorum pv. gardneri to estimate bacterial populations in planta, to select for resistant germplasm, and to detect likely points of infection.
Collapse
Affiliation(s)
- Eduardo Bernal
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Loïc Deblais
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - David M. Francis
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
9
|
Fatima A, Hoeber J, Schuster J, Koshimizu E, Maya-Gonzalez C, Keren B, Mignot C, Akram T, Ali Z, Miyatake S, Tanigawa J, Koike T, Kato M, Murakami Y, Abdullah U, Ali MA, Fadoul R, Laan L, Castillejo-López C, Liik M, Jin Z, Birnir B, Matsumoto N, Baig SM, Klar J, Dahl N. Monoallelic and bi-allelic variants in NCDN cause neurodevelopmental delay, intellectual disability, and epilepsy. Am J Hum Genet 2021; 108:739-748. [PMID: 33711248 PMCID: PMC8059333 DOI: 10.1016/j.ajhg.2021.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/21/2021] [Indexed: 12/14/2022] Open
Abstract
Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures. Three siblings were found homozygous for a NCDN missense variant, whereas another three unrelated individuals carried different de novo missense variants in NCDN. We assayed the missense variants for their capability to rescue impaired neurite formation in human neuroblastoma (SH-SY5Y) cells depleted of NCDN. Overexpression of wild-type NCDN rescued the neurite-phenotype in contrast to expression of NCDN containing the variants of affected individuals. Two missense variants, associated with severe neurodevelopmental features and epilepsy, were unable to restore mGluR5-induced ERK phosphorylation. Electrophysiological analysis of SH-SY5Y cells depleted of NCDN exhibited altered membrane potential and impaired action potentials at repolarization, suggesting NCDN to be required for normal biophysical properties. Using available transcriptome data from human fetal cortex, we show that NCDN is highly expressed in maturing excitatory neurons. In combination, our data provide evidence that bi-allelic and de novo variants in NCDN cause a clinically variable form of neurodevelopmental delay and epilepsy, highlighting a critical role for NCDN in human brain development.
Collapse
|
10
|
The soluble neurexin-1β ectodomain causes calcium influx and augments dendritic outgrowth and synaptic transmission. Sci Rep 2020; 10:18041. [PMID: 33093500 PMCID: PMC7582164 DOI: 10.1038/s41598-020-75047-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Classically, neurexins are thought to mediate synaptic connections through trans interactions with a number of different postsynaptic partners. Neurexins are cleaved by metalloproteases in an activity-dependent manner, releasing the soluble extracellular domain. Here, we report that in both immature (before synaptogenesis) and mature (after synaptogenesis) hippocampal neurons, the soluble neurexin-1β ectodomain triggers acute Ca2+-influx at the dendritic/postsynaptic side. In both cases, neuroligin-1 expression was required. In immature neurons, calcium influx required N-type calcium channels and stimulated dendritic outgrowth and neuronal survival. In mature glutamatergic neurons the neurexin-1β ectodomain stimulated calcium influx through NMDA-receptors, which increased presynaptic release probability. In contrast, prolonged exposure to the ectodomain led to inhibition of synaptic transmission. This secondary inhibition was activity- and neuroligin-1 dependent and caused by a reduction in the readily-releasable pool of vesicles. A synthetic peptide modeled after the neurexin-1β:neuroligin-1 interaction site reproduced the cellular effects of the neurexin-1β ectodomain. Collectively, our findings demonstrate that the soluble neurexin ectodomain stimulates growth of neurons and exerts acute and chronic effects on trans-synaptic signaling involved in setting synaptic strength.
Collapse
|
11
|
TGFβ1 Induces Axonal Outgrowth via ALK5/PKA/SMURF1-Mediated Degradation of RhoA and Stabilization of PAR6. eNeuro 2020; 7:ENEURO.0104-20.2020. [PMID: 32887692 PMCID: PMC7540929 DOI: 10.1523/eneuro.0104-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor (TGF)β1 has repeatedly been associated with axonal regeneration and recovery after injury to the CNS. We found TGFβ1 upregulated in the stroke-denervated mouse spinal cord after ischemic injury to the motor cortex as early as 4 d postinjury (dpi) and persisting up to 28 dpi. Given the potential role of TGFβ1 in structural plasticity and functional recovery after stroke highlighted in several published studies, we investigated its downstream signaling in an in vitro model of neurite outgrowth. We found that in this model, TGFβ1 rescues neurite outgrowth under growth inhibitory conditions via the canonical TGFβR2/ALK5 signaling axis. Thereby, protein kinase A (PKA)-mediated phosphorylation of the E3 ubiquitin ligase SMURF1 induces a switch of its substrate preference from PAR6 to the Ras homolog A (RhoA), in this way enhancing outgrowth on the level of the cytoskeleton. This proposed mechanism of TGFβ1 signaling could underly the observed increase in structural plasticity after stroke in vivo as suggested by the temporal and spatial expression of TGFβ1. In accordance with previous publications, this study corroborates the potential of TGFβ1 and associated signaling cascades as a target for future therapeutic interventions to enhance structural plasticity and functional recovery for stroke patients.
Collapse
|
12
|
Surkov SA, Mingazov ER, Blokhin VE, Sturova AI, Gretskaya NM, Zinchenko GN, Bezuglov VV, Ugrumov MV. The Neuroprotective Effect of N-Docosahexaenoyldopamine on Degenerating Dopaminergic Neurons of the Mesencephalon. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Distribution of VTA Glutamate and Dopamine Terminals, and their Significance in CA1 Neural Network Activity. Neuroscience 2020; 446:171-198. [PMID: 32652172 DOI: 10.1016/j.neuroscience.2020.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
Reciprocal connection between the ventral tegmental area (VTA) and the hippocampus forms a loop that controls information entry into long-term memory. Compared with the widely studied VTA dopamine system, VTA glutamate terminals are anatomically dominant in the hippocampus and less understood. The current study employs anterograde and retrograde labeling of VTA dopamine and glutamate neurons to map the distribution of their terminals within the layers of the hippocampus. Also, functional tracing of VTA dopamine and glutamate projections to the hippocampus was performed by photostimulation of VTA cell bodies during CA1 extracellular voltage sampling in vivo. VTA dopamine terminals predominantly innervate the CA1 basal dendrite layer and modulate the firing rate of active putative neurons. In contrast, anatomical dominance of VTA glutamate terminals in the CA1 pyramidal cell and apical dendrite layers suggests the possible involvement of these terminals in excitability regulation. In support of these outcomes, photostimulation of VTA dopamine neurons increased the firing rate but not intrinsic excitability parameters for putative pyramidal units. Conversely, activation of VTA glutamate neurons increased CA1 network firing rate and burst rate. In addition, VTA glutamate inputs reduced the interspike and interburst intervals for putative CA1 neurons. Taken together, we deduced that layer-specific distribution of presynaptic dopamine and glutamate terminals in the hippocampus determinines VTA modulation (dopamine) or regulation (glutamate) of excitability in the CA1 neural network.
Collapse
|
14
|
Dmytriyeva O, de Diego Ajenjo A, Lundø K, Hertz H, Rasmussen KK, Christiansen AT, Klingelhofer J, Nielsen AL, Hoeber J, Kozlova E, Woldbye DPD, Pankratova S. Neurotrophic Effects of Vascular Endothelial Growth Factor B and Novel Mimetic Peptides on Neurons from the Central Nervous System. ACS Chem Neurosci 2020; 11:1270-1282. [PMID: 32283014 DOI: 10.1021/acschemneuro.9b00685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor B (VEGFB) is a pleiotropic trophic factor, which in contrast to the closely related VEGFA is known to have a limited effect on angiogenesis. VEGFB improves survival in various tissues including the nervous system, where the effect was observed mainly for peripheral neurons. The neurotrophic effect of VEGFB on central nervous system neurons has been less investigated. Here we demonstrated that VEGFB promotes neurite outgrowth from primary cerebellar granule, hippocampal, and retinal neurons in vitro. VEGFB protected hippocampal and retinal neurons from both oxidative stress and glutamate-induced neuronal death. The VEGF receptor 1 (VEGFR1) is required for VEGFB-induced neurotrophic and neuroprotective effects. Using a structure-based approach, we designed short peptides, termed Vefin1-7, mimicking the binding interface of VEGFB to VEGFR1. Vefins were analyzed for their secondary structure and binding to VEGF receptors and compared with previously described peptides derived from VEGFA, another ligand of VEGFR1. We show that Vefins have neurotrophic and neuroprotective effects on primary hippocampal, cerebellar granule, and retinal neurons in vitro with potencies comparable to VEGFB. Similar to VEGFB, Vefins were not mitogenic for MCF-7 cancer cells. Furthermore, one of the peptides, Vefin7, even dose-dependently inhibited the proliferation of MCF-7 cells in vitro. Unraveling the neurotrophic and neuroprotective potentials of VEGFB, the only nonangiogenic factor of the VEGF family, is promising for the development of neuroprotective peptide-based therapies.
Collapse
Affiliation(s)
- Oksana Dmytriyeva
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Laboratory for Molecular Pharmacology, Department of Biomedical Science and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Amaia de Diego Ajenjo
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kathrine Lundø
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Henrik Hertz
- Laboratory of Neuropsychiatry, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kim K. Rasmussen
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anders T. Christiansen
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jorg Klingelhofer
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alexander L. Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University, Uppsala 75124, Sweden
| | - Elena Kozlova
- Department of Neuroscience, Uppsala University, Uppsala 75124, Sweden
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Stanislava Pankratova
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
15
|
FGF2 and dual agonist of NCAM and FGF receptor 1, Enreptin, rescue neurite outgrowth loss in hippocampal neurons expressing mutated huntingtin proteins. J Neural Transm (Vienna) 2019; 126:1493-1500. [PMID: 31501979 DOI: 10.1007/s00702-019-02073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
In the present study, we developed an in vitro model of Huntington disease (HD) by transfecting primary rat hippocampal neurons with plasmids coding for m-htt exon 1 with different number of CAG repeats (18, 50 and 115) and demonstrated the influence of the length of polyQ sequence on neurite elongation. We found that exogenously applied FGF2 significantly rescued the m-htt-induced loss of neurite outgrowth. Moreover, the Enreptin peptide, an FGFR1 and NCAM dual agonist, had a similar neuritogenic effect to FGF2 in clinically relevant m-htt 50Q-expressing neurons. This study has developed an in vitro model of primary hippocampal neurons transfected with m-htt-coding vectors that is a powerful tool to study m-htt-related effects on neuronal placticity.
Collapse
|
16
|
Diojan L, Zhaleh H, Azadbakht M, Bidmeshkipour A, Khodamoradi E. Effect of Pentoxifylline on Staurosporine-Induced Neurite Elongation in PC12 Cells. Asian Pac J Cancer Prev 2019; 20:2633-2638. [PMID: 31554357 PMCID: PMC6976854 DOI: 10.31557/apjcp.2019.20.9.2633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/25/2022] Open
Abstract
Objective: Pentoxifylline enhances neurite elongation in PC12 cells. This study investigated the effects of pentoxifylline on staurosporine-induced neurite elongation in PC12 cells. Materials and Methods: There were five treatment groups, including treatment group I (1 nM), treatment group II (10 nM), treatment group III (100 nM), treatment group IV (1uM), and treatment group V (10 mM of pentoxifylline), together with 214 nM staurosporine for a range of time (6, 12 and 24 hours). Cells only treated with staurosporine at a concentration of 214 nM were used as the control group. Cell proliferation, cell death, immunocytochemistry assay, and Total Neurite Length were assessed. Results: The results showed that pentoxifylline increased cell viability (p<0.05) in a dose- and time-dependent manner, and cell death assay showed that cell death decreased in a dose- and time-dependent manner (p<0.05). TNL increased significantly compared with control cells (p<0.05). Immunocytochemistry assay showed that pentoxifylline at low and high concentrations enhanced β-tubulin III and GFAP protein expression compared with control cells. Conclusion: It can be concluded that pentoxifylline has positive effects on the staurosporine-induced neurite outgrowth process in PC12 cells.
Collapse
Affiliation(s)
- Loghman Diojan
- Department of Radiology and Nuclear Medicine, School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Institute of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehri Azadbakht
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Department of Radiology and Nuclear Medicine, School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Shteinfer-Kuzmine A, Argueti S, Gupta R, Shvil N, Abu-Hamad S, Gropper Y, Hoeber J, Magrì A, Messina A, Kozlova EN, Shoshan-Barmatz V, Israelson A. A VDAC1-Derived N-Terminal Peptide Inhibits Mutant SOD1-VDAC1 Interactions and Toxicity in the SOD1 Model of ALS. Front Cell Neurosci 2019; 13:346. [PMID: 31474832 PMCID: PMC6702328 DOI: 10.3389/fncel.2019.00346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in superoxide dismutase (SOD1) are the second most common cause of familial amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the death of motor neurons in the brain and spinal cord. SOD1 neurotoxicity has been attributed to aberrant accumulation of misfolded SOD1, which in its soluble form binds to intracellular organelles, such as mitochondria and ER, disrupting their functions. Here, we demonstrate that mutant SOD1 binds specifically to the N-terminal domain of the voltage-dependent anion channel (VDAC1), an outer mitochondrial membrane protein controlling cell energy, metabolic and survival pathways. Mutant SOD1G93A and SOD1G85R, but not wild type SOD1, directly interact with VDAC1 and reduce its channel conductance. No such interaction with N-terminal-truncated VDAC1 occurs. Moreover, a VDAC1-derived N-terminal peptide inhibited mutant SOD1-induced toxicity. Incubation of motor neuron-like NSC-34 cells expressing mutant SOD1 or mouse embryonic stem cell-derived motor neurons with different VDAC1 N-terminal peptides resulted in enhanced cell survival. Taken together, our results establish a direct link between mutant SOD1 toxicity and the VDAC1 N-terminal domain and suggest that VDAC1 N-terminal peptides targeting mutant SOD1 provide potential new therapeutic strategies for ALS.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rajeev Gupta
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Neta Shvil
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Salah Abu-Hamad
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yael Gropper
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
18
|
The Spinal Transcriptome after Cortical Stroke: In Search of Molecular Factors Regulating Spontaneous Recovery in the Spinal Cord. J Neurosci 2019; 39:4714-4726. [PMID: 30962276 PMCID: PMC6561692 DOI: 10.1523/jneurosci.2571-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 11/21/2022] Open
Abstract
In response to cortical stroke and unilateral corticospinal tract degeneration, compensatory sprouting of spared corticospinal fibers is associated with recovery of skilled movement in rodents. To date, little is known about the molecular mechanisms orchestrating this spontaneous rewiring. In this study, we provide insights into the molecular changes in the spinal cord tissue after large ischemic cortical injury in adult female mice, with a focus on factors that might influence the reinnervation process by contralesional corticospinal neurons. We mapped the area of cervical gray matter reinnervation by sprouting contralesional corticospinal axons after unilateral photothrombotic stroke of the motor cortex in mice using anterograde tracing. The mRNA profile of this reinnervation area was analyzed using whole-genome sequencing to identify differentially expressed genes at selected time points during the recovery process. Bioinformatic analysis revealed two phases of processes: early after stroke (4–7 d post-injury), the spinal transcriptome is characterized by inflammatory processes, including phagocytic processes as well as complement cascade activation. Microglia are specifically activated in the denervated corticospinal projection fields in this early phase. In a later phase (28–42 d post-injury), biological processes include tissue repair pathways with upregulated genes related to neurite outgrowth. Thus, the stroke-denervated spinal gray matter, in particular its intermediate laminae, represents a growth-promoting environment for sprouting corticospinal fibers originating from the contralesional motor cortex. This dataset provides a solid starting point for future studies addressing key elements of the post-stroke recovery process, with the goal to improve neuroregenerative treatment options for stroke patients. SIGNIFICANCE STATEMENT We show that the molecular changes in the spinal cord target tissue of the stroke-affected corticospinal tract are mainly defined by two phases: an early inflammatory phase during which microglia are specifically activated in the target area of reinnervating corticospinal motor neurons; and a late phase during which growth-promoting factors are upregulated which can influence the sprouting response, arborization, and synapse formation. By defining for the first time the endogenous molecular machinery in the stroke-denervated cervical spinal gray matter with a focus on promotors of axon growth through the growth-inhibitory adult CNS, this study will serve as a basis to address novel neuroregenerative treatment options for chronic stroke patients.
Collapse
|
19
|
Erice C, Calhan OY, Kisiswa L, Wyatt S, Davies AM. Regional Differences in the Contributions of TNF Reverse and Forward Signaling to the Establishment of Sympathetic Innervation. Dev Neurobiol 2019; 79:317-334. [PMID: 31004466 PMCID: PMC6563146 DOI: 10.1002/dneu.22680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/24/2023]
Abstract
Members of the TNF and TNF receptor superfamilies acting by both forward and reverse signaling are increasingly recognized as major physiological regulators of axon growth and tissue innervation in development. Studies of the experimentally tractable superior cervical ganglion (SCG) neurons and their targets have shown that only TNF reverse signaling, not forward signaling, is a physiological regulator of sympathetic innervation. Here, we compared SCG neurons and their targets with prevertebral ganglion (PVG) neurons and their targets. Whereas all SCG targets were markedly hypoinnervated in both TNF-deficient and TNFR1-deficient mice, PVG targets were not hypoinnervated in these mice and one PVG target, the spleen, was significantly hyperinnervated. These in vivo regional differences in innervation density were related to in vitro differences in the responses of SCG and PVG neurons to TNF reverse and forward signaling. Though TNF reverse signaling enhanced SCG axon growth, it did not affect PVG axon growth. Whereas activation of TNF forward signaling in PVG axons inhibited growth, TNF forward signaling could not be activated in SCG axons. These latter differences in the response of SCG and PVG axons to TNF forward signaling were related to TNFR1 expression, whereas PVG axons expressed TNFR1, SCG axons did not. These results show that both TNF reverse and forward signaling are physiological regulators of sympathetic innervation in different tissues.
Collapse
Affiliation(s)
- Clara Erice
- School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3ATWales
- Present address:
Sandra Rotman Centre for Global HealthUniversity Health Network: Toronto General HospitalTorontoOntarioCanada
| | - O. Yipkin Calhan
- School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3ATWales
| | - Lilian Kisiswa
- School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3ATWales
- Present address:
Department of PhysiologyNational University of SingaporeSingapore117597Singapore
| | - Sean Wyatt
- School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3ATWales
| | - Alun M. Davies
- School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3ATWales
| |
Collapse
|
20
|
Ilieva M, Nielsen J, Korshunova I, Gotfryd K, Bock E, Pankratova S, Michel TM. Artemin and an Artemin-Derived Peptide, Artefin, Induce Neuronal Survival, and Differentiation Through Ret and NCAM. Front Mol Neurosci 2019; 12:47. [PMID: 30853893 PMCID: PMC6396024 DOI: 10.3389/fnmol.2019.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
Artemin (ARTN) is a neurotrophic factor from the GDNF family ligands (GFLs) that is involved in development of the nervous system and neuronal differentiation and survival. ARTN signals through a complex receptor system consisting of the RET receptor tyrosine kinase and a glycosylphosphatidylinositol-anchored co-receptor GFL receptor α, GFRα3. We found that ARTN binds directly to neural cell adhesion molecule (NCAM) and that ARTN-induced neuritogenesis requires NCAM expression and activation of NCAM-associated signaling partners, thus corroborating that NCAM is an alternative receptor for ARTN. We designed a small peptide, artefin, that could interact with GFRα3 and demonstrated that this peptide agonist induces RET phosphorylation and mimics the biological functions of ARTN – neuroprotection and neurite outgrowth. Moreover, artefin mimicked the binding of ARTN to NCAM and required NCAM expression and activation for its neurite elongation effect, thereby suggesting that artefin represents a binding site for NCAM within ARTN. We showed that biological effects of ARTN and artefin can be inhibited by abrogation of both NCAM and RET, suggesting a more complex signaling mechanism that previously thought. As NCAM plays a significant role in neurodevelopment, regeneration, and synaptic plasticity we suggest that ARTN and its mimetics are promising candidates for treatment of neurological disorders and warrant further investigations.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark.,Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Janne Nielsen
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Irina Korshunova
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Kamil Gotfryd
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Bock
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Rasmussen KK, Falkesgaard MH, Winther M, Roed NK, Quistgaard CL, Teisen MN, Edslev SM, Petersen DL, Aljubouri A, Christensen C, Thulstrup PW, Lo Leggio L, Teilum K, Walmod PS. NCAM2 Fibronectin type-III domains form a rigid structure that binds and activates the Fibroblast Growth Factor Receptor. Sci Rep 2018; 8:8957. [PMID: 29895898 PMCID: PMC5997747 DOI: 10.1038/s41598-018-27089-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/24/2018] [Indexed: 11/17/2022] Open
Abstract
NCAM1 and NCAM2 have ectodomains consisting of 5 Ig domains followed by 2 membrane-proximal FnIII domains. In this study we investigate and compare the structures and functions of these FnIII domains. The NCAM1 and -2 FnIII2 domains both contain a Walker A motif. In NCAM1 binding of ATP to this motif interferes with NCAM1 binding to FGFR. We obtained a structural model of the NCAM2 FnIII2 domain by NMR spectroscopy, and by titration with an ATP analogue we show that the NCAM2 Walker A motif does not bind ATP. Small angle X-ray scattering (SAXS) data revealed that the NCAM2 FnIII1-2 double domain exhibits a very low degree of flexibility. Moreover, recombinant NCAM2 FnIII domains bind FGFR in vitro, and the FnIII1-2 double domain induces neurite outgrowth in a concentration-dependent manner through activation of FGFR. Several synthetic NCAM1-derived peptides induce neurite outgrowth via FGFR. Only 2 of 5 peptides derived from similar regions in NCAM2 induce neurite outgrowth, but the most potent of these peptides stimulates neurite outgrowth through FGFR-dependent activation of the Ras-MAPK pathway. These results reveal that the NCAM2 FnIII domains form a rigid structure that binds and activates FGFR in a manner related to, but different from NCAM1.
Collapse
Affiliation(s)
- Kim Krighaar Rasmussen
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Maria Hansen Falkesgaard
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Malene Winther
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kulahin Roed
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Christine Louise Quistgaard
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marie Nygaard Teisen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Marie Edslev
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David Leander Petersen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ali Aljubouri
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Christensen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Leila Lo Leggio
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schledermann Walmod
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Fassier C, Fréal A, Gasmi L, Delphin C, Ten Martin D, De Gois S, Tambalo M, Bosc C, Mailly P, Revenu C, Peris L, Bolte S, Schneider-Maunoury S, Houart C, Nothias F, Larcher JC, Andrieux A, Hazan J. Motor axon navigation relies on Fidgetin-like 1-driven microtubule plus end dynamics. J Cell Biol 2018. [PMID: 29535193 PMCID: PMC5940295 DOI: 10.1083/jcb.201604108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fassier et al. identify Fidgetin-like 1 (Fignl1) as a key growth cone (GC)-enriched microtubule (MT)-associated protein in motor circuit wiring. They show that Fignl1 modulates motor GC morphology and steering behavior by down-regulating EB binding at MT plus ends and promoting MT depolymerization beneath the cell cortex. During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end–tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.
Collapse
Affiliation(s)
- Coralie Fassier
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Amélie Fréal
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christian Delphin
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Daniel Ten Martin
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Stéphanie De Gois
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Monica Tambalo
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christophe Bosc
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Philippe Mailly
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Leticia Peris
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Susanne Bolte
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Centre National de la Recherche Scientifique FR3631, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Corinne Houart
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London, England, UK
| | - Fatiha Nothias
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Jean-Christophe Larcher
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Annie Andrieux
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Jamilé Hazan
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
23
|
Jin J, Tilve S, Huang Z, Zhou L, Geller HM, Yu P. Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture. Neural Regen Res 2018; 13:289-297. [PMID: 29557379 PMCID: PMC5879901 DOI: 10.4103/1673-5374.226398] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sulfate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite outgrowth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN) culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, including cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concentration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM) which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.
Collapse
Affiliation(s)
- Jingyu Jin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Sharada Tilve
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhonghai Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
24
|
Panahi S, Abdollahifar MA, Aliaghaei A, Nazarian H, Paktinat S, Abdi S, Farahani RM. Application of stereological methods for unbiased estimation of sperm morphology in the mice induced by busulfan. Anat Cell Biol 2017; 50:301-305. [PMID: 29354302 PMCID: PMC5768567 DOI: 10.5115/acb.2017.50.4.301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 11/27/2022] Open
Abstract
Busulfan is an anticancer drug, which causes the apoptosis germ cells and azoospermia in humans and animals. Abnormal morphology of spermatozoa related to the male infertility. The sperm morphology is evaluation of sperm size, shape and appearance characteristics should be assessed by carefully observing a stained sperm sample under the microscope. Evaluation of sperm morphology has been considered as one of the most important factors for a successful fertilization and determining sperm quality. The mice were assigned to tow experimental groups: control and busulfan. Each group included six mice that were housed under standard conditions. The volume was estimated using the nucleator method. The sperm's flegellum and mid-piece length was estimated by counting the number of intersections between the tails and Merz grid test line in an unbiased counting frame, superimposed on live images of sperms. Our results demonstrated a significant different in the volume and surface of the sperm's head and the length of the sperm's flagellum in the control and busulfan groups. Busulfan can effect on the volume of the sperm's head and the length of the sperm's flagellum in rat.
Collapse
Affiliation(s)
- Sakineh Panahi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Paktinat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Abdi
- Department of Biology and Anatomical Sciences, School of Medicine, Azad University of Medical Sciences, Tehran, Iran
| | - Reza Mastery Farahani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Chen K, Lu H, Gao T, Xue X, Wang C, Miao F. Synergic interaction between amyloid precursor protein and neural cell adhesion molecule promotes neurite outgrowth. Oncotarget 2017; 7:14199-206. [PMID: 26883101 PMCID: PMC4924708 DOI: 10.18632/oncotarget.7348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/29/2016] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The main features of AD are the pathological changes of density and distribution of intracellular neurofibrillary tangles (NFT) and extracellular amyloid plaques. The processing of amyloid beta precursor protein (APP) to β-amyloid peptide (Aβ) is one of the critical events in the pathogenesis of AD. In this study, we evaluated the role of the interaction of neural cell adhesion molecule (NCAM) and APP in neurite outgrowth using two different experimental systems: PC12E2 cells and hippocampal neurons that were isolated from wild type, APP knock-in and APP knock-out mice. PC12E2 cells or hippocampal neurons were co-cultured with NCAM-negative or NCAM-positive fibroblasts L929 cells. We found that APP promoted neurite outgrowth of PC12E2 cells and hippocampal neurons in either the presence or absence of NCAM. Secreted APP can rescue the neurite outgrowth in hippocampal neurons from APP knock-out mice. The interaction of APP and NCAM had synergic effect in promoting neurite outgrowth in both PC12E2 cells and hippocampal neurons. Our results suggested that the interaction of APP with NCAM played an important role in AD development and therefore could be a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Keping Chen
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Huixia Lu
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianli Gao
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiulei Xue
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Chunling Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing 210009, China
| |
Collapse
|
26
|
Kisiswa L, Erice C, Ferron L, Wyatt S, Osório C, Dolphin AC, Davies AM. T-type Ca2+ channels are required for enhanced sympathetic axon growth by TNFα reverse signalling. Open Biol 2017; 7:rsob.160288. [PMID: 28100666 PMCID: PMC5303278 DOI: 10.1098/rsob.160288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/12/2016] [Indexed: 12/28/2022] Open
Abstract
Tumour necrosis factor receptor 1 (TNFR1)-activated TNFα reverse signalling, in which membrane-integrated TNFα functions as a receptor for TNFR1, enhances axon growth from developing sympathetic neurons and plays a crucial role in establishing sympathetic innervation. Here, we have investigated the link between TNFα reverse signalling and axon growth in cultured sympathetic neurons. TNFR1-activated TNFα reverse signalling promotes Ca2+ influx, and highly selective T-type Ca2+ channel inhibitors, but not pharmacological inhibitors of L-type, N-type and P/Q-type Ca2+ channels, prevented enhanced axon growth. T-type Ca2+ channel-specific inhibitors eliminated Ca2+ spikes promoted by TNFα reverse signalling in axons and prevented enhanced axon growth when applied locally to axons, but not when applied to cell somata. Blocking action potential generation did not affect the effect of TNFα reverse signalling on axon growth, suggesting that propagated action potentials are not required for enhanced axon growth. TNFα reverse signalling enhanced protein kinase C (PKC) activation, and pharmacological inhibition of PKC prevented the axon growth response. These results suggest that TNFα reverse signalling promotes opening of T-type Ca2+ channels along sympathetic axons, which is required for enhanced axon growth.
Collapse
Affiliation(s)
- Lilian Kisiswa
- School Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Clara Erice
- School Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, Andrew Huxley Building, Gower Street, London WC1E 6BT, UK
| | - Sean Wyatt
- School Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Catarina Osório
- School Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Andrew Huxley Building, Gower Street, London WC1E 6BT, UK
| | - Alun M Davies
- School Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
27
|
Navarro-Tapia E, Pérez-Torrado R, Querol A. Ethanol Effects Involve Non-canonical Unfolded Protein Response Activation in Yeast Cells. Front Microbiol 2017; 8:383. [PMID: 28326077 PMCID: PMC5339281 DOI: 10.3389/fmicb.2017.00383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
The unfolded protein response (UPR) is a conserved intracellular signaling pathway that controls transcription of endoplasmic reticulum (ER) homeostasis related genes. Ethanol stress has been recently described as an activator of the UPR response in yeast Saccharomyces cerevisiae, but very little is known about the causes of this activation. Although some authors ensure that the UPR is triggered by the unfolded proteins generated by ethanol in the cell, there are studies which demonstrate that protein denaturation occurs at higher ethanol concentrations than those used to trigger the UPR. Here, we studied UPR after ethanol stress by three different approaches and we concluded that unfolded proteins do not accumulate in the ER under. We also ruled out inositol depletion as an alternative mechanism to activate the UPR under ethanol stress discarding that ethanol effects on the cell decreased inositol levels by different methods. All these data suggest that ethanol, at relatively low concentrations, does not cause unfolded proteins in the yeasts and UPR activation is likely due to other unknown mechanism related with a restructuring of ER membrane due to the effect of ethanol.
Collapse
Affiliation(s)
| | | | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos-CSIC Valencia, Spain
| |
Collapse
|
28
|
Pita-Thomas W, Barroso-García G, Moral V, Hackett AR, Cavalli V, Nieto-Diaz M. Identification of axon growth promoters in the secretome of the deer antler velvet. Neuroscience 2017; 340:333-344. [DOI: 10.1016/j.neuroscience.2016.10.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/24/2022]
|
29
|
Wang Z, Zhang F, Wang Z, Liu Y, Fu X, Jin A, Yung BC, Chen W, Fan J, Yang X, Niu G, Chen X. Hierarchical Assembly of Bioactive Amphiphilic Molecule Pairs into Supramolecular Nanofibril Self-Supportive Scaffolds for Stem Cell Differentiation. J Am Chem Soc 2016; 138:15027-15034. [PMID: 27775895 PMCID: PMC8204449 DOI: 10.1021/jacs.6b09014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular design of biomaterials with unique features recapitulating nature's niche to influence biological activities has been a prolific area of investigation in chemistry and material science. The extracellular matrix (ECM) provides a wealth of bioactive molecules in supporting cell proliferation, migration, and differentiation. The well-patterned fibril and intertwining architecture of the ECM profoundly influences cell behavior and development. Inspired by those features from the ECM, we attempted to integrate essential biological factors from the ECM to design bioactive molecules to construct artificial self-supportive ECM mimics to advance stem cell culture. The synthesized biomimic molecules are able to hierarchically self-assemble into nanofibril hydrogels in physiological buffer driven by cooperative effects of electrostatic interaction, van der Waals forces, and intermolecular hydrogen bonds. In addition, the hydrogel is designed to be degradable during cell culture, generating extra space to facilitate cell migration, expansion, and differentiation. We exploited the bioactive hydrogel as a growth-factor-free scaffold to support and accelerate neural stem cell adhesion, proliferation, and differentiation into functional neurons. Our study is a successful attempt to entirely use bioactive molecules for bottom-up self-assembly of new biomaterials mimicking the ECM to directly impact cell behaviors. Our strategy provides a new avenue in biomaterial design to advance tissue engineering and cell delivery.
Collapse
Affiliation(s)
- Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiao Fu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wei Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiangyu Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
30
|
Smith R, Puschmann A, Schöll M, Ohlsson T, van Swieten J, Honer M, Englund E, Hansson O. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 2016; 139:2372-9. [PMID: 27357347 PMCID: PMC4995360 DOI: 10.1093/brain/aww163] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/27/2016] [Indexed: 12/18/2022] Open
Abstract
Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein.
Collapse
Affiliation(s)
- Ruben Smith
- 1 Department of Clinical Sciences Lund, Department of Neurology, Lund University, Sweden 2 Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Andreas Puschmann
- 1 Department of Clinical Sciences Lund, Department of Neurology, Lund University, Sweden 2 Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Michael Schöll
- 3 Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden 4 MedTech West and the Division of Clinical Neuroscience, Gothenburg University, Gothenburg, Sweden
| | - Tomas Ohlsson
- 5 Department of Radiation physics, Skåne University Hospital, Lund, Sweden
| | - John van Swieten
- 6 Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Michael Honer
- 7 Roche Pharmaceutical Research and Early Development, Neuroscience Discovery and Biomarkers, Roche Innovation Center, Basel, Switzerland
| | - Elisabet Englund
- 8 Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Sweden
| | - Oskar Hansson
- 3 Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden 9 Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
31
|
Calefi AS, de Siqueira A, Namazu LB, Costola-de-Souza C, Honda BBT, Ferreira AJP, Quinteiro-Filho WM, da Silva Fonseca JG, Palermo-Neto J. Effects of heat stress on the formation of splenic germinal centres and immunoglobulins in broilers infected by Clostridium perfringens type A. Vet Immunol Immunopathol 2016; 171:38-46. [PMID: 26964716 DOI: 10.1016/j.vetimm.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 01/13/2016] [Accepted: 02/10/2016] [Indexed: 02/04/2023]
Abstract
Avian necrotic enteritis (NE) induced by Clostridium perfringens is a disease that affects mainly the first weeks of poultry's life. The pathogenesis of NE is complex and involves the combination of several factors, such as co-infection with different species of coccidia, immunosuppression and stress. Stress is one of the main limiting factors in poultry production. Although several studies emphasized the effects of stress on immunity, few works analyzed these effects on immunoglobulins and on germinal centres (GCs), which are specialized microenvironments, responsible for generating immune cells with high affinity antibodies and memory B-lymphocytes. Thus, the effects of heat stress associated or not with thioglycolate broth culture medium intake and/or C. perfringens infection on corticosterone serum levels, spleen GCs development and immunoglobulin production in broilers were evaluated. Results showed that heat stress, thioglycolate and C. perfringens per se increased corticosterone serum levels, although this was not observed in heat stressed and thioglycolate and C. perfringens-treated chickens. The serum levels of IgA, IgM and IgY were differently affected by heat stress and/or infection/thioglycolate. Heat stress decreased the duodenal concentrations of sIgA, which was accompanied by a reduction in GCs number in the duodenal lamina propria; a trend to similar findings of sIgA concentrations was observed in the chickens' jejunum. Changes in spleen and Bursa of Fabricius relative weights as well as in spleen morphometry were also noted in heat stressed animals, infected or not. Together, these data suggest that heat stress change GCs formation in chickens infected or not, which that may lead to failures in vaccination protocols as well as in the poultries' host resistance to infectious diseases during periods of exposure to heat stress.
Collapse
Affiliation(s)
- Atílio Sersun Calefi
- Neuroimmunomodulation Research Group, Department of Pathology School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Adriana de Siqueira
- Department of Pathology, School of Veterinary Medicine and Animal Science University of São Paulo, São Paulo, Brazil.
| | - Lilian Bernadete Namazu
- Neuroimmunomodulation Research Group, Department of Pathology School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Carolina Costola-de-Souza
- Neuroimmunomodulation Research Group, Department of Pathology School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Bruno Bueno Takashi Honda
- Neuroimmunomodulation Research Group, Department of Pathology School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Antonio José Piantino Ferreira
- Neuroimmunomodulation Research Group, Department of Pathology School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Wanderley Moreno Quinteiro-Filho
- Neuroimmunomodulation Research Group, Department of Pathology School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Juliana Garcia da Silva Fonseca
- Neuroimmunomodulation Research Group, Department of Pathology School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - João Palermo-Neto
- Neuroimmunomodulation Research Group, Department of Pathology School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Smafield T, Pasupuleti V, Sharma K, Huganir RL, Ye B, Zhou J. Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons. Neuroinformatics 2015; 13:443-58. [PMID: 25854493 PMCID: PMC4600005 DOI: 10.1007/s12021-015-9267-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-throughput automated fluorescent imaging and screening are important for studying neuronal development, functions, and pathogenesis. An automatic approach of analyzing images acquired in automated fashion, and quantifying dendritic characteristics is critical for making such screens high-throughput. However, automatic and effective algorithms and tools, especially for the images of mature mammalian neurons with complex arbors, have been lacking. Here, we present algorithms and a tool for quantifying dendritic length that is fundamental for analyzing growth of neuronal network. We employ a divide-and-conquer framework that tackles the challenges of high-throughput images of neurons and enables the integration of multiple automatic algorithms. Within this framework, we developed algorithms that adapt to local properties to detect faint branches. We also developed a path search that can preserve the curvature change to accurately measure dendritic length with arbor branches and turns. In addition, we proposed an ensemble strategy of three estimation algorithms to further improve the overall efficacy. We tested our tool on images for cultured mouse hippocampal neurons immunostained with a dendritic marker for high-throughput screen. Results demonstrate the effectiveness of our proposed method when comparing the accuracy with previous methods. The software has been implemented as an ImageJ plugin and available for use.
Collapse
Affiliation(s)
- Timothy Smafield
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Venkat Pasupuleti
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kamal Sharma
- Department of Neuroscience, John Hopkins University, Baltimore, MD, 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, John Hopkins University, Baltimore, MD, 21205, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA.
| |
Collapse
|
33
|
Barreda-Manso MA, Yanguas-Casás N, Nieto-Sampedro M, Romero-Ramírez L. Salubrinal inhibits the expression of proteoglycans and favors neurite outgrowth from cortical neurons in vitro. Exp Cell Res 2015; 335:82-90. [PMID: 25882497 DOI: 10.1016/j.yexcr.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
After CNS injury, astrocytes and mesenchymal cells attempt to restore the disrupted glia limitans by secreting proteoglycans and extracellular matrix proteins (ECMs), forming the so-called glial scar. Although the glial scar is important in sealing the lesion, it is also a physical and functional barrier that prevents axonal regeneration. The synthesis of secretory proteins in the RER is under the control of the initiation factor of translation eIF2α. Inhibiting the synthesis of secretory proteins by increasing the phosphorylation of eIF2α, might be a pharmacologically efficient way of reducing proteoglycans and other profibrotic proteins present in the glial scar. Salubrinal, a neuroprotective drug, decreased the expression and secretion of proteoglycans and other profibrotic proteins induced by EGF or TGFβ, maintaining eIF2α phosphorylated. Besides, Salubrinal also reduced the transcription of proteoglycans and other profibrotic proteins, suggesting that it induced the degradation of non-translated mRNA. In a model in vitro of the glial scar, cortical neurons grown on cocultures of astrocytes and fibroblasts with TGFβ treated with Salubrinal, showed increased neurite outgrowth compared to untreated cells. Our results suggest that Salubrinal may be considered of therapeutic value facilitating axonal regeneration, by reducing overproduction and secretion of proteoglycans and profibrotic protein inhibitors of axonal growth.
Collapse
Affiliation(s)
- M Asunción Barreda-Manso
- Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Laboratorio de Plasticidad Neural, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Natalia Yanguas-Casás
- Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - Manuel Nieto-Sampedro
- Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Laboratorio de Plasticidad Neural, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Lorenzo Romero-Ramírez
- Laboratorio de Plasticidad Neural, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
34
|
Li M, Armelloni S, Zennaro C, Wei C, Corbelli A, Ikehata M, Berra S, Giardino L, Mattinzoli D, Watanabe S, Agostoni C, Edefonti A, Reiser J, Messa P, Rastaldi MP. BDNF repairs podocyte damage by microRNA-mediated increase of actin polymerization. J Pathol 2015; 235:731-44. [PMID: 25408545 DOI: 10.1002/path.4484] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/17/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022]
Abstract
Idiopathic focal segmental glomerulosclerosis (FSGS) is a progressive and proteinuric kidney disease that starts with podocyte injury. Podocytes cover the external side of the glomerular capillary by a complex web of primary and secondary ramifications. Similar to dendritic spines of neuronal cells, podocyte processes rely on a dynamic actin-based cytoskeletal architecture to maintain shape and function. Brain-derived neurotrophic factor (BDNF) is a pleiotropic neurotrophin that binds to the tropomyosin-related kinase B receptor (TrkB) and has crucial roles in neuron maturation, survival, and activity. In neuronal cultures, exogenously added BDNF increases the number and size of dendritic spines. In animal models, BDNF administration is beneficial in both central and peripheral nervous system disorders. Here we show that BDNF has a TrkB-dependent trophic activity on podocyte cell processes; by affecting microRNA-134 and microRNA-132 signalling, BDNF up-regulates Limk1 translation and phosphorylation, and increases cofilin phosphorylation, which results in actin polymerization. Importantly, BDNF effectively repairs podocyte damage in vitro, and contrasts proteinuria and glomerular lesions in in vivo models of FSGS, opening a potential new perspective to the treatment of podocyte disorders.
Collapse
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione D'Amico per la Ricerca sulle Malattie Renali & Fondazione IRCCS Ca', Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu R, Pankratova S, Christiansen SH, Woldbye D, Højland A, Bock E, Berezin V. A peptide antagonist of ErbB receptors, Inherbin3, induces neurite outgrowth from rat cerebellar granule neurons through ErbB1 inhibition. Neurochem Res 2013; 38:2550-8. [PMID: 24132641 DOI: 10.1007/s11064-013-1166-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023]
Abstract
ErbB receptors not only function in cancer, but are also key developmental regulators in the nervous system. We previously identified an ErbB1 peptide antagonist, Inherbin3, that is capable of inhibiting tumor growth in vitro and in vivo. In this study, we found that inhibition of ErbB1 kinase activity and activation of ErbB4 by NRG-1β induced neurite extension, suggesting that ErbB1 and ErbB4 act as negative and positive regulators, respectively, of the neuritogenic response. Inherbin3, inhibited activation not only of ErbB1 but also of ErbB4 in primary neurons, strongly induced neurite outgrowth in rat cerebellar granule neurons, indicating that this effect mainly was due to inhibition of ErbB1 activation.
Collapse
Affiliation(s)
- Ruodan Xu
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Symbion, Fruebjergvej 3, 2100, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
36
|
Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells. Stem Cells Transl Med 2013. [PMID: 24089415 DOI: 10.5966/sctm.2013-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application. Here, we report the development of a novel technological approach for the local delivery of exogenous trophic factor mimetics to transplanted cells using specifically designed silica nanoporous particles. We demonstrated that delivering Cintrofin and Gliafin, established peptide mimetics of the ciliary neurotrophic factor and glial cell line-derived neurotrophic factor, respectively, with these particles enabled not only robust functional differentiation of motor neurons from transplanted embryonic stem cells but also their long-term survival in vivo. We propose that the delivery of growth factors by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation.
Collapse
|
37
|
Kisiswa L, Osório C, Erice C, Vizard T, Wyatt S, Davies AM. TNFα reverse signaling promotes sympathetic axon growth and target innervation. Nat Neurosci 2013; 16:865-73. [PMID: 23749144 PMCID: PMC3785146 DOI: 10.1038/nn.3430] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
Abstract
Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα reverse signaling in the nervous system to our knowledge for the first time and show that it has a crucial role in establishing sympathetic innervation. During postnatal development, sympathetic axons express TNFα as they grow and branch in their target tissues, which in turn express TNF receptor 1 (TNFR1). In culture, soluble forms of TNFR1 act directly on postnatal sympathetic axons to promote growth and branching by a mechanism that depends on membrane-integrated TNFα and on downstream activation of ERK. Sympathetic innervation density is substantially lower in several tissues in postnatal and adult mice lacking either TNFα or TNFR1. These findings reveal that target-derived TNFR1 acts as a reverse-signaling ligand for membrane-integrated TNFα to promote growth and branching of sympathetic axons.
Collapse
MESH Headings
- ADAM Proteins/pharmacology
- ADAM17 Protein
- Animals
- Animals, Newborn
- Axons/physiology
- Calcium/metabolism
- Cells, Cultured
- Chelating Agents/pharmacology
- Dose-Response Relationship, Drug
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Embryo, Mammalian
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Mice
- Mice, Transgenic
- Nerve Fibers/physiology
- Nerve Growth Factor/pharmacology
- Neurons/cytology
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Superior Cervical Ganglion/cytology
- Sympathetic Nervous System/cytology
- Sympathetic Nervous System/embryology
- Sympathetic Nervous System/growth & development
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Lilian Kisiswa
- Division of Molecular Biosciences, School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
38
|
Zhou Z, Yu P, Geller HM, Ober CK. Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and hippocampal neuronal cell patterning. Biomacromolecules 2013; 14:529-37. [PMID: 23336729 DOI: 10.1021/bm301785b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper describes a method to control neuronal cell adhesion and differentiation with both chemical and topographic cues by using a spatially defined polymer brush pattern. First, biomimetic methacrylate polymer brushes containing tethered neurotransmitter acetylcholine functionalities in the form of dimethylaminoethyl methacrylate or free hydroxyl-terminated poly(ethylene glycol) units were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization reactions. The surface properties of the resulting brushes were thoroughly characterized with various techniques and hippocampal neuronal cell culture on the brush surfaces exhibit cell viability and differentiation comparable to, or even better than, those on commonly used poly-l-lysine coated glass coverslips. The polymer brushes were then patterned via UV photolithography techniques to provide specially designed surface features with different sizes (varying from 2 to 200 μm) and orientations (horizontal and vertical). Protein absorption experiments and hippocampal neuronal cell culture tests on the brush patterns showed that both protein and neurons can adhere to the patterns and therefore be guided by such patterns. These results also demonstrate that, because of their unique chemical composition and well-defined nature, the developed polymer brushes may find many potential applications in cell-material interactions studies and neural tissue engineering.
Collapse
Affiliation(s)
- Zhaoli Zhou
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
39
|
Gutierrez H, Kisiswa L, O'Keeffe GW, Smithen MJ, Wyatt S, Davies AM. Regulation of neurite growth by tumour necrosis superfamily member RANKL. Open Biol 2013; 3:120150. [PMID: 23303310 PMCID: PMC3603457 DOI: 10.1098/rsob.120150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RANKL (receptor-activator of NF-κB ligand, TNFSF11) is a member of the TNF superfamily that regulates bone remodelling and the development of the thymus, lymph nodes and mammary glands. While RANKL and its membrane bound receptor RANK (TNFRSF11A) are expressed in the adult central nervous system and have been implicated in thermoregulation, the potential function of RANK signalling in the developing nervous system remains unexplored. Here, we show that RANK is expressed by sympathetic and sensory neurons of the developing mouse peripheral nervous system and that activating RANK signalling in these neurons during perinatal development by either treating cultured neurons with soluble RANKL or overexpressing RANK in the neurons inhibited neurotrophin-promoted neurite growth without affecting neurotrophin-promoted neuronal survival. RANKL is expressed in tissues innervated by these neurons, and studies in compartment cultures demonstrated that RANKL is capable of acting directly on neurites to inhibit growth locally. Enhancing RANK signalling in cultured neurons resulted in NF-κB activation and phosphorylation of the p65 NF-κB subunit on serine 536. Transfecting neurons with a series of mutated signalling proteins showed that NF-κB activation and p65 phosphorylation occurred by an IKKβ-dependent mechanism and that blockade of this signalling pathway prevented neurite growth inhibition by RANKL. These findings reveal that RANKL is a novel negative regulator of neurite growth from developing PNS neurons and that it exerts its effects by IKKβ-dependent activation of NF-κB.
Collapse
Affiliation(s)
- Humberto Gutierrez
- Cardiff School of Biosciences, Cardiff University, Cardiff Wales CF10 3AX, UK
| | | | | | | | | | | |
Collapse
|
40
|
Popovics P, Gray A, Arastoo M, Finelli DK, Tan AJL, Stewart AJ. Phospholipase C-η2 is required for retinoic acid-stimulated neurite growth. J Neurochem 2012; 124:632-44. [PMID: 23237262 DOI: 10.1111/jnc.12122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 01/30/2023]
Abstract
Phospholipase C-η2 is a recently identified phospholipase C (PLC) implicated in the regulation of neuronal differentiation/maturation. PLCη2 activity is triggered by intracellular calcium mobilization and likely serves to amplify Ca²⁺ signals by stimulating further Ca²⁺ release from Ins(1,4,5)P₃-sensitive stores. The role of PLCη2 in neuritogenesis was assessed during retinoic acid (RA)-induced Neuro2A cell differentiation. PLCη2 expression increased two-fold during a 4-day differentiation period. Stable expression of PLCη2-targetted shRNA led to a decrease in the number of differentiated cells and total length of neurites following RA-treatment. Furthermore, RA response element activation was perturbed by PLCη2 knockdown. Using a bacterial two-hybrid screen, we identified LIM domain kinase 1 (LIMK1) as a putative interaction partner of PLCη2. Immunostaining of PLCη2 revealed significant co-localization with LIMK1 in the nucleus and growing neurites in Neuro2A cells. RA-induced phosphorylation of LIMK1 and cAMP-responsive element-binding protein was reduced in PLCη2 knock-down cells. The phosphoinositide-binding properties of the PLCη2 PH domain, assessed using a FRET-based assay, revealed this domain to possess a high affinity toward PtdIns(3,4,5)P₃. Immunostaining of PLCη2 together with PtdIns(3,4,5)P₃ in the Neuro2A cells revealed a high degree of co-localization, indicating that PtdIns(3,4,5)P₃ levels in cellular compartments are likely to be important for the spatial control of PLCη2 signaling.
Collapse
Affiliation(s)
- Petra Popovics
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, UK
| | | | | | | | | | | |
Collapse
|
41
|
Bojesen KB, Clausen O, Rohde K, Christensen C, Zhang L, Li S, Køhler L, Nielbo S, Nielsen J, Gjørlund MD, Poulsen FM, Bock E, Berezin V. Nectin-1 binds and signals through the fibroblast growth factor receptor. J Biol Chem 2012; 287:37420-33. [PMID: 22955284 DOI: 10.1074/jbc.m112.345215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nectins belong to a family of immunoglobulin (Ig)-like cell-adhesion molecules comprising four members, nectin-1 through nectin-4. Nectins are involved in formation of the mechanical adhesive puncta adherentia junctions of synapses. Nectins share the same overall structural topology with an extracellular region containing three Ig modules, a transmembrane region, and a cytoplasmic region. In nectin-1, the first and second Ig module in the extracellular region are necessary for the trans-interaction with nectin-3 and formation of cis-dimers, respectively. The function of the third Ig module of nectin-1 remains unknown. We here report the structure in solution of the third, membrane-proximal Ig module of mouse nectin-1 (nectin-1 Ig3) solved by means of nuclear magnetic resonance (NMR) spectroscopy. It belongs to the C1 set of the Ig superfamily. Nectin-1 Ig3 was produced as a recombinant protein and induced neurite outgrowth in primary cultures of hippocampal and cerebellar granule neurons, an effect abolished by treatment with the fibroblast growth factor receptor (FGFR) inhibitor SU5402, or by transfection with a dominant-negative FGFR1 construct. We showed by surface plasmon resonance (SPR) analysis that nectin-1 Ig3 directly interacted with various isoforms of FGFR. Nectin-1 Ig3 induced phosphorylation of FGFR1c in the same manner as the whole nectin-1 ectodomain, and promoted survival of cerebellar granule neurons induced to undergo apoptosis. Finally, we constructed a peptide, nectide, by employing in silico modeling of various FGFR ligand-binding sites. Nectide mimicked all the effects of nectin-1 Ig3. We suggest that FGFR is a downstream signaling partner of nectin-1.
Collapse
Affiliation(s)
- Kirsten B Bojesen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, Blegdamsvej 3C, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Neuroprotective and memory enhancing properties of a dual agonist of the FGF receptor and NCAM. Neurobiol Dis 2012; 48:533-45. [PMID: 22842016 DOI: 10.1016/j.nbd.2012.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/31/2012] [Accepted: 07/17/2012] [Indexed: 12/20/2022] Open
Abstract
The fibroblast growth factor receptor (FGFR) plays a vital role in the development of the nervous system regulating a multitude of cellular processes. One of the interaction partners of the FGFR is the neural cell adhesion molecule (NCAM), which is known to play an important role in neuronal development, regeneration and synaptic plasticity. Thus, simultaneous activation of FGFR- and NCAM-mediated signaling pathways may be expected to affect processes underlying neurodegenerative diseases. We here report the identification of a peptide compound, Enreptin, capable of interacting with both FGFR and NCAM. We demonstrate that this dual specificity agonist induces phosphorylation of FGFR and differentiation and survival of primary neurons in vitro, and that these effects are inhibited by abrogation of both NCAM and FGFR signaling pathways. Furthermore, Enreptin crosses the blood-brain barrier after subcutaneous administration, enhances long-term memory in normal mice and ameliorates memory deficit in mice with induced brain inflammation. Moreover, Enreptin reduces cognitive impairment and neuronal death induced by Aβ25-35 in a rat model of Alzheimer's disease, and reduces the mortality rate and clinical signs of experimental autoimmune encephalomyelitis in rats. Thus, Enreptin is an attractive candidate for the treatment of neurological diseases.
Collapse
|
43
|
Fassier C, Tarrade A, Peris L, Courageot S, Mailly P, Dalard C, Delga S, Roblot N, Lefèvre J, Job D, Hazan J, Curmi PA, Melki J. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice. Dis Model Mech 2012; 6:72-83. [PMID: 22773755 PMCID: PMC3529340 DOI: 10.1242/dmm.008946] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP), a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.
Collapse
Affiliation(s)
- Coralie Fassier
- Inserm U798, Laboratoire de Neurogénétique Moléculaire, Université d'Evry-Val d'Essonne et Paris XI, Evry, 91057, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Grouwels G, Vasylovska S, Olerud J, Leuckx G, Ngamjariyawat A, Yuchi Y, Jansson L, Van de Casteele M, Kozlova EN, Heimberg H. Differentiating neural crest stem cells induce proliferation of cultured rodent islet beta cells. Diabetologia 2012; 55:2016-25. [PMID: 22618811 DOI: 10.1007/s00125-012-2542-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/22/2012] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Efficient stimulation of cycling activity in cultured beta cells would allow the design of new strategies for cell therapy in diabetes. Neural crest stem cells (NCSCs) play a role in beta cell development and maturation and increase the beta cell number in co-transplants. The mechanism behind NCSC-induced beta cell proliferation and the functional capacity of the new beta cells is not known. METHODS We developed a new in vitro co-culture system that enables the dissection of the elements that control the cellular interactions that lead to NCSC-dependent increase in islet beta cells. RESULTS Mouse NCSCs were cultured in vitro, first in medium that stimulated their proliferation, then under conditions that supported their differentiation. When mouse islet cells were cultured together with the NCSCs, more than 35% of the beta cells showed cycle activity. This labelling index is more than tenfold higher than control islets cultured without NCSCs. Beta cells that proliferated under these culture conditions were fully glucose responsive in terms of insulin secretion. NCSCs also induced beta cell proliferation in islets isolated from 1-year-old mice, but not in dissociated islet cells isolated from human donor pancreas tissue. To stimulate beta cell proliferation, NCSCs need to be in intimate contact with the beta cells. CONCLUSIONS/INTERPRETATION Culture of islet cells in contact with NCSCs induces highly efficient beta cell proliferation. The reported culture system is an excellent platform for further dissection of the minimal set of factors needed to drive this process and explore its potential for translation to diabetes therapy.
Collapse
Affiliation(s)
- G Grouwels
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gjørlund MD, Nielsen J, Pankratova S, Li S, Korshunova I, Bock E, Berezin V. Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1β and activation of fibroblast growth factor receptor-1. FASEB J 2012; 26:4174-86. [PMID: 22750515 DOI: 10.1096/fj.11-202242] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurexin-1 (NRXN1) and neuroligin-1 (NLGN1) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses and mediate signaling across the synapse, which modulates synaptic activity and determines the properties of neuronal networks. Defects in the genes encoding NLGN1 have been linked to cognitive diseases such as autism. The roles of both NRXN1 and NLGN1 during synaptogenesis have been studied extensively, but little is known about the role of these molecules in neuritogenesis, which eventually results in neuronal circuitry formation. The present study investigated the neuritogenic effect of NLGN1 in cultures of hippocampal neurons. Our results show that NLGN1, both in soluble and membrane-bound forms, induces neurite outgrowth that depends on the interaction with NRXN1β and on activation of fibroblast growth factor receptor-1. In addition, we demonstrate that a synthetic peptide, termed neurolide, which is modeled after a part of the binding interface of NLGN1 for NRXN1β, can bind to NRXN1β and mimic the biological properties of NLGN1 in vitro.
Collapse
Affiliation(s)
- Michelle D Gjørlund
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, Building 24.2, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
46
|
Pankratova S, Gu B, Kiryushko D, Korshunova I, Køhler LB, Rathje M, Bock E, Berezin V. A new agonist of the erythropoietin receptor, Epobis, induces neurite outgrowth and promotes neuronal survival. J Neurochem 2012; 121:915-23. [DOI: 10.1111/j.1471-4159.2012.07751.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Yu P, Santiago LY, Katagiri Y, Geller HM. Myosin II activity regulates neurite outgrowth and guidance in response to chondroitin sulfate proteoglycans. J Neurochem 2012; 120:1117-28. [PMID: 22191382 PMCID: PMC3296867 DOI: 10.1111/j.1471-4159.2011.07638.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix in the CNS that inhibit axonal regeneration after CNS injury. Signaling pathways in neurons triggered by CSPGs are still largely unknown. In this study, using well-characterized in vitro assays for neurite outgrowth and neurite guidance, we demonstrate a major role for myosin II in the response of neurons to CSPGs. We found that the phosphorylation of myosin II regulatory light chains is increased by CSPGs. Specific inhibition of myosin II activity with blebbistatin allows growing neurites to cross onto CSPG-rich areas and increases the length of neurites of neurons growing on CSPGs. Using specific gene knockdown, we demonstrate selective roles for myosin IIA and IIB in these processes. Time lapse microscopy and immunocytochemistry demonstrated that CSPGs also inhibit cell adhesion and cell spreading. Inhibition of myosin II selectively accelerated neurite initiation without altering cell adhesion and spreading on CSPGs.
Collapse
Affiliation(s)
- Panpan Yu
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
48
|
Zhaleh H, Azadbakht M, Bidmeshki Pour A. Possible involvement of calcium channels and plasma membrane receptors on Staurosporine-induced neurite outgrowth. Bosn J Basic Med Sci 2012; 12:20-5. [PMID: 22364299 PMCID: PMC4362412 DOI: 10.17305/bjbms.2012.2526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/31/2011] [Indexed: 12/24/2022] Open
Abstract
Staurosporine as a protein kinases inhibitor induced cell death or neurite outgrowth in PC12 cells. We investigated the involvement of calcium channel and plasma membrane receptors on staurosporine inducing neurite outgrowth in PC12 cells. PC12 cells were preincubated with NMDA receptor inhibitors (1.8 mM ketamine and 1µM MK801, treatment 1) or L-Type Calcium channels (100 μM nifedipine and 100 µM flavoxate hydrochloride, treatment 2) or calcium-calmoduline kinasses (10 μM trifluoprazine, treatment 3) and nifedipine, MK801, flavoxate hydrochloride and ketamine (treatment4) or without pretreatments (control). Then, the cells were cultured in RPMI culture medium containing 214nM staurosporine for induction of neurite outgrowth. The percentage of Cell cytotoxicity and apoptotic index was assessed. Total neurite length (TNL) and fraction of cell differentiation were assessed. After 24h, the percentage of cell cytotoxicity were increased in treatments 1, 2 and 4 compared with control (p<0.05). After 6h, apoptotic index was similar between all treatments. After 12h, apoptotic index were increased in treatment 4 compared with control (p<0.05). After 24h, apoptotic index were increased in treatments 1, 2 and 4 compared with control (p<0.05). TNL were decreased in treatments 1, 2 and 4 compared with control in different times of assessment (6, 12 and 24 h) (p<0.05). The fraction of cell differentiation were decreased in treatments 1, 2 and 4 compared with control (p<0.05). It can be concluded that the possible involvement of L-type calcium channel and the N-methyl D-aspartate receptor on staurosporine-induced neurite outgrowth process in PC12 cells.
Collapse
Affiliation(s)
- Hossein Zhaleh
- Department of Biology, Razi University, Taqe Bostan, Baghe Abrisham, Kermanshah, Iran.
| | | | | |
Collapse
|
49
|
Yu P, Wang H, Katagiri Y, Geller HM. An in vitro model of reactive astrogliosis and its effect on neuronal growth. Methods Mol Biol 2012; 814:327-40. [PMID: 22144316 DOI: 10.1007/978-1-61779-452-0_21] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Astrogliosis, whereby astrocytes in the central nervous system (CNS) become reactive in response to tissue damage, is a prominent process leading to the formation of the glial scar that inhibits axon regeneration after CNS injury. Upon becoming reactive, astrocytes undergo various molecular and morphological changes including upregulating their expression of GFAP and chondroitin sulfate proteoglycans (CSPGs) as well as other molecules that are inhibitory to axon growth. We have developed an in vitro model of reactive astrogliosis as a result of treating cultured astrocytes with transforming growth factor-β (TGF-β), which induces increased expression as well as secretion of CSPGs. These reactive astrocytes show inhibitory effects on neuron growth both in neuron-astrocyte coculture and in neurite guidance spot assay using astrocyte-conditioned medium. These reactive astrocytes provide a vehicle for testing substances that might overcome the glial scar and promote regeneration.
Collapse
Affiliation(s)
- Panpan Yu
- Developmental Neurobiology Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
50
|
Rathje M, Pankratova S, Nielsen J, Gotfryd K, Bock E, Berezin V. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130. Eur J Cell Biol 2011; 90:990-9. [PMID: 22000729 DOI: 10.1016/j.ejcb.2011.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/10/2011] [Accepted: 08/26/2011] [Indexed: 01/28/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor α (CNTFRα), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has been suggested to be important for the cytokine interaction with LIFR. We designed a peptide, termed cintrofin, that encompasses this region. Surface plasmon resonance analysis demonstrated that cintrofin bound to LIFR and gp130, but not to CNTFRα, with apparent KD values of 35 nM and 1.1 nM, respectively. Cintrofin promoted the survival of cerebellar granule neurons (CGNs), in which cell death was induced either by potassium withdrawal or H2O2 treatment. Cintrofin induced neurite outgrowth from CGNs, and this effect was inhibited by specific antibodies against both gp130 and LIFR, indicating that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell signaling properties similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential.
Collapse
Affiliation(s)
- Mette Rathje
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|