1
|
Getsy PM, Coffee GA, Lewis SJ. Loss of ganglioglomerular nerve input to the carotid body impacts the hypoxic ventilatory response in freely-moving rats. Front Physiol 2023; 14:1007043. [PMID: 37008015 PMCID: PMC10060956 DOI: 10.3389/fphys.2023.1007043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The carotid bodies are the primary sensors of blood pH, pO2 and pCO2. The ganglioglomerular nerve (GGN) provides post-ganglionic sympathetic nerve input to the carotid bodies, however the physiological relevance of this innervation is still unclear. The main objective of this study was to determine how the absence of the GGN influences the hypoxic ventilatory response in juvenile rats. As such, we determined the ventilatory responses that occur during and following five successive episodes of hypoxic gas challenge (HXC, 10% O2, 90% N2), each separated by 15 min of room-air, in juvenile (P25) sham-operated (SHAM) male Sprague Dawley rats and in those with bilateral transection of the ganglioglomerular nerves (GGNX). The key findings were that 1) resting ventilatory parameters were similar in SHAM and GGNX rats, 2) the initial changes in frequency of breathing, tidal volume, minute ventilation, inspiratory time, peak inspiratory and expiratory flows, and inspiratory and expiratory drives were markedly different in GGNX rats, 3) the initial changes in expiratory time, relaxation time, end inspiratory or expiratory pauses, apneic pause and non-eupneic breathing index (NEBI) were similar in SHAM and GGNX rats, 4) the plateau phases obtained during each HXC were similar in SHAM and GGNX rats, and 5) the ventilatory responses that occurred upon return to room-air were similar in SHAM and GGNX rats. Overall, these changes in ventilation during and following HXC in GGNX rats raises the possibility the loss of GGN input to the carotid bodies effects how primary glomus cells respond to hypoxia and the return to room-air.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Paulina M. Getsy,
| | - Gregory A. Coffee
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Getsy PM, Coffee GA, Hsieh YH, Lewis SJ. The superior cervical ganglia modulate ventilatory responses to hypoxia independently of preganglionic drive from the cervical sympathetic chain. J Appl Physiol (1985) 2021; 131:836-857. [PMID: 34197230 DOI: 10.1152/japplphysiol.00216.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Superior cervical ganglia (SCG) postganglionic neurons receive preganglionic drive via the cervical sympathetic chains (CSC). The SCG projects to structures like the carotid bodies (e.g., vasculature, chemosensitive glomus cells), upper airway (e.g., tongue, nasopharynx), and to the parenchyma and cerebral arteries throughout the brain. We previously reported that a hypoxic gas challenge elicited an array of ventilatory responses in sham-operated (SHAM) freely moving adult male C57BL6 mice and that responses were altered in mice with bilateral transection of the cervical sympathetic chain (CSCX). Since the CSC provides preganglionic innervation to the SCG, we presumed that mice with superior cervical ganglionectomy (SCGX) would respond similarly to hypoxic gas challenge as CSCX mice. However, while SCGX mice had altered responses during hypoxic gas challenge that occurred in CSCX mice (e.g., more rapid occurrence of changes in frequency of breathing and minute ventilation), SCGX mice displayed numerous responses to hypoxic gas challenge that CSCX mice did not, including reduced total increases in frequency of breathing, minute ventilation, inspiratory and expiratory drives, peak inspiratory and expiratory flows, and appearance of noneupneic breaths. In conclusion, hypoxic gas challenge may directly activate subpopulations of SCG cells, including subpopulations of postganglionic neurons and small intensely fluorescent (SIF) cells, independently of CSC drive, and that SCG drive to these structures dampens the initial occurrence of the hypoxic ventilatory response, while promoting the overall magnitude of the response. The multiple effects of SCGX may be due to loss of innervation to peripheral and central structures with differential roles in breathing control.NEW & NOTEWORTHY We present data showing that the ventilatory responses elicited by a hypoxic gas challenge in male C57BL6 mice with bilateral superior cervical ganglionectomy are not equivalent to those reported for mice with bilateral transection of the cervical sympathetic chain. These data suggest that hypoxic gas challenge may directly activate subpopulations of superior cervical ganglia (SCG) cells, including small intensely fluorescent (SIF) cells and/or principal SCG neurons, independently of preganglionic cervical sympathetic chain drive.
Collapse
Affiliation(s)
- Paulina M Getsy
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Gregory A Coffee
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospital Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Stephen J Lewis
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
3
|
Getsy PM, Coffee GA, Hsieh YH, Lewis SJ. Loss of Cervical Sympathetic Chain Input to the Superior Cervical Ganglia Affects the Ventilatory Responses to Hypoxic Challenge in Freely-Moving C57BL6 Mice. Front Physiol 2021; 12:619688. [PMID: 33967819 PMCID: PMC8100345 DOI: 10.3389/fphys.2021.619688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The cervical sympathetic chain (CSC) innervates post-ganglionic sympathetic neurons within the ipsilateral superior cervical ganglion (SCG) of all mammalian species studied to date. The post-ganglionic neurons within the SCG project to a wide variety of structures, including the brain (parenchyma and cerebral arteries), upper airway (e.g., nasopharynx and tongue) and submandibular glands. The SCG also sends post-ganglionic fibers to the carotid body (e.g., chemosensitive glomus cells and microcirculation), however, the function of these connections are not established in the mouse. In addition, nothing is known about the functional importance of the CSC-SCG complex (including input to the carotid body) in the mouse. The objective of this study was to determine the effects of bilateral transection of the CSC on the ventilatory responses [e.g., increases in frequency of breathing (Freq), tidal volume (TV) and minute ventilation (MV)] that occur during and following exposure to a hypoxic gas challenge (10% O2 and 90% N2) in freely-moving sham-operated (SHAM) adult male C57BL6 mice, and in mice in which both CSC were transected (CSCX). Resting ventilatory parameters (19 directly recorded or calculated parameters) were similar in the SHAM and CSCX mice. There were numerous important differences in the responses of CSCX and SHAM mice to the hypoxic challenge. For example, the increases in Freq (and associated decreases in inspiratory and expiratory times, end expiratory pause, and relaxation time), and the increases in MV, expiratory drive, and expiratory flow at 50% exhaled TV (EF50) occurred more quickly in the CSCX mice than in the SHAM mice, although the overall responses were similar in both groups. Moreover, the initial and total increases in peak inspiratory flow were higher in the CSCX mice. Additionally, the overall increases in TV during the latter half of the hypoxic challenge were greater in the CSCX mice. The ventilatory responses that occurred upon return to room-air were essentially similar in the SHAM and CSCX mice. Overall, this novel data suggest that the CSC may normally provide inhibitory input to peripheral (e.g., carotid bodies) and central (e.g., brainstem) structures that are involved in the ventilatory responses to hypoxic gas challenge in C57BL6 mice.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States.,The Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A Coffee
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J Lewis
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Tseng CY, Wei IH, Chang HM, Lue JH, Wen CY, Shieh JY. Ultrastructural Identification of a Sympathetic Component in the Hypoglossal Nerve of Hamsters Using Experimental Degeneration and Horseradish Peroxidase Methods. Cells Tissues Organs 2005; 180:117-25. [PMID: 16113540 DOI: 10.1159/000086752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2005] [Indexed: 11/19/2022] Open
Abstract
We employed experimental degeneration, tract-tracing with wheatgerm agglutinin conjugated with horseradish peroxidase (WGA-HRP) and electron microscopy to explore the postganglionic sympathetic fibers in the hypoglossal nerve of hamsters. Quantitative results of normal untreated animals at the electron microscopic level showed the existence of unmyelinated fibers, which made up about 20% of the total fibers in the nerve, being more numerous on the left side. The nerve fibers were preferentially distributed at the periphery of the nerve. Following superior cervical ganglionectomy, most of the unmyelinated fibers underwent degenerative changes. Tract-tracing studies showed that some of the unmyelinated fibers were labeled by WGA-HRP injected into the superior cervical ganglion (SCG). It is suggested that the unmyelinated fibers represent the postganglionic sympathetic fibers originated from the SCG.
Collapse
Affiliation(s)
- Chi-Yu Tseng
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
5
|
TSENG CHIYU, LUE JUNEHORNG, LEE SHIHHSIUNG, WEN CHENYUAN, SHIEH JENGYUNG. Evidence of neuroanatomical connection between the superior cervical ganglion and hypoglossal nerve in the hamster as revealed by tract-tracing and degeneration methods. J Anat 2001; 198:407-21. [PMID: 11327203 PMCID: PMC1468225 DOI: 10.1046/j.1469-7580.2001.19840407.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown the existence of a sympathetic component in some cranial nerves including the hypoglossal nerve. In this study, the horseradish peroxidase (HRP) tract-tracing retrograde technique and experimental degeneration method were used to elucidate the possible neuroanatomical relationship between the superior cervical ganglion (SCG) and the hypoglossal nerve of hamsters. About 10% of the SCG principal neurons were HRP positive following the tracer application to the trunk of hypoglossal nerve. Most of the HRP-labelled neurons were multipolar and were randomly distributed in the ganglion. When HRP was injected into the medial branch of the hypoglossal nerve, some of the SCG neurons were labelled, but they were not detected when HRP was injected into the lateral branch. The present findings suggest that postganglionic sympathetic fibres from the SCG may travel along the hypoglossal nerve trunk via its medial branch to terminate in visceral targets such as the intralingual glands. By electron microscopy, the HRP reaction product was localised in the neuronal somata and numerous unmyelinated fibres in the SCG. In addition, HRP-labelled axon profiles considered to be the collateral branches of the principal neurons contained numerous clear round and a few dense core vesicles. Besides the above, some HRP-labelled small myelinated fibres, considered to be visceral afferents, were also present. Results of experimental degeneration following the severance of the hypoglossal nerve showed the presence of degenerating neuronal elements both in the hypoglossal nucleus and the SCG. This confirms that the hypoglossal nerve contains sympathetic component from the SCG which may be involved in regulation of the autonomic function of the tongue.
Collapse
Affiliation(s)
- CHI-YU TSENG
- Department of Anatomy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - JUNE-HORNG LUE
- Department of Anatomy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - SHIH-HSIUNG LEE
- Department of Anatomy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - CHEN-YUAN WEN
- Department of Anatomy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - JENG-YUNG SHIEH
- Department of Anatomy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Correspondence to Professor Jeng-Yung Shieh, Department of Anatomy, College of Medicine, National Taiwan University, 1, Sec 1, Jen Ai Road, Taipei, Taiwan 100. Tel.: +886-2-2397-0800, ext. 8176; fax: +886-2-2357-8686; e-mail:
| |
Collapse
|