1
|
Szelest M, Masternak M, Zając M, Chojnacki M, Skórka K, Zaleska J, Karczmarczyk A, Stasiak G, Wawrzyniak E, Kotkowska A, Siemieniuk-Ryś M, Purkot J, Subocz E, Cichocka E, Tomczak W, Zawirska D, Giannopoulos K. The role of NPM1 alternative splicing in patients with chronic lymphocytic leukemia. PLoS One 2022; 17:e0276674. [PMID: 36282861 PMCID: PMC9595542 DOI: 10.1371/journal.pone.0276674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease with heterogeneous clinical course. Recent studies revealed a link between NOTCH1 mutation and the overexpression of MYC and MYC-related genes involved in ribosome biogenesis and protein biosynthesis, such as nucleophosmin-1 (NPM1), in CLL cells. In the present study, we aim to evaluate the impact of the NOTCH1 mutation on the MYC and MYC induced NPM1 expression in CLL cells via quantification of their transcripts. METHODS Using qRT-PCR, we analyzed the levels of MYC and three main NPM1 splice variants in 214 samples collected from CLL patients. We assessed the impact of each splice variant on CLL prognostic markers, including the IGHV, TP53, NOTCH1, SF3B1, and MYD88 mutational status, cytogenetic aberrations, and laboratory features. RESULTS Significantly higher levels of NPM1.R1 transcripts in patients with unmutated compared to mutated IGHV status were found. The median time to first treatment (TTFT) in patients with a high level of NPM1.R1 was significantly shorter compared to the group with low NPM1.R1 levels (1.5 vs 33 months, p = 0.0002). Moreover, in Multivariate Cox Proportional Hazard Regression Model NPM1.R1 splice variant provided an independent prognostic value for TTFT. CONCLUSION In conclusion, our study indicates the prognostic significance of the level of NPM1.R1 expression and suggests the importance of splicing alterations in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Marta Masternak
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
- Department of Hematology, St. John’s Cancer Centre, Lublin, Poland
| | - Małgorzata Zając
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Michał Chojnacki
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Skórka
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Joanna Zaleska
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | | | - Grażyna Stasiak
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | | | - Joanna Purkot
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, Warsaw, Poland
- Independent Public Health Care Center of the Ministry of Internal Affairs and Administration with the Warmian-Masurian Oncology Centre in Olsztyn, Olsztyn, Poland
| | - Edyta Cichocka
- Department of Hematology, Copernicus Hospital, Torun, Poland
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation Unit, Medical University of Lublin, Lublin, Poland
| | - Daria Zawirska
- Department of Hematology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
- Department of Hematology, St. John’s Cancer Centre, Lublin, Poland
- * E-mail:
| |
Collapse
|
2
|
The Role of Nucleophosmin 1 ( NPM1) Mutation in the Diagnosis and Management of Myeloid Neoplasms. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010109. [PMID: 35054502 PMCID: PMC8780493 DOI: 10.3390/life12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1) is a multifunctional protein with both proliferative and growth-suppressive roles in the cell. In humans, NPM1 is involved in tumorigenesis via chromosomal translocations, deletions, or mutation. Acute myeloid leukemia (AML) with mutated NPM1, a distinct diagnostic entity by the current WHO Classification of myeloid neoplasm, represents the most common diagnostic subtype in AML and is associated with a favorable prognosis. The persistence of NPM1 mutation in AML at relapse makes this mutation an ideal target for minimal measurable disease (MRD) detection. The clinical implication of this is far-reaching because NPM1-mutated AML is currently classified as being of standard risk, with the best treatment strategy (transplantation versus chemotherapy) yet undefined. Myeloid neoplasms with NPM1 mutations and <20% blasts are characterized by an aggressive clinical course and a rapid progression to AML. The pathological classification of these cases remains controversial. Future studies will determine whether NPM1 gene mutation may be sufficient for diagnosing NPM1-mutated AML independent of the blast count. This review aims to summarize the role of NPM1 in normal cells and in human cancer and discusses its current role in clinical management of AML and related myeloid neoplasms.
Collapse
|
3
|
Moraleva AA, Malysheva MA, Khajdukov SV, Zatsepina OV. A Higher Level of Expression of the Nucleolar Protein SURF6 in Human Normal Activated Lymphocytes and in Lymphocytes of Patients with Lymphoproliferative Disorders. DOKL BIOCHEM BIOPHYS 2020; 494:261-265. [PMID: 33119830 DOI: 10.1134/s1607672920050099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
Proliferation of mammalian cells is often accompanied by an increase in the content of the nucleolar proteins, which allows researchers to consider such proteins as potential activation markers. To test this assumption experimentally, we examined the expression pattern of the nucleolar rRNA processing factor SURF6 in normal (resting) peripheral blood lymphocytes, lymphocytes activated for proliferation in vitro, and in blood samples from patients with lymphoproliferative diseases. Using two methods (immunofluorescence and immunoblotting), we for the first time showed that the SURF6 protein is not detected in normal lymphocytes but can easily be visualized in lymphocytes after PHA activation and in lymphocytes of lymphocytic leukemia patients. The level of SURF6 expression in patients correlated with the aggressiveness of the disease development determined by the content of Ki-67-positive lymphocytes. These results allow the SURF6 nucleolar protein to be considered as a putative activation marker of lymphocytes in human blood disorders.
Collapse
Affiliation(s)
- A A Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - M A Malysheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - S V Khajdukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - O V Zatsepina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia.
| |
Collapse
|
4
|
Chen Y, Hu J. Nucleophosmin1 (NPM1) abnormality in hematologic malignancies, and therapeutic targeting of mutant NPM1 in acute myeloid leukemia. Ther Adv Hematol 2020; 11:2040620719899818. [PMID: 32071709 PMCID: PMC6997955 DOI: 10.1177/2040620719899818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleophosmin (NPM1) is an abundant nucleolar protein that is
implicated in a variety of biological processes and in the pathogenesis of
several human malignancies. For hematologic malignancies, approximately
one-third of anaplastic large-cell non-Hodgkin’s lymphomas were found to express
a fusion between NPM1 and the catalytic domain of anaplastic
lymphoma receptor tyrosine kinase. About 50–60% of acute myeloid leukemia
patients with normal karyotype carry NPM1 mutations, which are
characterized by cytoplasmic dislocation of the NPM1 protein.
Nevertheless, NPM1 is overexpressed in various hematologic and
solid tumor malignancies. NPM1 overexpression is considered a
prognostic marker of recurrence and progression of cancer. Thus,
NPM1 abnormalities play a critical role in several types of
hematologic malignancies. This has led to intense interest in the development of
an NPM1 targeting strategy for cancer therapy. The aim of this
review is to summarize present knowledge on NPM1 origin,
pathogenesis, and therapeutic interventions in hematologic malignancies.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Handschuh L, Wojciechowski P, Kazmierczak M, Marcinkowska-Swojak M, Luczak M, Lewandowski K, Komarnicki M, Blazewicz J, Figlerowicz M, Kozlowski P. NPM1 alternative transcripts are upregulated in acute myeloid and lymphoblastic leukemia and their expression level affects patient outcome. J Transl Med 2018; 16:232. [PMID: 30126426 PMCID: PMC6102803 DOI: 10.1186/s12967-018-1608-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 11/29/2022] Open
Abstract
Background Expression of the NPM1 gene, encoding nucleophosmin, is upregulated in cancers. Although more than ten NPM1 transcripts are known, the reports were usually limited to one predominant transcript. In leukemia, the NPM1 expression has not been widely studied so far. In acute myeloid leukemia (AML), the mutational status of the gene seems to play a pivotal role in carcinogenesis. Therefore, the aim of the study was to quantify alternative NPM1 transcripts in two types of acute leukemia, AML and ALL (acute lymphoblastic leukemia). Methods Using droplet digital PCR, we analyzed the levels of three protein-coding NPM1 transcripts in 66 samples collected from AML and ALL patients and 16 control samples. Using RNA-seq, we detected 8 additional NPM1 transcripts, including non-coding splice variants with retained introns. For data analysis, Welch two sample t-test, Pearson’s correlation and Kaplan–Meier analysis were applied. Results The levels of the particular NPM1 transcripts were significantly different but highly correlated with each other in both leukemia and control samples. Transcript NPM1.1, encoding the longest protein (294 aa), had the highest level of accumulation and was one of the most abundant transcripts in the cell. Comparing to NPM1.1, the levels of the NPM1.2 and NPM1.3 transcripts, encoding a 265-aa and 259-aa proteins, were 30 and 3 times lower, respectively. All three NPM1 transcripts were proportionally upregulated in both types of leukemia compared to control samples. In AML, the levels of NPM1 transcripts decreased in complete remission and increased again with relapse of the disease. Low levels of NPM1.1 and NPM1.3 were associated with better prognosis. The contribution of non-coding transcripts to the total level of NPM1 gene seemed to be marginal, except for one short 5-end transcript accumulated at high levels in AML and control cells. Aberrant proportions of particular NPM1 splice variants could be linked to abnormal expression of genes encoding alternative splicing factors. Conclusions The levels of the studied NPM1 transcripts were different but highly correlated with each other. Their upregulation in AML and ALL, decrease after therapy and association with patient outcome suggests the involvement of elevated NPM1 expression in the acute leukemia pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12967-018-1608-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luiza Handschuh
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland. .,Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznan, Poland.
| | - Pawel Wojciechowski
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznan, Poland
| | - Malgorzata Marcinkowska-Swojak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Magdalena Luczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Technology and Chemical Engineering, Poznan University of Technology, Poznan, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznan, Poland
| | - Mieczyslaw Komarnicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznan, Poland
| | - Jacek Blazewicz
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Marek Figlerowicz
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Piotr Kozlowski
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Technology and Chemical Engineering, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
6
|
Ahuja R, Kapoor NR, Kumar V. The HBx oncoprotein of hepatitis B virus engages nucleophosmin to promote rDNA transcription and cellular proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1783-95. [PMID: 25918010 DOI: 10.1016/j.bbamcr.2015.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/31/2022]
Abstract
The pleiotropic HBx oncoprotein of hepatitis B virus is well known to promote the expression of ribosomal RNAs and several host proteins that are known to support the development and progression of hepatocellular carcinoma (HCC). While overexpression of the nucleolar phosphoprotein, nucleophosmin (NPM), correlates with HCC progression, its upregulation by viral HBx and the resulting impact on perturbed nucleolar functions remain enigmatic. The present study shows that HBx up-regulates NPM levels and hijacks its functions to promote cellular proliferation. We found that HBx expression stabilizes NPM through post-translational modifications. Enhanced CDK2-mediated phosphorylation of NPM at Thr199 upon HBx expression prevented its proteolytic cleavage and provided resistance to apoptosis. Further, HBx directly interacted with the C-terminal domain of NPM and got translocated into the nucleolus where it facilitated the recruitment of RNA polymerase I transcriptional machinery onto the rDNA promoter. Our results indicate that HBx enhances rDNA transcription via a novel regulatory mechanism involving acetylation of NPM and the subsequent depletion of histones from the rDNA promoter. Enhanced production of ribosomal RNA resulting from co-expression of HBx and NPM promoted ribosome biogenesis, cellular proliferation and transformation. Taken together, our study strongly suggests an important role of NPM in mediating the oncogenic effects of HBx and the corresponding nucleolar perturbations induced by this viral oncoprotein.
Collapse
Affiliation(s)
- Richa Ahuja
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neetu Rohit Kapoor
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
7
|
Cammas A, Sanchez BJ, Lian XJ, Dormoy-Raclet V, van der Giessen K, López de Silanes I, Ma J, Wilusz C, Richardson J, Gorospe M, Millevoi S, Giovarelli M, Gherzi R, Di Marco S, Gallouzi IE. Destabilization of nucleophosmin mRNA by the HuR/KSRP complex is required for muscle fibre formation. Nat Commun 2014; 5:4190. [PMID: 24969639 PMCID: PMC4074165 DOI: 10.1038/ncomms5190] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 01/03/2023] Open
Abstract
HuR promotes myogenesis by stabilizing the MyoD, myogenin and p21 mRNAs during the fusion of muscle cells to form myotubes. Here we show that HuR, via a novel mRNA destabilizing activity, promotes the early steps of myogenesis by reducing the expression of the cell cycle promoter nucleophosmin (NPM). Depletion of HuR stabilizes the NPM mRNA, increases NPM protein levels and inhibits myogenesis, while its overexpression elicits the opposite effects. NPM mRNA destabilization involves the association of HuR with the decay factor KSRP as well as the ribonuclease PARN and the exosome. The C terminus of HuR mediates the formation of the HuR-KSRP complex and is sufficient for maintaining a low level of the NPM mRNA as well as promoting the commitment of muscle cells to myogenesis. We therefore propose a model whereby the downregulation of the NPM mRNA, mediated by HuR, KSRP and its associated ribonucleases, is required for proper myogenesis.
Collapse
Affiliation(s)
- Anne Cammas
- 1] Department of Biochemistry, Goodman Cancer Center, McGill University, McIntyre Building Room 915B, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6 [2] INSERM, UMR 1037, Centre de Recherche en Cancérologie de Toulouse, 31432 Toulouse, France
| | - Brenda Janice Sanchez
- Department of Biochemistry, Goodman Cancer Center, McGill University, McIntyre Building Room 915B, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Xian Jin Lian
- Department of Biochemistry, Goodman Cancer Center, McGill University, McIntyre Building Room 915B, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Virginie Dormoy-Raclet
- Department of Biochemistry, Goodman Cancer Center, McGill University, McIntyre Building Room 915B, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Kate van der Giessen
- Department of Biochemistry, Goodman Cancer Center, McGill University, McIntyre Building Room 915B, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Isabel López de Silanes
- Spanish National Cancer Research Centre (CNIO) Telomeres and Telomerase Group, Molecular Oncology Program, C/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Jennifer Ma
- Department of Biochemistry, Goodman Cancer Center, McGill University, McIntyre Building Room 915B, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Carol Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, USA
| | - John Richardson
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A2B4
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Biomedical Research Center, Room 06C226, 251 Bayview Boulevard, Suite 100, Baltimore, Maryland 21224-6825, USA
| | - Stefania Millevoi
- INSERM, UMR 1037, Centre de Recherche en Cancérologie de Toulouse, 31432 Toulouse, France
| | - Matteo Giovarelli
- Istituto Nazionale Ricerca sul Cancro (IST), Laboratory of Gene Expression Regulation, c/o CBA Building A3, Room 30, Largo R. Benzi, 10, 16132 Genova, Italy
| | - Roberto Gherzi
- Istituto Nazionale Ricerca sul Cancro (IST), Laboratory of Gene Expression Regulation, c/o CBA Building A3, Room 30, Largo R. Benzi, 10, 16132 Genova, Italy
| | - Sergio Di Marco
- Department of Biochemistry, Goodman Cancer Center, McGill University, McIntyre Building Room 915B, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, Goodman Cancer Center, McGill University, McIntyre Building Room 915B, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
8
|
Xu DH, Liu F, Li X, Chen XF, Jing GJ, Wu FY, Shi SL, Li QF. Regulatory role of nucleophosmin during the differentiation of human liver cancer cells. Int J Oncol 2014; 45:264-72. [PMID: 24787960 DOI: 10.3892/ijo.2014.2407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/11/2014] [Indexed: 11/05/2022] Open
Abstract
Nucleophosmin (NPM, also known as B23), mainly localized in the nucleolus, has been reported to be overexpressed in many types of human cancer, including colon, ovarian, prostate and gastric cancer. NPM was identified while screening the differential nuclear matrix proteins during HMBA-induced differentiation of human liver cancer cells. We investigated the aberrant expression and subcellular localization of NPM in clinical liver cancer tissues and a cell line with the aim of providing more evidence for revealing the roles of NPM on regulating liver cancer cell proliferation and differentiation. In addition, we studied the potential interaction between NPM and several important proteins. Our results revealed that NPM protein was overexpressed in cancer cells, which was in accordance with the overexpressed mRNA in cancer tissues compared to the corresponding non-cancer tissues. We also found a decrease of NPM in protein and mRNA levels upon treatment with the differentiation reagent HMBA. We focused on the aberrant localization of NPM. Immunochemistry and immunofluorescence revealed aberrant cytoplasmic and nucleoplasm localization of NPM in liver cancer tissues and its colocalization with c-Myc, c-Fos, P53 and Rb in the SMMC-7721 cell line. The interactions between NPM and the above proteins were confirmed by GST pull-down assay and co-immunoprecipitation assay. These findings indicate that NPM plays a regulatory role in liver cancer, which deserves in-depth investigation.
Collapse
Affiliation(s)
- Dong-Hui Xu
- Department of Hepatic Biliary Pancreatic Vascular Surgery, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Fan Liu
- Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiao Li
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiang-Feng Chen
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Guang-Jun Jing
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Fu-Yun Wu
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Song-Lin Shi
- Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Qi-Fu Li
- Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
9
|
Rivas A, Burzio V, Landerer E, Borgna V, Gatica S, Ávila R, López C, Villota C, de la Fuente R, Echenique J, Burzio LO, Villegas J. Determination of the differential expression of mitochondrial long non-coding RNAs as a noninvasive diagnosis of bladder cancer. BMC Urol 2012; 12:37. [PMID: 23249382 PMCID: PMC3541257 DOI: 10.1186/1471-2490-12-37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 12/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background Bladder cancer is a significant cause of morbidity and mortality with a high recurrence rate. Early detection of bladder cancer is essential in order to remove the tumor, to preserve the organ and to avoid metastasis. The aim of this study was to analyze the differential expression of mitochondrial non-coding RNAs (sense and antisense) in cells isolated from voided urine of patients with bladder cancer as a noninvasive diagnostic assay. Methods The differential expression of the sense (SncmtRNA) and the antisense (ASncmtRNAs) transcripts in cells isolated from voided urine was determined by fluorescent in situ hybridization. The test uses a multiprobe mixture labeled with different fluorophores and takes about 1 hour to complete. We examined the expression of these transcripts in cells isolated from urine of 24 patients with bladder cancer and from 15 healthy donors. Results This study indicates that the SncmtRNA and the ASncmtRNAs are stable in cells present in urine. The test reveals that the expression pattern of the mitochondrial transcripts can discriminate between normal and tumor cells. The analysis of 24 urine samples from patients with bladder cancer revealed expression of the SncmtRNA and down-regulation of the ASncmtRNAs. Exfoliated cells recovered from the urine of healthy donors do not express these mitochondrial transcripts. This is the first report showing that the differential expression of these mitochondrial transcripts can detect tumor cells in the urine of patients with low and high grade bladder cancer. Conclusion This pilot study indicates that fluorescent in situ hybridization of cells from urine of patients with different grades of bladder cancer confirmed the tumor origin of these cells. Samples from the 24 patients with bladder cancer contain cells that express the SncmtRNA and down-regulate the ASncmtRNAs. In contrast, the hybridization of the few exfoliated cells recovered from healthy donors revealed no expression of these mitochondrial transcripts. This assay can be explored as a non-invasive diagnostic tool for bladder cancer.
Collapse
Affiliation(s)
- Alexis Rivas
- Andes Biotechnologies S.A. and Fundación Ciencia para la Vida, 7780272 Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Enhanced sensitivity of nucleoli in human proliferating cells to inhibition of protein synthesis with anisomycin. Bull Exp Biol Med 2011; 150:258-62. [PMID: 21240386 DOI: 10.1007/s10517-010-1118-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the reaction of nuclei in cultured human cells from different tissues to inhibition of total protein synthesis with anisomycin - ribotoxin, which is now considered as a potential antitumor drug. It was shown that nucleoli in sensitive cells demonstrate typical reaction: under the action of the inhibitor, labile nucleolar protein, a component of RNA polymerase I transcription complex (previously called A3 antigen), rapidly migrates from the nucleolus to numerous discrete foci in the nucleoplasm. These changes are specific for translation suppression and are not induced by other influences on the cells. Migration of A3 antigen into the nucleoplasm manifests primarily in cells at the stage of DNA replication and is absent in resting cells. These results suggest that localization of A3 antigen can be a marker of artificial suppression of translation in proliferating human cells in vitro.
Collapse
|
11
|
Early expression of nucleolar SURF-6 protein in mouse spleen lymphocytes activated for proliferation in vitro. Bull Exp Biol Med 2010; 147:578-82. [PMID: 19907743 DOI: 10.1007/s10517-009-0578-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Using specific antibodies we studied the content of nucleolar SURF-6 protein, which participates in rRNA processing, in mouser spleen lymphocytes activated for proliferation with concanavalin A and compared it with the content of nucleolar nucleophosmin/B23 protein and DNA replication factor PCNA, well-known markers of proliferating cells. Using immunocytochemistry and immunoblotting methods we demonstrate that the concentration of all these proteins increases simultaneously with increasing the proportion of proliferating cells. Unlike nucleophosmin/B23, SURF-6 protein was not revealed in quiescent lymphocyte nucleoli, while the increase of its level in activated lymphocytes preceded elevation of PCNA level. These observations suggest that nucleolar protein SURF-6 can act as a marker of early T lymphocyte activation for proliferation and that it could participate in cell cycle regulation in mammals.
Collapse
|
12
|
Falini B. Acute myeloid leukemia with mutated nucleophosmin (NPM1): molecular, pathological, and clinical features. Cancer Treat Res 2010; 145:149-168. [PMID: 20306250 DOI: 10.1007/978-0-387-69259-3_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The NPM1 gene encodes for nucleophosmin, a nucleolus-located shuttling protein that is involved in multiple cell functions, including regulation of ribosome biogenesis, control of centrosome duplication and preservation of ARF tumor suppressor integrity. The NPM1 gene is specifically mutated in about 30% acute myeloid leukemia (AML) but not in other human neoplasms. Mutations cause crucial changes at the C-terminus of the NPM1 protein that are responsible for the aberrant nuclear export and accumulation of NPM1 mutants in the cytoplasm of leukemic cells. Diagnosis of AML with mutated NPM1 can be done using molecular techniques, immunohistochemistry (looking at cytoplasmic dislocation of nucleophosmin that is predictive of NPM1 mutations) and Western blotting with antibodies specifically directed against NPM1 mutants. Because of its distinctive molecular, pathological, immunophenotypic and prognostic features, AML with mutated NPM1 (synonym: NPMc+ AML) has been included, as a new provisional entity, in the 2008 World Health Organization (WHO) classification of myeloid neoplasms.
Collapse
|
13
|
Cullen SP, Afonina IS, Donadini R, Lüthi AU, Medema JP, Bird PI, Martin SJ. Nucleophosmin Is Cleaved and Inactivated by the Cytotoxic Granule Protease Granzyme M during Natural Killer Cell-mediated Killing. J Biol Chem 2009; 284:5137-47. [DOI: 10.1074/jbc.m807913200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
14
|
Grigoryev AA, Zharskaya OO, Bulycheva TI, Zatsepina OV. Changes in the status of nucleolus during long-term culturing of human HeLa cells. Bull Exp Biol Med 2008; 144:345-8. [PMID: 18457033 DOI: 10.1007/s10517-007-0329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Changes in the immunocytochemical status of the nucleoli during long-term (6-8 months) in vitro culturing of HeLa (carcinoma of the cervix uteri) cells were described using new A3 monoclonal antibodies selectively reacting with human cell nucleoli. The appearance of cells with abnormal location of A3 antigen was paralleled by a significant increase of culture sensitivity to some external factors (protein synthesis inhibition and oxidative stress). The data indicate that location of one of the nucleolar antigens is an indicator of the qualitative status of HeLa cells in the culture.
Collapse
Affiliation(s)
- A A Grigoryev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Organic Biochemistry, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
15
|
Grigoryev AA, Bulycheva TI, Sheval EV, Kalinina IA, Zatsepina OV. Cytological indicators of overall suppression of protein synthesis revealed by staining with a new monoclonal antibody. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08020144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Lee HH, Kim HS, Kang JY, Lee BI, Ha JY, Yoon HJ, Lim SO, Jung G, Suh SW. Crystal structure of human nucleophosmin-core reveals plasticity of the pentamer-pentamer interface. Proteins 2007; 69:672-8. [PMID: 17879352 DOI: 10.1002/prot.21504] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Villegas J, Burzio V, Villota C, Landerer E, Martinez R, Santander M, Martinez R, Pinto R, Vera MI, Boccardo E, Villa LL, Burzio LO. Expression of a novel non-coding mitochondrial RNA in human proliferating cells. Nucleic Acids Res 2007; 35:7336-47. [PMID: 17962305 PMCID: PMC2175360 DOI: 10.1093/nar/gkm863] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previously, we reported the presence in mouse cells of a mitochondrial RNA which contains an inverted repeat (IR) of 121 nucleotides (nt) covalently linked to the 5′ end of the mitochondrial 16S RNA (16S mtrRNA). Here, we report the structure of an equivalent transcript of 2374 nt which is over-expressed in human proliferating cells but not in resting cells. The transcript contains a hairpin structure comprising an IR of 815 nt linked to the 5′ end of the 16S mtrRNA and forming a long double-stranded structure or stem and a loop of 40 nt. The stem is resistant to RNase A and can be detected and isolated after digestion with the enzyme. This novel transcript is a non-coding RNA (ncRNA) and several evidences suggest that the transcript is synthesized in mitochondria. The expression of this transcript can be induced in resting lymphocytes stimulated with phytohaemagglutinin (PHA). Moreover, aphidicolin treatment of DU145 cells reversibly blocks proliferation and expression of the transcript. If the drug is removed, the cells re-assume proliferation and over-express the ncmtRNA. These results suggest that the expression of the ncmtRNA correlates with the replicative state of the cell and it may play a role in cell proliferation.
Collapse
|
18
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes during Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007; 16:143-65. [PMID: 17233554 DOI: 10.1089/scd.2006.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of neural precursor cells (NPCs) represents a promising repair strategy for many neurological disorders. However, the molecular events and biological features that control NPC proliferation and their differentiation into neurons, astrocytes, and oligodendrocytes are unclear. In the present study, we used a comparative proteomics approach to identify proteins that were differentially regulated in NPCs after short-term differentiation. We also used a subcellular fractionation technique for enrichment of nuclei and other dense organelles to identify proteins that were not readily detected in whole cell extracts. In total, 115 distinct proteins underwent expression changes during NPC differentiation. Forty one of these were only identified following subcellular fractionation. These included transcription factors, RNA-processing factors, cell cycle proteins, and proteins that translocate between the nucleus and cytoplasm. Biological network analysis showed that the differentiation of NPCs was associated with significant changes in cell cycle and protein synthesis machinery. Further characterization of these proteins could provide greater insight into the mechanisms involved in regulation of neurogenesis in the adult central nervous system (CNS) and potentially identify points of therapeutic intervention.
Collapse
Affiliation(s)
- Kamran Salim
- Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex, CM20 2QR, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
19
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes During Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007. [DOI: 10.1089/scd.2007.16.ft-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
Abstract
NPM1 is a crucial gene to consider in the context of the genetics and biology of cancer. NPM1 is frequently overexpressed, mutated, rearranged and deleted in human cancer. Traditionally regarded as a tumour marker and a putative proto-oncogene, it has now also been attributed with tumour-suppressor functions. Therefore, NPM can contribute to oncogenesis through many mechanisms. The aim of this review is to analyse the role of NPM in cancer, and examine how deregulated NPM activity (either gain or loss of function) can contribute to tumorigenesis.
Collapse
Affiliation(s)
- Silvia Grisendi
- Cancer Biology & Genetics Program, Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
21
|
Palaniswamy V, Moraes KCM, Wilusz CJ, Wilusz J. Nucleophosmin is selectively deposited on mRNA during polyadenylation. Nat Struct Mol Biol 2006; 13:429-35. [PMID: 16604083 PMCID: PMC2811576 DOI: 10.1038/nsmb1080] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/06/2006] [Indexed: 12/19/2022]
Abstract
Nucleophosmin (NPM), an abundant, predominantly nucleolar protein that influences numerous cellular processes, was shown to specifically associate with the bodies of messenger RNAs as a result of the process of 3'-end formation. NPM deposition requires polyadenylation but not the 3' cleavage event to occur on the transcript. Furthermore, the protein does not associate with RNAs bearing a preformed poly(A) tail or with mRNAs that have undergone cleavage but not polyadenylation. A region within 10 bases upstream of the AAUAAA element is required for NPM association, but deposition of the protein seems to be sequence independent. NPM association with poly(A)(+) mRNAs was also demonstrated in vivo. NPM, therefore, represents a mark left on transcripts as a result of 3'-end processing and may have a role in one or more of a variety of post-transcriptional processes influenced by the polyadenylation event.
Collapse
Affiliation(s)
- Viswanathan Palaniswamy
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
22
|
Huang SY, Tsai ML, Wu CJ, Hsu JL, Ho SH, Chen SH. Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics 2006; 6:1722-34. [PMID: 16470654 DOI: 10.1002/pmic.200500507] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative analysis of protein phosphorylation provides important insights into molecular signaling mechanisms and a better understanding of many cellular processes. In this study, we coupled stable isotope dimethyl labeling with immobilized metal affinity chromatography (IMAC) enrichment to quantify protein phosphorylation at MS-determined phosphorylation sites. The proposed method was first characterized using alpha- and beta-casein as two model phosphoproteins, and further applied to the analysis of pregnant rat uteri with and without treatment with 8-bromo-cGMP. Dimethyl labeling has several significant advantages: global, fast (within 5 min) and complete (near 100%). Our results indicate that the labeling has no adverse effect on the IMAC enrichment for tryptic peptides having single and multiple phosphorylation sites. Moreover, the enhanced a1 signal and the complete reaction by dimethyl labeling provide unequivocal identification of both the N-terminal amino acid and the number of the labeling site. Using these two criteria in data validation, which is particularly important for identifying phosphoproteins, we found that the confidence in interpreting dimethyl-labeled peptides had greatly increased. In the analysis of late gestation rat uteri, the abundance ratio between treated and un-treated phosphopeptide signals ranged from 0.51 to 1.69 with an average of around 1.01 +/- 0.25. The obtained ratio of the phosphorylation levels at Ser 15 of HSP27 was further confirmed by the consistent results obtained from Western blot analyses. Based on the analysis of the results, it is interesting to note that the activated cGMP dependent protein kinase G (PKG) seems to affect the phosphorylation of proteins associated with the inhibition of cell migration and proliferation, redistribution of actin-associated proteins, and the increase of protein synthesis in late-gestation uteri. These observations provide important evidence suggesting that activated PKG may play a critical role in the shift of pregnant uteri from proliferative to hypertrophic states.
Collapse
Affiliation(s)
- Sheng-Yu Huang
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Gurchenkov VV, Polzikov MA, Magoulas C, Romanova LG, Zatsepina OV. [Properties and functions of a new nucleolar protein, Surf-6, in 3T3 mouse cells]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006; 31:578-85. [PMID: 16363129 DOI: 10.1007/s11171-005-0071-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The localization of the specific protein Surf-6 from nucleoli of eukaryotic cells in mitosis and its sensitivity to the treatment of cells with RNase A and DNase I in situ were studied. It was shown that, in interphase nucleoli of 3T3 mouse cells, Surf-6 is probably associated with RNA and practically is not associated with DNA. In mitosis, Surf-6 appears in forming nucleoli after the known RNA-binding proteins fibrillarin and B23/nucleofozmin, which are involved in the early and late stages of the assembly of ribosomal particles, respectively. These observations and the regularities of migration of early and late proteins of ribosome assembly to nucleoli in the telophase of mitosis led us to the presumption that Surf-6 is involved in the terminal stages of the assembly of ribosomal particles in murine cells. An immunoblot analysis of the Surf-6 content in synchronized 3T3 cells showed for the first time that Surf-6 is present at all stages of the cell cycle but its content markedly decreases when cells enter the G0 period. Conversely, the activation of cells for proliferation is accompanied by an increase in the Surf-6 content. These observations allow one to regard Surf-6 as a marker of the cell proliferative state and suggest its implication in the regulation of the cell cycle. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 6; see also http://www.maik.ru.
Collapse
|
24
|
Kalousek I, Otevřelová P, Röselová P. Expression and translocation of major nucleolar proteins in relation to the transcriptional activity of the nucleolus. J Appl Biomed 2005. [DOI: 10.32725/jab.2005.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
25
|
Jiang P, Gan M, Huang H, Shen X, Wang S, Yao K. Proteome analysis of antiproliferative mechanism of 12-O-tetradecanoylphorbol 13-acetate on cultured nasopharyngeal carcinoma CNE2 cells. J Proteome Res 2005; 4:599-605. [PMID: 15822940 DOI: 10.1021/pr0497677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
12-O-Tetradecanoyl-phorbol-13-acetate (TPA) is a plant derivative with multiple function as tumor promoter, differentiation revulsant or leukemia therapy drug. The molecular mechanism of its function is perplexing. Many studies have focused on the mechanism of TPA stimulation in tumor promotion of mouse models or terminal differentiation of leukemia cells, but the effect of TPA on nasopharyngeal carcinoma (NPC) remains unclear, while TPA was considered to be associated with NPC development. In the present study, we employed proteomics techniques to study protein changes of a poorly differentiated squamous carcinoma cell line-CNE2 of human NPCs cells induced by TPA. Six significantly and reproducibly changed proteins were identified and their functional implications were discussed in some details.
Collapse
Affiliation(s)
- Peizhou Jiang
- Cancer Research Institute and Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
JIANG PZ, GAN M, HUANG H, SHEN XM, WANG S, YAO KT. Proteomics-based Identification of Proteins with Altered Expression Induced by 12-O-Tetradecanoylphorbol 13-acetate in Nasopharyngeal Carcinoma CNE2 Cells. Acta Biochim Biophys Sin (Shanghai) 2005. [DOI: 10.1111/j.1745-7270.2005.00016.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|