1
|
El Guessabi S, Abouqal R, Ibrahimi A, Zouiri G, Sfifou F, Finsterer J, Kriouile Y. Diagnostic accuracy of the lactate stress test for detecting mitochondrial disorders: Systematic review and meta-analysis. Heliyon 2024; 10:e39648. [PMID: 39524711 PMCID: PMC11550639 DOI: 10.1016/j.heliyon.2024.e39648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/12/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Due to their variable phenotypes, mitochondrial disorders (MDs) can be difficult to diagnose. The absolute load lactate stress test (LSTA) and the relative load lactate stress test (LSTR) have been shown to be useful screening tools for the detection of MDs. In this study, we aimed to perform a meta-analysis to evaluate the diagnostic accuracy of these tests in detecting MDs. The study protocol was registered with PROSPERO (no. CRD42022331710). We performed a comprehensive search of PubMed, Web of Science and Scopus from January 10th, 2022 to July 27th, 2022 and included case-control and cohort diagnostic studies that targeted participants with MDs and used LSTA and/or LSTR as index tests. Two reviewers worked separately to compile information from selected articles. Risk of bias and applicability were assessed using the QUADAS-2 tool. Sensitivity and specificity, as well as diagnostic odds ratios (DORs) and area under the curve (AUC) were calculated using Meta-DiSc 2.0 and Stata software. The analysis included 14 studies with a total of 1064 participants, divided into six studies with 793 participants for LSTA and eight studies with 271 participants for LSTR. For LSTA the meta-analysis gave a pooled sensitivity of 0.67 (95 % CI 0.62, 0.72), a specificity of 0.93 (95 % CI 0.85, 0.97), DOR of 26.63 (95 % CI 10.99, 64.52), and AUC of 0.70 (95 % CI 0.66, 0.74). For LSTR, the pooled sensitivity was 0.52 (95 % CI 0.33, 0.70), specificity 0.94 (95 % CI 0.79, 0.99), DOR 18.14 (95 % CI 2.99, 109.85), and the AUC 0.80 (95 % CI 0.76, 0.83). LSTA and LSTR showed as screening tests moderate sensitivity and high specificity for MD diagnosis, particularly for LSTR. The choice of test may depend on the patient's individual aerobic capacity and motor skills and the availability of equipment.
Collapse
Affiliation(s)
- Sara El Guessabi
- Laboratory of genomics and Molecular Epidemiology of genetic Diseases: genes and Mutations in the Moroccan Population, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203, Morocco
| | - Redouane Abouqal
- Laboratory of Biostatistics, Clinical Research and Epidemiology, Public Health Department, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203, Morocco
| | - Ghizlane Zouiri
- Department of Paediatrics 2, Unit of Endocrinology and Neuropediatrics, Children's Hospital of Rabat, 6527, Morocco
| | - Fatima Sfifou
- Laboratory of Histology Embryology and Cytogenetics, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203, Morocco
| | - Josef Finsterer
- Neurology Department, Neurology & Neurophysiology Center, Postfach 20, 1180, Vienna, Austria
| | - Yamna Kriouile
- Laboratory of genomics and Molecular Epidemiology of genetic Diseases: genes and Mutations in the Moroccan Population, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203, Morocco
- Department of Paediatrics 2, Unit of Endocrinology and Neuropediatrics, Children's Hospital of Rabat, 6527, Morocco
| |
Collapse
|
2
|
Kurihara M, Sugiyama Y, Tanaka M, Sato K, Mitsutake A, Ishiura H, Kubota A, Sakuishi K, Hayashi T, Iwata A, Shimizu J, Murayama K, Tsuji S, Toda T. Diagnostic Values of Venous Peak Lactate, Lactate-to-pyruvate Ratio, and Fold Increase in Lactate from Baseline in Aerobic Exercise Tests in Patients with Mitochondrial Diseases. Intern Med 2022; 61:1939-1946. [PMID: 34840233 PMCID: PMC9334250 DOI: 10.2169/internalmedicine.8629-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objective Although aerobic exercise tests on cycle ergometry have long been used for initial assessments of cases of suspected mitochondrial disease, the test parameters in patients with final diagnoses of other diseases via the widely used 15 W for 15 minutes exercise protocol have not been fully characterized. Methods We retrospectively reviewed all patients who underwent the test at our institution. We classified the patients with genetic diagnoses or those who met previously reported clinical criteria as having mitochondrial diseases and those with a final diagnosis of another disease as having other diseases. Results were available from 6 patients with mitochondrial disease and 15 with other diseases. Results During the test, elevated venous peak lactate above the upper normal limit of healthy controls at rest [19.2 mg/dL (2.13 mM)] was observed in 3 patients with mitochondrial diseases (50.0%) and 5 with other diseases (33.3%). In the group of patients with elevated venous peak lactate, a lactate-to-pyruvate ratio of >20 was observed in all 3 patients with mitochondrial disease but in only 1 of the 5 with other diseases. More than a 2-fold increase in venous lactate from baseline was observed in 4 patients with mitochondrial disease (66.7%) and 1 with another disease (6.7%). Conclusion Elevated venous peak lactate levels were observed in patients with final diagnoses of other diseases, even under a low 15-minute workload at 15 W. The lactate-to-pyruvate ratio and increase in lactate level from baseline may add diagnostic value to venous peak lactate levels alone.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yusuke Sugiyama
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Japan
| | - Kenichiro Sato
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Akihiko Mitsutake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Akatsuki Kubota
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kaori Sakuishi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Toshihiro Hayashi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Shimizu
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Physical Therapy, School of Health Science, Tokyo University of Technology, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
3
|
Løkken N, Skriver SV, Khawajazada T, Storgaard JH, Vissing J. Plasma lactate responses during and after submaximal handgrip exercise are not diagnostically helpful in mitochondrial myopathy. Mitochondrion 2021; 60:21-26. [PMID: 34273558 DOI: 10.1016/j.mito.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION/BACKGROUND Mitochondrial myopathy (MM) encompasses a clinical heterogenous group of patients that can be difficult to diagnose. The aim of this study was to investigate if changes in plasma lactate concentration during a 6-minute submaximal handgrip test (6MHGT) and a 20-minute post-exercise recovery period can be used as a diagnostic test for MM. METHODS Twenty-nine patients with MM and nineteen healthy controls (HC) performed an intermittent handgrip exercise test at ½ Hz for 6 min at 50% of maximal voluntary contraction force. We calculated the area under the curve (AUC) of change in plasma lactate during exercise and recovery and compared AUC between groups (MM vs. HC, and between MM subgroups based on disease severity). RESULTS The change in plasma lactate during exercise and recovery was similar in MM and HC (p = 0.65 and p = 0.57) and similar between MM subgroups (p ≥ 0.24). CONCLUSION Plasma lactate measured during and after a submaximal 6MHGT cannot be used as a diagnostic variable for MM.
Collapse
Affiliation(s)
- Nicoline Løkken
- Copenhagen Neuromuscular Center, Dept. of Neurology, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Denmark & Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Sofie Vinther Skriver
- Copenhagen Neuromuscular Center, Dept. of Neurology, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Denmark & Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Dept. of Neurology, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Denmark & Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Helbo Storgaard
- Copenhagen Neuromuscular Center, Dept. of Neurology, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Denmark & Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Dept. of Neurology, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Denmark & Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Exercise Testing, Physical Training and Fatigue in Patients with Mitochondrial Myopathy Related to mtDNA Mutations. J Clin Med 2021; 10:jcm10081796. [PMID: 33924201 PMCID: PMC8074604 DOI: 10.3390/jcm10081796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/05/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause disruption of the oxidative phosphorylation chain and impair energy production in cells throughout the human body. Primary mitochondrial disorders due to mtDNA mutations can present with symptoms from adult-onset mono-organ affection to death in infancy due to multi-organ involvement. The heterogeneous phenotypes that patients with a mutation of mtDNA can present with are thought, at least to some extent, to be a result of differences in mtDNA mutation load among patients and even among tissues in the individual. The most common symptom in patients with mitochondrial myopathy (MM) is exercise intolerance. Since mitochondrial function can be assessed directly in skeletal muscle, exercise studies can be used to elucidate the physiological consequences of defective mitochondria due to mtDNA mutations. Moreover, exercise tests have been developed for diagnostic purposes for mitochondrial myopathy. In this review, we present the rationale for exercise testing of patients with MM due to mutations in mtDNA, evaluate the diagnostic yield of exercise tests for MM and touch upon how exercise tests can be used as tools for follow-up to assess disease course or effects of treatment interventions.
Collapse
|
5
|
Tramonti C, Dalise S, Bertolucci F, Rossi B, Chisari C. Abnormal Lactate Levels Affect Motor Performance in Myotonic Dystrophy Type 1. Eur J Transl Myol 2014; 24:4726. [PMID: 26913141 PMCID: PMC4748969 DOI: 10.4081/ejtm.2014.4726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a dominantly inherited disease comprehending multiple features. Fatigue and exhaustion during exercise often represent significant factors able to negatively influence their compliance to rehabilitation programs. Mitochondrial abnormalities and a significant increase in oxidative markers, previously reported, suggest the hypothesis of a mitochondrial functional impairment. The study aims at evaluating oxidative metabolism efficiency in 18 DM1 patients and in 15 healthy subjects, through analysis of lactate levels at rest and after an incremental exercise test. The exercise protocol consisted of a submaximal incremental exercise performed on an electronically calibrated treadmill, maintained in predominantly aerobic condition. Lactate levels were assessed at rest and at 5, 10 and 30 minutes after the end of the exercise. The results showed early exercise-related fatigue in DM1 patients, as they performed a mean number of 9 steps, while controls completed the whole exercise. Moreover, while resting values of lactate were comparable between the patients and the control group (p=0.69), after the exercise protocol, dystrophic subjects reached higher values of lactate, at any recovery time (p<0,05). These observations suggest an early activation of anaerobic metabolism, thus evidencing an alteration in oxidative metabolism of such dystrophic patients. As far as intense aerobic training could be performed in DM1 patients, in order to improve maximal muscle oxidative capacity and blood lactate removal ability, then, this safe and validate method could be used to evaluate muscle oxidative metabolism and provide an efficient help on rehabilitation programs to be prescribed in such patients.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Neuroscience, University Hospital of Pisa, Italy
| |
Collapse
|
6
|
Volpi L, Ricci G, Orsucci D, Alessi R, Bertolucci F, Piazza S, Simoncini C, Mancuso M, Siciliano G. Metabolic myopathies: functional evaluation by different exercise testing approaches. Musculoskelet Surg 2011; 95:59-67. [PMID: 21373907 DOI: 10.1007/s12306-011-0096-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 02/09/2011] [Indexed: 11/26/2022]
Abstract
Metabolic myopathies are a clinically and etiologically heterogeneous group of disorders due to defects in muscular energy metabolism. They include glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders. The typical manifestations of a metabolic myopathy are exercise-induced myalgias, exercise intolerance, and cramps. Evaluating subjects with such symptoms is not easy because of the frequent lack of clinical features. Exercise tests are, therefore, reliable screening tools. Here, we discuss the possible role of such exercise testing techniques in the diagnostic approach of a patient with suspected metabolic myopathy.
Collapse
Affiliation(s)
- L Volpi
- Department of Neuroscience, Neurological Clinic, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Hanisch F, Müller T, Muser A, Deschauer M, Zierz S. Lactate increase and oxygen desaturation in mitochondrial disorders – Evaluation of two diagnostic screening protocols. J Neurol 2006; 253:417-23. [PMID: 16619117 DOI: 10.1007/s00415-006-0987-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 07/04/2005] [Accepted: 07/13/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND Mitochondrial disorders are characterized by an accumulation of lactate and an insufficient oxygen extraction from blood during exercise. Therefore, both parameters (lactate and oxygen saturation) can be used as screening tests in mitochondrial disorders. However, conflicting results regarding sensitivities and specifities of both tests have been reported. METHOD We examined 27 patients with genetically defined mitochondrial disorders (single deletions n = 15, multiple deletions n = 5, A3243G mutation n = 7), patients with other neuromuscular disorders, and healthy controls. In the first test subjects performed intermittent isometric handgrip exercise (0.5 Hz) at 80% (3 minutes) and 30% (3 and 15 minutes) of maximal contraction force (MCF). Oxygen saturation and partial pressure in cubital venous blood from the exercising arm were measured. In the second test subjects underwent cycle ergometry at 30 W for 15 minutes. Venous lactate at rest, during and 15 minutes postexercise was determined. RESULT Both tests showed specificities of 92-96%. Sensitivities for changes of venous oxygen partial pressure and oxygen saturation ranged from 21-26% at 80% MCF for 3 minutes to 47-58% at 30% MCF for 15 minutes. Sensitivities for venous resting, peak, and post-exercise lactate was 33%, 58%, and 67%, respectively. The degree of deoxygenation, however,was independent of the intensity and duration of the applied forces. Oxygen desaturation and lactate increase in patients with mitochondrial disorders were not different in patients with and without clinical symptoms of myopathy. There were significant correlations between the heteroplasmy and both the degree of oxygen desaturation and lactate increase in patients with single deletions. In patients who performed both protocols (n = 16) a combination of both tests increased sensitivity up to 87%. CONCLUSION Oxygen desaturation in forearm exercise tests and lactate increase in cycle ergometry tests show a high specifity but only moderate sensitivity. Combination of the two screening test clearly increases the sensitivity.
Collapse
Affiliation(s)
- Frank Hanisch
- Klinik und Poliklinik für Neurologie, Martin-Luther-Universität, Halle-Wittenberg, Ernst-Grube Str. 40, 06097, Halle/Saale, Germany.
| | | | | | | | | |
Collapse
|
9
|
Abstract
As it is under debate if determination of lactate during cycle ergometry (lactate stress testing, LST) under a continuous, unadjusted, low workload is a valuable diagnostic tool for mitochondrial myopathy (MMP), the present study aimed to investigate how sensitive the LST is in a large cohort of patients with indications for MMP (MMP patients). Serum lactate was determined once before, three times during, and once after a 15-min, constant 30 W-workload on a bicycle ergometer in 115 healthy controls, 166 patients with neurological disorders other than MMP, and 291 MMP patients. Serum lactate's upper reference limit at rest, 5, 10, 15 min after starting, and 15 min after finishing the exercise was 2.0, 2.0, 2.1, 2.0 and 1.7 mmol/l, respectively. Resting lactate was increased in 75 MMP patients (26%). The specificity of resting lactate determination was 84%. The sensitivity of the LST was 66% and the specificity 84%. Among the 192 MMP patients with abnormal LST, 120 (63%) had a normal resting lactate. The LST is abnormal in two thirds of the MMP patients. The sensitivity of the LST is higher than that of resting lactate determination. The LST is a simple and cheap but effective and reliable screening method for detecting the impaired oxidative metabolism in MMP.
Collapse
Affiliation(s)
- J Finsterer
- Neurological Hospital Rosenhügel, Vienna, Austria.
| | | |
Collapse
|
10
|
Abstract
OBJECTIVE Few data are available about the diagnostic yield of the lactate stress test (LST) in a large group of patients with mitochondriopathy (MCP). METHODS Serum lactate was determined once before, three times during, and once after a 15-minute, constant 30W workload on a bicycle in 62 controls, aged 17 to 84 years, 155 patients with MCP, aged 17 to 87 years, and 31 patients with neurological disorders other than MCP. RESULTS Lactate's upper reference limits at rest, 5, 10, 15 minutes after starting, and 15 minutes after finishing the exercise were 2.0, 2.1, 2.1, 2.1 and 1.8 mmol/l respectively. The test was regarded abnormal if more than two of the five lactate values exceeded the cut-off levels. Among the 103 patients with abnormal LST, 64 (62 %) had normal resting lactate. The sensitivity of the test was 67% and the specificity 94%. CONCLUSION The LST proved to have a high sensitivity and specificity in the detection of patients with MCP, being thus a simple but powerful tool to assess the impaired oxidative metabolism in MCP patients.
Collapse
Affiliation(s)
- Josef Finsterer
- Ludwig Boltzmann Institute for Research in Neuromuscular Disorders, Vienna, Austria
| | | |
Collapse
|