1
|
Lam D, Enright HA, Cadena J, Peters SKG, Sales AP, Osburn JJ, Soscia DA, Kulp KS, Wheeler EK, Fischer NO. Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array. Sci Rep 2019; 9:4159. [PMID: 30858401 PMCID: PMC6411890 DOI: 10.1038/s41598-019-40128-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/08/2019] [Indexed: 11/17/2022] Open
Abstract
The brain’s extracellular matrix (ECM) is a macromolecular network composed of glycosaminoglycans, proteoglycans, glycoproteins, and fibrous proteins. In vitro studies often use purified ECM proteins for cell culture coatings, however these may not represent the molecular complexity and heterogeneity of the brain’s ECM. To address this, we compared neural network activity (over 30 days in vitro) from primary neurons co-cultured with glia grown on ECM coatings from decellularized brain tissue (bECM) or MaxGel, a non-tissue-specific ECM. Cells were grown on a multi-electrode array (MEA) to enable noninvasive long-term interrogation of neuronal networks. In general, the presence of ECM accelerated the formation of networks without affecting the inherent network properties. However, specific features of network activity were dependent on the type of ECM: bECM enhanced network activity over a greater region of the MEA whereas MaxGel increased network burst rate associated with robust synaptophysin expression. These differences in network activity were not attributable to cellular composition, glial proliferation, or astrocyte phenotypes, which remained constant across experimental conditions. Collectively, the addition of ECM to neuronal cultures represents a reliable method to accelerate the development of mature neuronal networks, providing a means to enhance throughput for routine evaluation of neurotoxins and novel therapeutics.
Collapse
Affiliation(s)
- Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Cadena
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sandra K G Peters
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Ana Paula Sales
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Joanne J Osburn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - David A Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kristen S Kulp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Elizabeth K Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas O Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
2
|
Ranno E, D'Antoni S, Spatuzza M, Berretta A, Laureanti F, Bonaccorso CM, Pellitteri R, Longone P, Spalloni A, Iyer AM, Aronica E, Catania MV. Endothelin-1 is over-expressed in amyotrophic lateral sclerosis and induces motor neuron cell death. Neurobiol Dis 2014; 65:160-71. [PMID: 24423643 DOI: 10.1016/j.nbd.2014.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/13/2013] [Accepted: 01/04/2014] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of motor neurons (MNs) and astrogliosis. Recent evidence suggests that factors secreted by activated astrocytes might contribute to degeneration of MNs. We focused on endothelin-1 (ET-1), a peptide which is strongly up-regulated in reactive astrocytes under different pathological conditions. We show that ET-1 is abundantly expressed by reactive astrocytes in the spinal cord of the SOD1-G93A mouse model and sporadic ALS patients. To test if ET-1 might play a role in degeneration of MNs, we investigated its effect on MN survival in an in vitro model of mixed rat spinal cord cultures (MSCs) enriched of astrocytes exhibiting a reactive phenotype. ET-1 exerted a toxic effect on MNs in a time- and concentration-dependent manner, with an exposure to 100-200nM ET-1 for 48h resulting in 40-50% MN cell death. Importantly, ET-1 did not induce MN degeneration when administered on cultures treated with AraC (5μM) or grown in a serum-free medium that did not favor astrocyte proliferation and reactivity. We found that both ETA and ETB receptors are enriched in astrocytes in MSCs. The ET-1 toxic effect was mimicked by ET-3 (100nM) and sarafotoxin S6c (10nM), two selective agonists of endothelin-B receptors, and was not additive with that of ET-3 suggesting the involvement of ETB receptors. Surprisingly, however, the ET-1 effect persisted in the presence of the ETB receptor antagonist BQ-788 (200nM-2μM) and was slightly reversed by the ETA receptor antagonist BQ-123 (2μM), suggesting an atypical pharmacological profile of the astrocytic receptors responsible for ET-1 toxicity. The ET-1 effect was not undone by the ionotropic glutamate receptor AMPA antagonist GYKI 52466 (20μM), indicating that it is not caused by an increased glutamate release. Conversely, a 48-hour ET-1 treatment increased MN cell death induced by acute exposure to AMPA (50μM), which is indicative of two distinct pathways leading to neuronal death. Altogether these results indicate that ET-1 exerts a toxic effect on cultured MNs through mechanisms mediated by reactive astrocytes and suggest that ET-1 may contribute to MN degeneration in ALS. Thus, a treatment aimed at lowering ET-1 levels or antagonizing its effect might be envisaged as a potential therapeutic strategy to slow down MN degeneration in this devastating disease.
Collapse
Affiliation(s)
- Eugenia Ranno
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy; PhD Program in Neurobiology, University of Catania, Catania, Italy
| | - Simona D'Antoni
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Antonio Berretta
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Floriana Laureanti
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Patrizia Longone
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome, Italy
| | - Anand M Iyer
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy; IRCCS Oasi Maria SS, Troina (EN), Italy.
| |
Collapse
|
3
|
D'Antoni S, Berretta A, Seminara G, Longone P, Giuffrida-Stella AM, Battaglia G, Sortino MA, Nicoletti F, Catania MV. A prolonged pharmacological blockade of type-5 metabotropic glutamate receptors protects cultured spinal cord motor neurons against excitotoxic death. Neurobiol Dis 2011; 42:252-64. [DOI: 10.1016/j.nbd.2011.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
|
4
|
Röhl C, Armbrust E, Herbst E, Jess A, Gülden M, Maser E, Rimbach G, Bösch-Saadatmandi C. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation. Neurotox Res 2009; 17:317-31. [PMID: 19763738 DOI: 10.1007/s12640-009-9108-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/19/2009] [Accepted: 08/25/2009] [Indexed: 01/06/2023]
Abstract
Microglia and astrocytes are the cellular key players in many neurological disorders associated with oxidative stress and neuroinflammation. Previously, we have shown that microglia activated by lipopolysaccharides (LPS) induce the expression of antioxidative enzymes in astrocytes and render them more resistant to hydrogen peroxide (H2O2). In this study, we examined the mechanisms involved with respect to the cellular action of different peroxides, the ability to detoxify peroxides, and the status of further antioxidative systems. Astrocytes were treated for 3 days with medium conditioned by purified quiescent (microglia-conditioned medium, MCM[-]) or LPS-activated (MCM[+]) microglia. MCM[+] reduced the cytotoxicity of the organic cumene hydroperoxide in addition to that of H2O2. Increased peroxide resistance was not accompanied by an improved ability of astrocytes to remove H2O2 or an increased expression/activity of peroxide eliminating antioxidative enzymes. Neither peroxide-induced radical generation nor lipid peroxidation were selectively affected in MCM[+] treated astrocytes. The glutathione content of peroxide resistant astrocytes, however, was increased and superoxide dismutase and heme oxygenase were found to be upregulated. These changes are likely to contribute to the higher peroxide resistance of MCM[+] treated astrocytes by improving their ability to detoxify reactive oxygen radicals and oxidation products. For C6 astroglioma cells a protective effect of microglia-derived factors could not be observed, underlining the difference of primary cells and cell lines concerning their mechanisms of oxidative stress resistance. Our results indicate the importance of microglial-astroglial cell interactions during neuroinflammatory processes.
Collapse
Affiliation(s)
- Claudia Röhl
- Institute of Toxicology and Pharmacology for Natural Scientists, Christian-Albrechts-University, Brunswiker Str. 10, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Röhl C, Grell M, Maser E. The organotin compounds trimethyltin (TMT) and triethyltin (TET) but not tributyltin (TBT) induce activation of microglia co-cultivated with astrocytes. Toxicol In Vitro 2009; 23:1541-7. [PMID: 19422909 DOI: 10.1016/j.tiv.2009.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 04/04/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
The organotin compounds trimethyltin (TMT), triethyltin (TET) and tributyltin (TBT) show different organotoxicities in vivo. While TMT and TET induce a strong neurotoxicity accompanied by microglial and astroglial activation, TBT rather effects the immune system. Previously, we have shown in an in vitro co-culture model that microglial cells can be activated by TMT in the presence of astrocytes. In this study, we wanted to investigate (a) if the neurotoxic organotin compound TET can also activate microglial cells in vitro similar to TMT and (b) if differences between the neurotoxicants TMT and TET on the one side and TBT on the other exist concerning microglial activation. Therefore, purified microglial and astroglial cell cultures from neonatal rat brains were treated either alone or in co-cultures for 24h with different concentrations of TMT, TET or TBT and the basal cytotoxicity and nitric oxide formation was determined. Furthermore, morphological changes of astrocytes were examined. Our results show that microglial activation can be increased in subcytolethal concentrations, but only in the presence of astrocytes and not in microglial cell cultures alone. This increase was induced by the neurotoxicants TMT and TET but not by TBT. Taken together, the differing microglia activating effect of the organotin compounds may contribute to the differing neurotoxic potential of this group of chemicals in vivo. In addition, our results emphasize the need for co-culture systems when studying interactions between different cell types for toxicity assessment.
Collapse
Affiliation(s)
- C Röhl
- Institute of Toxicology and Pharmacology for Natural Scientists, Christian-Albrechts-University of Kiel, Brunswiker Str. 10, D-24105 Kiel, Germany.
| | | | | |
Collapse
|
6
|
Röhl C, Armbrust E, Kolbe K, Lucius R, Maser E, Venz S, Gülden M. Activated microglia modulate astroglial enzymes involved in oxidative and inflammatory stress and increase the resistance of astrocytes to oxidative stress in vitro. Glia 2008; 56:1114-26. [PMID: 18442093 DOI: 10.1002/glia.20683] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuropathological processes in the central nervous system are commonly accompanied by an activation of microglia and astrocytes. The involvement of both cell populations in the onset and progress of neurological disorders has been widely documented, implicating both beneficial and detrimental influences on the neural tissue. Nevertheless, little is known about the interplay of these glial cell populations, especially under diseased conditions. To examine the effects of activated microglia on astrocytes purified rat astroglial cell cultures were treated with medium conditioned by purified quiescent (MCM[-]) or lipopolysaccharide (LPS)-activated rat microglia (MCM[+]) and subjected to a comparative proteome analysis based on two-dimensional gel electrophoresis. No significant down regulation of proteins was observed. The majority of the 19 proteins identified by means of nano HPLC/ESI-MS/MS in the 12 most prominent protein spots significantly overexpressed (> or =2-fold) in MCM[+] treated astrocytes are involved in inflammatory processes and oxidative stress response: superoxide dismutases (Sod), peroxiredoxins, glutathione S-transferases (Gst), nucleoside diphosphate kinase B, argininosuccinate synthase (Ass), and cellular retinol-binding protein I (Rbp1). Sod2, Rbp1, Gstp1, and Ass were also significantly increased on the mRNA level determined by quantitative RT-PCR. The upregulation of antioxidative enzymes in astrocytes was accompanied by a higher resistance to oxidative stress induced by H2O2. These results show that activated microglia change the expression of antioxidative proteins in astrocytes and protect them against oxidative stress, which might be an effective way to increase the neuroprotective potential of astrocytes under pathological conditions associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Claudia Röhl
- Department of Anatomy, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Armbrust E, Röhl C. Time- and activation-dependency of the protective effect of microglia on astrocytes exposed to peroxide-induced oxidative stress. Toxicol In Vitro 2008; 22:1399-404. [DOI: 10.1016/j.tiv.2008.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
|
8
|
Röhl C, Lucius R, Sievers J. The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 2006; 1129:43-52. [PMID: 17169340 DOI: 10.1016/j.brainres.2006.10.057] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/13/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
In the diseased central nervous system, astrogliosis is accompanied by microglial activation. Depending on the context of their activation, reactive astrocytes are involved in neuronal survival and regeneration in an either protective or impedimental way. Major reactive changes of astrocytes in vivo are the upregulation of the intermediate filaments GFAP (glial fibrillary acidic protein) and vimentin with accompanying cellular hypertrophy and/or hyperplasia. To examine the involvement of activated microglia in the onset and maintenance of astrogliosis, we used an in vitro model of purified cultures of astrocytes and assessed as parameters for astrogliosis GFAP, vimentin, astroglial hypertrophy and cell growth after treatment with medium conditioned by LPS (lipopolysaccarides)-stimulated microglia. Furthermore, IL-6 as a typically upregulated cytokine in proinflammatory processes in the brain was determined in treated astrocytes. GFAP, the classical marker for astrogliosis, was downregulated on its protein and in parallel with vimentin on its mRNA level. The expression of actin, another cytoskeleton protein used as control, remained unchanged. Ultrastructural studies of astroglial intermediate filaments supported these findings. No hypertrophy was found. Nevertheless, LPS-activated microglia stimulated astrocytes as demonstrated by an increased cell number and an enhanced mRNA expression of IL-6. Resting microglia did not change any of the determined parameters. Our results suggest that the role of activated microglia in astrogliotic processes following injury of the brain has to be reevaluated, as microglia in their activated state might support the onset of astrogliosis on the one hand, but might delay or reduce subsequent glial scar formation on the other hand.
Collapse
Affiliation(s)
- Claudia Röhl
- Department of Anatomy, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| | | | | |
Collapse
|
9
|
Sergent-Tanguy S, Michel DC, Neveu I, Naveilhan P. Long-lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin+/GFAP− cells in cell proliferation. J Neurosci Res 2006; 83:1515-24. [PMID: 16612832 DOI: 10.1002/jnr.20846] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nestin, a currently used marker of neural stem cells, is transiently coexpressed with glial fibrillary acidic protein (GFAP) during development and is induced in reactive astrocytes following brain injury. Nestin expression has also been found in cultures of astroglial cells, but little is known about the fate and the mitotic activity of nestin-expressing cells in this in vitro model. The present study reveals a long-lasting expression of nestin in primary cultures of astroglial cells derived from the rat brain. Over 70% of the cells were nestin(+) at 12 weeks, with a large majority coexpressing the GFAP astrocytic marker. Time-course analyses supported a transition from a nestin(+)/GFAP(-) to a nestin(+)/GFAP(+) phenotype over time, which was further increased by cell cycle arrest. Interestingly, double staining with Ki67 revealed that over 90% of cycling cells were nestin(+) whereas only 28% were GFAP(+) in a population consisting of almost equivalent numbers of nestin(+) and GFAP(+) cells. These observations indicated that nestin(+)/GFAP(-) cells are actively engaged in mitotic activity, even after 2 weeks in vitro. Part of these cells might have retained properties of neural stem cells, insofar as 10% of cells in a primary culture of glial cells were able to generate neurospheres that gave rise to both neurons and astrocytes. Further studies will be necessary to characterize fully the proliferating cells in primary cultures of glial cells, but our present results reveal a major contribution of the nestin(+)/GFAP(-) cells to the increase in the number of astrocytes, even though nestin(+)/GFAP(+) cells proliferate also.
Collapse
|
10
|
Röhl C, Sievers J. Microglia is activated by astrocytes in trimethyltin intoxication. Toxicol Appl Pharmacol 2005; 204:36-45. [PMID: 15781292 DOI: 10.1016/j.taap.2004.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 08/17/2004] [Indexed: 11/18/2022]
Abstract
Microglia participates in most acute and chronic neuropathologies and its activation appears to involve interactions with neurons and other glial cells. Trimethyltin (TMT)-induced brain damage is a well-characterized model of neurodegeneration, in which microglial activation occurs before neuronal degeneration. The aim of this in vitro study was to investigate the role of astroglia in TMT-induced microgliosis by using nitric oxide (NO), inducible NO synthase (iNOS), and morphological changes as parameters for microglial activation. Our investigation discusses (a) whether microglial cells can be activated directly by TMT; (b) if astroglial cells are capable of triggering or modulating microglial activation; (c) how the morphology and survival of microglia and astrocytes are affected by TMT treatment; and (d) whether microglial-astroglial interactions depend on direct cell contact or on soluble factors. Our results show that microglia are more vulnerable to TMT than astrocytes are and cannot be activated directly by TMT with regard to the examined parameters. In bilayer coculture with viable astroglial cells, microglia produce NO in significant amounts at subcytotoxic concentrations of TMT (20 micromol/l). At these TMT concentrations, microglial cells in coculture convert into small round cells without cell processes, whereas flat, fibroblast-like astrocytes convert into thin process bearing stellate cells with a dense and compact cell body. We conclude that astrocytes trigger microglial activation after treatment with TMT, although the mechanisms of this interaction remain unknown.
Collapse
Affiliation(s)
- Claudia Röhl
- Department of Anatomy, University of Kiel, D-24098 Kiel, Germany.
| | | |
Collapse
|
11
|
Vermeiren C, Najimi M, Maloteaux JM, Hermans E. Molecular and functional characterisation of glutamate transporters in rat cortical astrocytes exposed to a defined combination of growth factors during in vitro differentiation. Neurochem Int 2005; 46:137-47. [PMID: 15627514 DOI: 10.1016/j.neuint.2004.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 07/22/2004] [Accepted: 08/10/2004] [Indexed: 11/20/2022]
Abstract
In vitro culture of astroglial progenitors can be obtained from early post-natal brain tissues and several methods have been reported for promoting their maturation into differentiated astrocytes. Hence, a combination of several nutriments/growth factors -- the G5 supplement (insulin, transferrin, selenite, biotin, hydrocortisone, fibroblast growth factor and epidermal growth factor) -- is widely used as a culture additive favouring the growth, differentiation and maturation of primary cultured astrocytes. Considering the key role played by glial cells in the clearance of glutamate in the synapses, cultured astrocytes are frequently used as a model for the study of glutamate transporters. Indeed, it has been shown that when tested separately, growth factors influence the expression and activity of the GLAST and GLT-1. The present study aimed at characterising the functional expression of these transporters during the time course of differentiation of cultured cortical astrocytes exposed to the supplement G5. After a few days, the vast majority of cells exposed to this supplement adopted a typical stellate morphology (fibrous or type II astrocytes) and showed intense expression of the glial fibrillary acidic protein. Both RT-PCR and immunoblotting studies revealed that the expression of both GLAST and GLT-1 rapidly increased in these cells. While this was correlated with a significant increase in specific uptake of radiolabelled aspartate, fluorescence monitoring of the Na+ influx associated with glutamate transporters activity revealed that the exposure to the G5 supplement considerably increased the percentage of cells participating in the uptake. Biochemical and pharmacological studies revealed that this activity did not involve GLT-1 but most likely reflected an increase in GLAST-mediated uptake. Together, these data indicate that the addition of this classical combination of growth factors and nutriments drives the rapid differentiation toward a homogenous culture of fibrous astrocytes expressing functional glutamate transporters.
Collapse
Affiliation(s)
- Céline Vermeiren
- Laboratoire de Pharmacologie Expérimentale, Université catholique de Louvain, Av. Hippocrate 54, 1200 Brussels, Belgium
| | | | | | | |
Collapse
|