Andjelić S, Lumi X, Yan X, Graw J, Moe MC, Facskó A, Hawlina M, Petrovski G. Characterization of ex vivo cultured neuronal- and glial- like cells from human idiopathic epiretinal membranes.
BMC Ophthalmol 2014;
14:165. [PMID:
25540050 PMCID:
PMC4324881 DOI:
10.1186/1471-2415-14-165]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/11/2014] [Indexed: 01/29/2023] Open
Abstract
Background
Characterization of the neuro-glial profile of cells growing out of human idiopathic epiretinal membranes (iERMs) and testing their proliferative and pluripotent properties ex vivo is needed to better understand the pathogenesis of their formation.
Methods
iERMs obtained during uneventful vitrectomies were cultivated ex vivo under adherent conditions and assessed by standard morphological and immunocytochemical methods. The intracellular calcium dynamics of the outgrowing cells was assessed by fluorescent dye Fura-2 in response to acetylcholine (ACh)- or mechano- stimulation.
Results
The cells from the iERMs formed sphere-like structures when cultured ex vivo. The diameter of the spheres increased by 5% at day 6 and kept an increasing tendency over a month time. The outgrowing cells from the iERM spheres had mainly glial- and some neuronal- like morphology. ACh- or mechano- stimulation of these cells induced intracellular calcium propagation in both cell types; in the neuronal-like cells resembling action potential from the soma to the dendrites. Immunocytochemistry confirmed presence of glial- and neuronal cell phenotype (GFAP and Nestin-1 positivity, respectively) in the iERMs, as well as presence of pluripotency marker (Sox2).
Conclusion
iERMs contain cells of neuronal- and glial- like origin which have proliferative and pluripotent potential, show functionality reflected through calcium dynamics upon ACh and mechano- stimulation, and a corresponding molecular phenotype.
Collapse