Angelova P, Müller W. Oxidative modulation of the transient potassium current IAby intracellular arachidonic acid in rat CA1 pyramidal neurons.
Eur J Neurosci 2006;
23:2375-84. [PMID:
16706845 DOI:
10.1111/j.1460-9568.2006.04767.x]
[Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidative stress affects cellular membrane lipids and proteins. Using whole-cell patch-clamp recording we demonstrate differential oxidative inhibition of voltage-gated transient (IA) and delayed rectifier [IK(V)] K+ currents by arachidonic acid (AA) and H2O2 in CA1 neurons in hippocampal slice. We show that intracellular application of 1 pm AA or its non-metabolizable analog eicosatetraynoic acid (100 pm) reduced IA by approximately 42% but did not affect IK(V). AA shifted the voltage dependence of steady-state inactivation of IA by 12 mV to more negative potentials whereas the rate of inactivation was unchanged. Surprisingly, intracellular glutathione (GSH, 20 mm) enhanced the effect of AA on maximal IA (-62%) and with AA slowed inactivation of IA. The combination of GSH and extracellular ascorbate (0.4 mm) prevented reduction of IA by AA. Intracellular Trolox (a vitamin E analog, 10 microm) reduced IA by 61%and IK(V) by 39%. Like AA, intracellular Trolox caused a 10-mV left shift of IA steady-state inactivation but Trolox and AA did not cause a shift when coapplied. Extracellular Trolox (100 microm) had no effects on IA. H2O2 (80 microm) reduced both IA and IK(V) in a GSH- and ascorbate-sensitive manner and slowed the rate of inactivation of IA by a factor of 2. Coapplication of H2O2 with GSH and extracellular ascorbate caused approximately 22 mV negative shifts of both steady-state inactivation and activation. We conclude that AA is extremely potent in affecting IA by oxidative modifications. Antioxidants can augment these effects, probably by catalysis of the underlying reactions between oxidants and IA channel proteins.
Collapse