1
|
Chen F. ETV6::ABL1 positive myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) with blast crisis treated with flumatinib mesylate. Ann Hematol 2024; 103:3801-3804. [PMID: 38992279 DOI: 10.1007/s00277-024-05887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
ETV6::ABL1 fusion gene is a rare but recurrent genomic rearrangement in hematological malignancies with poor prognosis. Here, we report 1 case of Ph negative myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) who carry ETV6::ABL1 fusion gene. The patient achieved clinical remission after treatment with imatinib. However, disease progression of blast crisis was observed around 2 years later. The patient was treated with second-generation tyrosine kinase inhibitor of flumatinib, yielded a short term second therapeutic response. ETV6::ABL1 positive myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) is rare and may be misdiagnosed by conventional cytogenetical analysis. Early treatment with TKIs, particularly second-generation TKIs, may be beneficial to improve treatment results.
Collapse
Affiliation(s)
- Fei Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, P.R. China.
| |
Collapse
|
2
|
Choi JK, Xiao W, Chen X, Loghavi S, Elenitoba-Johnson KS, Naresh KN, Medeiros LJ, Czader M. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Acute Lymphoblastic Leukemias, Mixed-Phenotype Acute Leukemias, Myeloid/Lymphoid Neoplasms With Eosinophilia, Dendritic/Histiocytic Neoplasms, and Genetic Tumor Syndromes. Mod Pathol 2024; 37:100466. [PMID: 38460674 DOI: 10.1016/j.modpat.2024.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
This manuscript represents a review of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia/lymphoblastic lymphoma), acute leukemias of ambiguous lineage, mixed-phenotype acute leukemias, myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangements, histiocytic and dendritic neoplasms, and genetic tumor syndromes of the 5th edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The diagnostic, clinicopathologic, cytogenetic, and molecular genetic features are discussed. The differences in comparison to the 4th revised edition of the World Health Organization classification of hematolymphoid neoplasms are highlighted.
Collapse
Affiliation(s)
- John K Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xueyan Chen
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kojo S Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
3
|
Nguyen L, Saha A, Kuykendall A, Zhang L. Clinical and Therapeutic Intervention of Hypereosinophilia in the Era of Molecular Diagnosis. Cancers (Basel) 2024; 16:1383. [PMID: 38611061 PMCID: PMC11011008 DOI: 10.3390/cancers16071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
Hypereosinophilia (HE) presents with an elevated peripheral eosinophilic count of >1.5 × 109/L and is composed of a broad spectrum of secondary non-hematologic disorders and a minority of primary hematologic processes with heterogenous clinical presentations, ranging from mild symptoms to potentially lethal outcome secondary to end-organ damage. Following the introduction of advanced molecular diagnostics (genomic studies, RNA sequencing, and targeted gene mutation profile, etc.) in the last 1-2 decades, there have been deep insights into the etiology and molecular mechanisms involved in the development of HE. The classification of HE has been updated and refined following to the discovery of clinically novel markers and targets in the 2022 WHO classification and ICOG-EO 2021 Working Conference on Eosinophil Disorder and Syndromes. However, the diagnosis and management of HE is challenging given its heterogeneity and variable clinical outcome. It is critical to have a diagnostic algorithm for accurate subclassification of HE and hypereosinophilic syndrome (HES) (e.g., reactive, familial, idiopathic, myeloid/lymphoid neoplasm, organ restricted, or with unknown significance) and to follow established treatment guidelines for patients based on its clinical findings and risk stratification.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Pathology, James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Aditi Saha
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA (A.K.)
| | - Andrew Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA (A.K.)
| | - Ling Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Wu CY, Li YL, Dong XY, Zhang L, Shang BJ, Li W, Li ZB, Zhang L, Zhu ZM. [Acute myeloid leukemia with co-expression of TEL-ABL1 and NUP98-HOXA9 fusion genes: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:595-598. [PMID: 32810969 PMCID: PMC7449777 DOI: 10.3760/cma.j.issn.0253-2727.2020.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- C Y Wu
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| | - Y L Li
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| | - X Y Dong
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| | - L Zhang
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| | - B J Shang
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| | - W Li
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| | - Z B Li
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| | - L Zhang
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| | - Z M Zhu
- Institute of Hematology, Henan Provincial People's Hospital; Henan Key Laboratory for Hematopathology; Henan Key Laboratory of Stem cell Differentiation and Modification; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou ,Henan 450003, China
| |
Collapse
|
5
|
Schwaab J, Naumann N, Luebke J, Jawhar M, Somervaille TCP, Williams MS, Frewin R, Jost PJ, Lichtenegger FS, La Rosée P, Storch N, Haferlach T, Horny HP, Fabarius A, Haferlach C, Burchert A, Hofmann WK, Cross NCP, Hochhaus A, Reiter A, Metzgeroth G. Response to tyrosine kinase inhibitors in myeloid neoplasms associated with PCM1-JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes. Am J Hematol 2020; 95:824-833. [PMID: 32279331 DOI: 10.1002/ajh.25825] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022]
Abstract
We report on 18 patients with myeloid neoplasms and associated tyrosine kinase (TK) fusion genes on treatment with the TK inhibitors (TKI) ruxolitinib (PCM1-JAK2, n = 8; BCR-JAK2, n = 1) and imatinib, nilotinib or dasatinib (ETV6-ABL1, n = 9). On ruxolitinib (median 24 months, range 2-36 months), a complete hematologic response (CHR) and complete cytogenetic response (CCR) was achieved by five of nine and two of nine patients, respectively. However, ruxolitinib was stopped in eight of nine patients because of primary resistance (n = 3), progression (n = 3) or planned allogeneic stem cell transplantation (allo SCT, n = 2). At a median of 36 months (range 4-78 months) from diagnosis, five of nine patients are alive: four of six patients after allo SCT and one patient who remains on ruxolitinib. In ETV6-ABL1 positive patients, a durable CHR was achieved by four of nine patients (imatinib with one of five, nilotinib with two of three, dasatinib with one of one). Because of inadequate efficacy (lack of hematological and/or cytogenetic/molecular response), six of nine patients (imatinib, n = 5; nilotinib, n = 1) were switched to nilotinib or dasatinib. At a median of 23 months (range 3-60 months) from diagnosis, five of nine patients are in CCR or complete molecular response (nilotinib, n = 2; dasatinib, n = 2; allo SCT, n = 1) while two of nine patients have died. We conclude that (a) responses on ruxolitinib may only be transient in the majority of JAK2 fusion gene positive patients with allo SCT being an important early treatment option, and (b) nilotinib or dasatinib may be more effective than imatinib to induce durable complete remissions in ETV6-ABL1 positive patients.
Collapse
Affiliation(s)
- Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Luebke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Tim C P Somervaille
- Department of Haematology, The Christie NHS Foundation Trust, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Mark S Williams
- Department of Haematology, The Christie NHS Foundation Trust, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Rebecca Frewin
- Department of Pathology, Gloucester Royal Hospital, Gloucester, UK
| | - Philipp J Jost
- III. Medical Department, Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, Munchen, Bayern, Germany
| | | | - Paul La Rosée
- Klinik für Innere Medizin II, Schwarzwald-Baar-Klinikum, Villingen-Schwenningen, Germany
| | - Nicola Storch
- Department of Hematology and Oncology, St. Vincenz Medical Centre, Limburg, Germany
| | | | | | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, and University Medical Center Giessen and Marburg, Marburg, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicholas C P Cross
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury, UK
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Chronic myelomonocytic leukemia with ETV6-ABL1 rearrangement and SMC1A mutation. Cancer Genet 2019; 238:31-36. [DOI: 10.1016/j.cancergen.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
|
7
|
Xie W, Wang SA, Hu S, Xu J, Medeiros LJ, Tang G. Myeloproliferative neoplasm with ABL1/ETV6 rearrangement mimics chronic myeloid leukemia and responds to tyrosine kinase inhibitors. Cancer Genet 2018; 228-229:41-46. [PMID: 30553471 DOI: 10.1016/j.cancergen.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 11/23/2022]
Abstract
Myeloproliferative neoplasms (MPN) associated with ABL1-ETV6 fusions are rare and poorly characterized. To date, less than 20 cases of ABL1-ETV6+ MPN have been reported. We report a 47-year-old man who presented with MPN with clinicopathologic features resembling chronic myeloid leukemia, but there was no evidence of t(9;22)(p34.1;q11.2) or BCR-ABL1 fusion. Conventional cytogenetics and fluorescence in situ hybridization analysis showed ins(12;9)(p13;q34q34) that led to ETV6-ABL1 fusion. The patient responded well to tyrosine kinase inhibitor therapy and achieved remission for 7 years.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Chromosome Aberrations
- Dasatinib/therapeutic use
- Humans
- Imatinib Mesylate/therapeutic use
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Myeloproliferative Disorders/drug therapy
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-ets/genetics
- Repressor Proteins/genetics
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Wei Xie
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Sa A Wang
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Shimin Hu
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Jie Xu
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA.
| |
Collapse
|
8
|
Lang F, Wunderle L, Pfeifer H, Schnittger S, Bug G, Ottmann OG. Dasatinib and Azacitidine Followed by Haploidentical Stem Cell Transplant for Chronic Myeloid Leukemia with Evolving Myelodysplasia: A Case Report and Review of Treatment Options. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:1099-1109. [PMID: 29033451 PMCID: PMC5652250 DOI: 10.12659/ajcr.904956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND CML presenting with a variant Philadelphia translocation, atypical BCR-ABL transcript, additional chromosomal aberrations, and evolving MDS is uncommon and therapeutically challenging. The prognostic significance of these genetic findings is uncertain, even as singular aberrations, with nearly no data on management and outcome when they coexist. MDS evolving during the course of CML may be either treatment-associated or an independently coexisting disease, and is generally considered to have an inferior prognosis. Tyrosine kinase inhibitors (TKI) directed against BCR-ABL are the mainstay of treatment for CML, whereas treatment modalities that may be utilized for MDS and CML include allogeneic stem cell transplant and - at least conceptually - hypomethylating agents. CASE REPORT Here, we describe the clinical course of such a patient, demonstrating that long-term combined treatment with dasatinib and azacitidine for coexisting CML and MDS is feasible and well tolerated, and may be capable of slowing disease progression. This combination therapy had no deleterious effect on subsequent potentially curative haploidentical bone marrow transplantation. CONCLUSIONS The different prognostic implications of this unusual case and new therapeutic options in CML are discussed, together with a review of the current literature on CML presenting with different types of genomic aberrations and the coincident development of MDS. Additionally, this case gives an example of long-term combined treatment of tyrosine kinase inhibitors and hypomethylating agents, which could be pioneering in CML treatment.
Collapse
Affiliation(s)
- Fabian Lang
- Department of Hematology/Oncology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Lydia Wunderle
- Department of Hematology/Oncology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Heike Pfeifer
- Department of Hematology/Oncology, Goethe University Hospital, Frankfurt am Main, Germany
| | | | - Gesine Bug
- Department of Hematology/Oncology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Oliver G Ottmann
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
9
|
Choi SI, Jang MA, Jeong WJ, Jeon BR, Lee YW, Shin HB, Hong DS, Lee YK. A Case of Chronic Myeloid Leukemia With Rare Variant ETV6/ABL1 Rearrangement. Ann Lab Med 2017; 37:77-80. [PMID: 27834072 PMCID: PMC5107624 DOI: 10.3343/alm.2017.37.1.77] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/09/2016] [Accepted: 08/25/2016] [Indexed: 01/07/2023] Open
Affiliation(s)
- Soo In Choi
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Mi Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Woo Joon Jeong
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Byung Ryul Jeon
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Yong Wha Lee
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hee Bong Shin
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Dae Sik Hong
- Department of Internal Medicine, Division of Hematology & Oncology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - You Kyoung Lee
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| |
Collapse
|
10
|
An ETV6-ABL1 fusion in a patient with chronic myeloproliferative neoplasm: Initial response to Imatinib followed by rapid transformation into ALL. Leuk Res Rep 2016; 6:50-54. [PMID: 27812500 PMCID: PMC5078675 DOI: 10.1016/j.lrr.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
We report the case of a 26 year-old patient presenting with a persistent leukocytosis and CML-like marrow but no evidence of a BCR/ABL1 fusion. Molecular cytogenetics revealed that a portion of the ETV6 locus was inserted into the ABL1 locus. An ETV6/ABL1 fusion transcript could subsequently be confirmed. The patient was started on imatinib and went into complete cytomorphological remission. QRT-PCR measurements showed a 4 log reduction of the ETV6/ABL1 fusion. 15 months later, the disease transformed into ALL and the patient expired. Thus, an ETV6/ABL1 fusion positive MPN has the potential to transform very rapidly into ALL.
Collapse
|
11
|
Mori N, Ohwashi-Miyazaki M, Okada M, Yoshinaga K, Shiseki M, Tanaka J. Translocation (9;12)(q34.1;p13.?3) Resulted in ETV6-ABL1 Fusion in a Patient with Philadelphia Chromosome-Negative Chronic Myelogenous Leukemia. Acta Haematol 2016; 136:240-243. [PMID: 27710957 DOI: 10.1159/000448984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/07/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Naoki Mori
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
A novel three-way rearrangement involving ETV6 (12p13) and ABL1 (9q34) with an unknown partner on 3p25 resulting in a possible ETV6-ABL1 fusion in a patient with acute myeloid leukemia: a case report and a review of the literature. Biomark Res 2016; 4:16. [PMID: 27570624 PMCID: PMC5000511 DOI: 10.1186/s40364-016-0070-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/02/2016] [Indexed: 11/30/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is commonly characterized by several chromosomal abnormalities resulting in the formation of chimeric genes that play various roles in leukemogenesis. Translocations resulting in the ETV6-ABL1 fusion gene are rare in AML and other hematologic malignancies with only thirty-two previously reported cases in the literature, five of which were AML. Findings Herein, we report the case of a 73-year-old male with acute myeloid leukemia arising from MDS, negative for PDGFRA and PDGFRB, positive for bone marrow eosinophilia, rash, and marked fluid retention, which improved dramatically with imatinib therapy. Conventional cytogenetics revealed a t(3;9)(p25;q34), t(5;18)(q13;p11.2), and additional material of unknown origin at 12p11.2 in 2 out of 10 metaphases analyzed. Interphase FISH studies showed evidence of ETV6 (12p13) and ABL1 (9q34) rearrangements in 41.3 % and 5.7 % of the cells respectively. FISH studies on previously G-banded metaphases showed colocalization of ABL1 and ETV6 signals to the short arm of chromosome 3 at 3p25 suggesting a possible ETV6-ABL1 fusion. Subtelomeric metaphase FISH studies also showed the presence of a subtelomere 3p signal on the long arm of the derivative 9, and no subtelomere 3p signal on the derivative chromosome 12. Conclusions These findings suggest a complex rearrangement involving an insertion of ETV6 into 3p25 followed by a reciprocal translocation involving 3p25 and 9q34, resulting in a possible ETV6-ABL1 fusion. This case highlights the importance of FISH to characterize complex rearrangements in myeloid malignancies, particularly those resulting in clinically significant chimeric genes.
Collapse
|
13
|
Zaliova M, Moorman AV, Cazzaniga G, Stanulla M, Harvey RC, Roberts KG, Heatley SL, Loh ML, Konopleva M, Chen IM, Zimmermannova O, Schwab C, Smith O, Mozziconacci MJ, Chabannon C, Kim M, Frederik Falkenburg JH, Norton A, Marshall K, Haas OA, Starkova J, Stuchly J, Hunger SP, White D, Mullighan CG, Willman CL, Stary J, Trka J, Zuna J. Characterization of leukemias with ETV6-ABL1 fusion. Haematologica 2016; 101:1082-93. [PMID: 27229714 DOI: 10.3324/haematol.2016.144345] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
To characterize the incidence, clinical features and genetics of ETV6-ABL1 leukemias, representing targetable kinase-activating lesions, we analyzed 44 new and published cases of ETV6-ABL1-positive hematologic malignancies [22 cases of acute lymphoblastic leukemia (13 children, 9 adults) and 22 myeloid malignancies (18 myeloproliferative neoplasms, 4 acute myeloid leukemias)]. The presence of the ETV6-ABL1 fusion was ascertained by cytogenetics, fluorescence in-situ hybridization, reverse transcriptase-polymerase chain reaction and RNA sequencing. Genomic and gene expression profiling was performed by single nucleotide polymorphism and expression arrays. Systematic screening of more than 4,500 cases revealed that in acute lymphoblastic leukemia ETV6-ABL1 is rare in childhood (0.17% cases) and slightly more common in adults (0.38%). There is no systematic screening of myeloproliferative neoplasms; however, the number of ETV6-ABL1-positive cases and the relative incidence of acute lymphoblastic leukemia and myeloproliferative neoplasms suggest that in adulthood ETV6-ABL1 is more common in BCR-ABL1-negative chronic myeloid leukemia-like myeloproliferations than in acute lymphoblastic leukemia. The genomic profile of ETV6-ABL1 acute lymphoblastic leukemia resembled that of BCR-ABL1 and BCR-ABL1-like cases with 80% of patients having concurrent CDKN2A/B and IKZF1 deletions. In the gene expression profiling all the ETV6-ABL1-positive samples clustered in close vicinity to BCR-ABL1 cases. All but one of the cases of ETV6-ABL1 acute lymphoblastic leukemia were classified as BCR-ABL1-like by a standardized assay. Over 60% of patients died, irrespectively of the disease or age subgroup examined. In conclusion, ETV6-ABL1 fusion occurs in both lymphoid and myeloid leukemias; the genomic profile and clinical behavior resemble BCR-ABL1-positive malignancies, including the unfavorable prognosis, particularly of acute leukemias. The poor outcome suggests that treatment with tyrosine kinase inhibitors should be considered for patients with this fusion.
Collapse
Affiliation(s)
- Marketa Zaliova
- CLIP, Department of Pediatric Hematology and Oncology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Germany
| | | | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sue L Heatley
- South Australia Health and Medical Research Institute, Adelaide, Australia
| | - Mignon L Loh
- Department of Pediatrics, Hematology-Oncology, Benioff Children's Hospital, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - I-Ming Chen
- University of New Mexico Cancer Center, Albuquerque, NM, USA
| | - Olga Zimmermannova
- CLIP, Department of Pediatric Hematology and Oncology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Owen Smith
- Department of Haematology, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Alice Norton
- Birmingham Children's Hospital, NHS Foundation Trust, UK
| | - Karen Marshall
- Department of Cytogenetics, Leicester Royal Infirmary NHS Trust, UK
| | - Oskar A Haas
- St. Anna Children's Hospital, Childrens Cancer Research Institute, Vienna, Austria
| | - Julia Starkova
- CLIP, Department of Pediatric Hematology and Oncology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Stuchly
- CLIP, Department of Pediatric Hematology and Oncology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Deborah White
- South Australia Health and Medical Research Institute, Adelaide, Australia
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jan Stary
- CLIP, Department of Pediatric Hematology and Oncology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP, Department of Pediatric Hematology and Oncology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Zuna
- CLIP, Department of Pediatric Hematology and Oncology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
14
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
15
|
Gancheva K, Virchis A, Howard-Reeves J, Cross NC, Brazma D, Grace C, Kotzampaltiris P, Partheniou F, Nacheva E. Myeloproliferative neoplasm with ETV6-ABL1 fusion: a case report and literature review. Mol Cytogenet 2013; 6:39. [PMID: 24053143 PMCID: PMC3853649 DOI: 10.1186/1755-8166-6-39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/20/2013] [Indexed: 11/10/2022] Open
Abstract
ETV6-ABL1 is a rare gene fusion with oncogenic properties, reported so far in 28 patients presenting a variety of haematological malignancies associated with clinical outcome, including chronic myeloid leukaemia (CML), acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and chronic myeloproliferative neoplasm (cMPN). Here we report on a 46-year-old female who presented with Philadelphia negative CML, positive for the ETV6-ABL1 fusion. Whole genome screening carried out with oligonucleotide arrays showed a subtle loss at 12p13 and cryptic imbalances within the 9q34.3 region in a highly unstable genome. FISH mapping with custom BAC probes identified two breakpoints 5 Mb apart within the 9q34 region, together with a break at 12p13. While FISH with commercial BCR-ABL1 probes failed to detect any ABL1 changes, the ETV6 break-apart probe conclusively identified the ETV6-ABL1 fusion thus determining the probe’s role as the primary diagnostic FISH test for this chimeric oncogene. In addition, we confirm the association of the ETV6-ABL1 fusion with imatinib resistance reported so far in three other patients, while recording excellent response to the 2nd generation tyrosine kinase inhibitor (TKI) nilotinib. In summary, we highlight the value of ETV6 FISH as a diagnostic test and the therapy resistance of ETV6-ABL1 positive disorders to imatinib.
Collapse
Affiliation(s)
- Katya Gancheva
- Leukaemia Cytogenetics, Academic Haematology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Peripheral and tissue eosinophilia are usually associated with a variety of inflammatory, malignant, and infectious conditions. As the presence of eosinophils in the tissues may cause significant cellular damage to vital organs such as the heart, tissue eosinophilia should be diagnosed and treated promptly. One operative way to evaluate eosinophilic disorders is to classify them into extrinsic and intrinsic. While extrinsic eosinophilic disorders are usually due to the production of eosinopoietic factors derived from T cells or tumor cells, the intrinsic types generally are the result of genetic mutations in the eosinophilic lineage. As we understand more the biology of eosinophils, only a few eosinophilic disorders remain idiopathic. The purpose of this article is to help the clinician classify in an operational manner most eosinophilic disorders, using the extrinsic and intrinsic model. This may facilitate not only a better understanding of the role of eosinophils in these disorders, but also help the systematic clinical work-up and potential treatment of affected patients.
Collapse
|
17
|
Park J, Kim M, Lim J, Kim Y, Han K, Kim JS, Lee S, Kim HJ, Min WS. Variant of ETV6/ABL1 gene is associated with leukemia phenotype. Acta Haematol 2012; 129:78-82. [PMID: 23171811 DOI: 10.1159/000342490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/02/2012] [Indexed: 11/19/2022]
Abstract
The ETV6/ABL1 fusion transcript is thought to be a very rare aberration in hematopoietic malignancies. We describe two new cases of acute leukemia with the ETV6/ABL1 fusion, acute myeloid leukemia with eosinophilia (case 1) and B acute lymphoblastic leukemia (ALL) (case 2), screened by multiplex RT-PCR. The ETV6/ABL1 fusion was also confirmed by fluorescence in situ hybridization using a mixture of BCR/ABL1 and ETV6/RUNX1 probes. A thorough review of all published cases showed that all 7 reported ALL patients possess the type A ETV6/ABL1 fusion transcript, composed of the first 4 exons of ETV6 fused to the second exon of ABL1. The presence of the type A fusion transcript strongly implies ALL manifestation in ETV6/ABL1-positive hematologic malignancies as minor BCR breakpoint in BCR/ABL1-positive ALL.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, Catholic Blood and Marrow Transplantation Center, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Basinko A, De Braekeleer M. ETV6 fusion genes in hematological malignancies: a review. Leuk Res 2012; 36:945-61. [PMID: 22578774 DOI: 10.1016/j.leukres.2012.04.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 01/01/2023]
Abstract
Translocations involving band 12p13 are one of the most commonly observed chromosomal abnormalities in human leukemia and myelodysplastic syndrome. Their frequently result in rearrangements of the ETV6 gene. At present, 48 chromosomal bands have been identified to be involved in ETV6 translocations, insertions or inversions and 30 ETV6 partner genes have been molecularly characterized. The ETV6 protein contains two major domains, the HLH (helix-loop-helix) domain, encoded by exons 3 and 4, and the ETS domain, encoded by exons 6 through 8, with in between the internal domain encoded by exon 5. ETV6 is a strong transcriptional repressor, acting through its HLH and internal domains. Five potential mechanisms of ETV6-mediated leukemogenesis have been identified: constitutive activation of the kinase activity of the partner protein, modification of the original functions of a transcription factor, loss of function of the fusion gene, affecting ETV6 and the partner gene, activation of a proto-oncogene in the vicinity of a chromosomal translocation and dominant negative effect of the fusion protein over transcriptional repression mediated by wild-type ETV6. It is likely that ETV6 is frequently involved in leukemogenesis because of the large number of partners with which it can rearrange and the several pathogenic mechanisms by which it can lead to cell transformation.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Université de Brest, Brest, France
| | | | | | | | | | | |
Collapse
|
19
|
De Braekeleer E, Douet-Guilbert N, Rowe D, Bown N, Morel F, Berthou C, Férec C, De Braekeleer M. ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 2011; 86:361-71. [PMID: 21435002 DOI: 10.1111/j.1600-0609.2011.01586.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromosomal rearrangements involving the ABL1 gene, leading to a BCR-ABL1 fusion gene, have been mainly associated with chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (ALL). At present, six other genes have been shown to fuse to ABL1. The kinase domain of ABL1 is retained in all chimeric proteins that are also composed of the N-terminal part of the partner protein that often includes a coiled-coil or a helix-loop-helix domain. These latter domains allow oligomerization of the protein that is required for tyrosine kinase activation, cytoskeletal localization, and neoplastic transformation. Fusion genes that have a break in intron 1 or 2 (BCR-ABL1, ETV6-ABL1, ZMIZ1-ABL1, EML1-ABL1, and NUP214-ABL1) have transforming activity, although NUP214-ABL1 requires amplification to be efficient. The NUP214-ABL1 gene is the second most prevalent fusion gene involving ABL1 in malignant hemopathies, with a frequency of 5% in T-cell ALL. Both fusion genes (SFPQ-ABL1 and RCSD1-ABL1) characterized by a break in intron 4 of ABL1 are associated with B-cell ALL, as the chimeric proteins lacked the SH2 domain of ABL1. Screening for ABL1 chimeric genes could be performed in patients with ALL, more particularly in those with T-cell ALL because ABL1 modulates T-cell development and plays a role in cytoskeletal remodeling processes in T cells.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Université de Brest, Faculté de Médecine et des Sciences de la Santé, Brest Institut National de la Santé et de la Recherche Médicale (INSERM), Brest CHRU Brest, Hôpital Morvan, Service de Cytogénétique, Cytologie et Biologie de la Reproduction, Brest, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Perna F, Abdel-Wahab O, Levine RL, Jhanwar SC, Imada K, Nimer SD. ETV6-ABL1-positive "chronic myeloid leukemia": clinical and molecular response to tyrosine kinase inhibition. Haematologica 2010; 96:342-3. [PMID: 21193423 DOI: 10.3324/haematol.2010.036673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
MESH Headings
- Adult
- Benzamides
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 9/genetics
- DNA, Neoplasm/genetics
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Male
- Oncogene Proteins, Fusion/genetics
- Piperazines/therapeutic use
- Polymerase Chain Reaction
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/genetics
- Pyrimidines/therapeutic use
- Translocation, Genetic/genetics
Collapse
|
21
|
Zuna J, Zaliova M, Muzikova K, Meyer C, Lizcova L, Zemanova Z, Brezinova J, Votava F, Marschalek R, Stary J, Trka J. Acute leukemias with ETV6/ABL1 (TEL/ABL) fusion: poor prognosis and prenatal origin. Genes Chromosomes Cancer 2010; 49:873-84. [PMID: 20589932 DOI: 10.1002/gcc.20796] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ETV6/ABL1 (TEL/ABL) fusion gene is a rare aberration in malignant disorders. Only 19 cases of ETV6/ABL1-positive hematological malignancy have been published, diagnosed with chronic myeloid leukemia, other types of chronic myeloproliferative neoplasm, acute myeloid leukemia or acute lymphoblastic leukemia (ALL). This study reports three new cases (aged 8 months, 5 years, and 33 years) of ALL with the ETV6/ABL1 fusion found by screening 392 newly diagnosed ALL patients (335 children and 57 adults). A thorough review of the literature and an analysis of all published data, including the three new cases, suggest poor prognosis of ETV6/ABL1-positive acute leukemias. The course of the disease in the two pediatric patients is characterized by minimal residual disease monitoring, using quantification of both the ETV6/ABL1 transcript and immunoreceptor gene rearrangements. Eosinophilia could not be confirmed as a hallmark of the ETV6/ABL1-positive disease. Studies of neonatal blood spots demonstrated that, in the child diagnosed at five years, the ETV6/ABL1 fusion initiating the ALL originated prenatally.
Collapse
Affiliation(s)
- Jan Zuna
- Department of Pediatric Hematology and Oncology, CLIP (Childhood Leukaemia Investigation Prague), Charles University Prague, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nand R, Bryke C, Kroft SH, Divgi A, Bredeson C, Atallah E. Myeloproliferative disorder with eosinophilia and ETV6–ABL gene rearrangement: Efficacy of second-generation tyrosine kinase inhibitors. Leuk Res 2009; 33:1144-6. [DOI: 10.1016/j.leukres.2009.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 01/28/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
|
23
|
Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med 2008; 13:215-37. [PMID: 19175693 PMCID: PMC3823350 DOI: 10.1111/j.1582-4934.2008.00559.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g.ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera (JAK2V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F and MPL515 mutations), primary myelofibrosis (JAK2V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
24
|
Abstract
Hypereosinophilic syndrome (HES) is a rare disorder characterized by persistent and marked eosinophilia. Some HES forms have a poor prognosis, either because of end-organ damage (particularly endomyocardial fibrosis), or because of associated myeloid leukemia or malignant T-cell lymphoma. Oral mucosa ulcerations can be early clinical signs in severe forms. They are discrete, round or oval, sometimes confluent ulcers or erosions, located on non-keratinized, unattached oral mucosa. In the last 15 years a better understanding of eosinophil biology has led to a new clinical classification of HES. The lymphocytic form is characterized by T-lymphocyte clonality, IL-5 production, and a possible progression to T-cell lymphoma. Oral lesions are more frequently associated with the myeloproliferative form, characterized by an increased risk of developing myeloid malignancies and a good response to a recent anti-tyrosine kinase therapy (imatinib mesylate). The target of imatinib is a novel kinase resulting from an 800-kb deletion on chromosome 4. Recently, the resulting FIP1L1-PDGFRalpha fusion gene was characterized as a marker of response to imatinib. Exclusion of other erosive ulcerative oral disease and early recognition of HES in patients with oral ulcerations, and precise characterization of the lymphocytic or myeloproliferative form are therefore important to rapidly initiate an effective therapy.
Collapse
Affiliation(s)
- M A Ionescu
- Inserm U728, Université Paris VII, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | | | | |
Collapse
|
25
|
Bain BJ, Fletcher SH. Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol Allergy Clin North Am 2007; 27:377-88. [PMID: 17868855 DOI: 10.1016/j.iac.2007.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Among patients with hypereosinophilia, a myeloproliferative variant is recognized. In many of these patients a diagnosis of eosinophilic leukemia can be made. The molecular mechanism is often a fusion gene, incorporating part of PDGFRA or PDGFRB, encoding anaberrant tyrosine kinase. Prompt diagnosis of such cases is important since specific tyrosine kinase inhibitor therapy is indicated.
Collapse
Affiliation(s)
- Barbara J Bain
- Department of Haematology, St Mary's Hospital Campus of Imperial College Faculty of Medicine, St Mary's Hospital, Praed Street, London, W2 1NY, UK.
| | | |
Collapse
|
26
|
Mozziconacci MJ, Sainty D, Chabannon C. A fifteen-year cytogenetic remission following interferon treatment in a patient with an indolent ETV6-ABL positive myeloproliferative syndrome. Am J Hematol 2007; 82:688-9. [PMID: 17366548 DOI: 10.1002/ajh.20873] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Simon D, Simon HU. Eosinophilic disorders. J Allergy Clin Immunol 2007; 119:1291-300; quiz 1301-2. [PMID: 17399779 DOI: 10.1016/j.jaci.2007.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 12/17/2022]
Abstract
Eosinophilic inflammatory responses occur in association with multiple disorders. Although the initial cause and the affected organs vary among the different eosinophilic disorders, there are only 2 major pathways that mediate eosinophilia: (1) cytokine-mediated increased differentiation and survival of eosinophils (extrinsic eosinophilic disorders), and (2) mutation-mediated clonal expansion of eosinophils (intrinsic eosinophilic disorders). Independent from the original trigger, the most common cause of eosinophilia is the increased generation of IL-5-producing T cells. In some cases, tumor cells are the source of eosinophil hematopoietins. The intrinsic eosinophilic disorders are characterized by mutations in pluripotent or multipotent hematopoietic stem cells leading to chronic myeloid leukemias with eosinophils as part of the clone. Here, we propose a new classification of eosinophilic disorders on the basis of these obvious pathogenic differences between the 2 groups of patients. We then discuss many known eosinophilic disorders, which can be further subdivided by differences in T-cell activation mechanisms, origin of the cytokine-producing tumor cell, or potency of the mutated stem cell. Interestingly, many subgroups of patients originally thought to have the idiopathic hypereosinophilic syndrome can be integrated in this classification.
Collapse
Affiliation(s)
- Dagmar Simon
- Department of Dermatology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
28
|
DeAngelo DJ. Role of Imatinib-Sensitive Tyrosine Kinases in the Pathogenesis of Chronic Myeloproliferative Disorders. Semin Hematol 2007. [DOI: 10.1053/j.seminhematol.2007.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Gotlib J, Cross NCP, Gilliland DG. Eosinophilic disorders: molecular pathogenesis, new classification, and modern therapy. Best Pract Res Clin Haematol 2006; 19:535-69. [PMID: 16781488 DOI: 10.1016/j.beha.2005.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Before the 1990s, lack of evidence for a reactive cause of hypereosinophilia or chronic eosinophilic leukemia (e.g. presence of a clonal cytogenetic abnormality or increased blood or bone marrow blasts) resulted in diagnosticians characterizing such nebulous cases as 'idiopathic hypereosinophilic syndrome (HES)'. However, over the last decade, significant advances in our understanding of the molecular pathophysiology of eosinophilic disorders have shifted an increasing proportion of cases from this idiopathic HES 'pool' to genetically defined eosinophilic diseases with recurrent molecular abnormalities. The majority of these genetic lesions result in constitutively activated fusion tyrosine kinases, the phenotypic consequence of which is an eosinophilia-associated myeloid disorder. Most notable among these is the recent discovery of the cryptic FIP1L1-PDGFRA gene fusion in karyotypically normal patients with systemic mast cell disease with eosinophilia or idiopathic HES, redefining these diseases as clonal eosinophilias. Rearrangements involving PDGFRA and PDGFRB in eosinophilic chronic myeloproliferative disorders, and of fibroblast growth factor receptor 1 (FGFR1) in the 8p11 stem cell myeloproliferative syndrome constitute additional examples of specific genetic alterations linked to clonal eosinophilia. The identification of populations of aberrant T-lymphocytes secreting eosinophilopoietic cytokines such as interleukin-5 establish a pathophysiologic basis for cases of lymphocyte-mediated hypereosinophilia. This recent revival in understanding the biologic basis of eosinophilic disorders has permitted more genetic specificity in the classification of these diseases, and has translated into successful therapeutic approaches with targeted agents such as imatinib mesylate and recombinant anti-IL-5 antibody.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Center, 875 Blake Wilbur Drive, Room 2327B, Stanford, CA 94305-5821, USA.
| | | | | |
Collapse
|
30
|
Pecquet C, Nyga R, Penard-Lacronique V, Smithgall TE, Murakami H, Régnier A, Lassoued K, Gouilleux F. The Src tyrosine kinase Hck is required for Tel-Abl- but not for Tel-Jak2-induced cell transformation. Oncogene 2006; 26:1577-85. [PMID: 16953222 DOI: 10.1038/sj.onc.1209949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tel-Abl and Tel-Jak2 are fusion proteins associated with human haematologic neoplasms. They possess constitutive tyrosine kinase activity and activate common downstream signalling pathways like Stat-5, PI3-K/Akt, Ras/MapK and NF-kappaB. In this study, we showed the specific requirement of Src family members for the Tel-Abl-mediated cell growth, activation of Stat5, PI3-K/Akt and Ras/MapK while dispensable for Tel-Jak2. Hck was found strongly phosphorylated in Tel-Abl-expressing Ba/F3 cells and sensitive to imatinib mesylate treatment, providing evidence that Hck is a target of Tel-Abl tyrosine kinase activity. Overexpression of a kinase dead form of Hck inhibits the proliferation of Ba/F3 cells expressing Tel-Abl as the phosphorylation of Akt and Erk1/2. These results argue for an important role of Hck in Tel-Abl oncogenic signalling.
Collapse
Affiliation(s)
- C Pecquet
- INSERM, E351, 3 rue des Louvels, Université de Picardie Jules Verne, Amiens, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tefferi A, Gilliland G. Classification of chronic myeloid disorders: From Dameshek towards a semi-molecular system. Best Pract Res Clin Haematol 2006; 19:365-85. [PMID: 16781478 DOI: 10.1016/j.beha.2005.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hematological malignancies are phenotypically organized into lymphoid and myeloid disorders, although such a distinction might not be precise from the standpoint of lineage clonality. In turn, myeloid malignancies are broadly categorized into either acute myeloid leukemia (AML) or chronic myeloid disorder (CMD), depending on the presence or absence, respectively, of AML-defining cytomorphologic and cytogenetic features. The CMD are traditionally classified by their morphologic appearances into discrete clinicopathologic entities based primarily on subjective technologies. It has now become evident that most CMD represent clonal stem cell processes where the primary oncogenic event has been characterized in certain instances; Bcr/Abl in chronic myeloid leukemia, FIP1L1-PDGFRA or c-kit(D816V) in systemic mastocytosis, rearrangements of PDGFRB in chronic eosinophilic leukemia, and rearrangements of FGFR1 in stem cell leukemia/lymphoma syndrome. In addition, Bcr/Abl-negative classic myeloproliferative disorders are characterized by recurrent JAK2(V617F) mutations, whereas other mutations affecting the RAS signaling pathway molecules have been associated with juvenile myelomonocytic leukemia. Such progress is paving the way for a transition from a histologic to a semi-molecular classification system that preserves conventional terminology, while incorporating new information on molecular pathogenesis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic College of Medicine, Rochester 55905, USA.
| | | |
Collapse
|
32
|
Abstract
Blood eosinophilia signifies either a cytokine-mediated reactive phenomenon (secondary) or an integral phenotype of an underlying haematological neoplasm (primary). Secondary eosinophilia is usually associated with parasitosis in Third World countries and allergic conditions in the West. Primary eosinophilia is operationally classified as being clonal or idiopathic, depending on the respective presence or absence of a molecular, cytogenetic or histological evidence for a myeloid malignancy. The current communication features a comprehensive clinical summary of both secondary and primary eosinophilic disorders with emphasis on recent developments in molecular pathogenesis and treatment.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
33
|
Abstract
Myeloid disorders constitute a subgroup of hematological malignancies that is separate from lymphoid disorders. The World Health Organization system for classification of tumors of the hematopoietic system divides myeloid disorders into acute myeloid leukemia and chronic myeloid disorders based on the presence or absence, respectively, of acute myeloid leukemia--defining morphological and cytogenetic features including the presence of 20% or more myeloblasts in either the bone marrow or the peripheral blood. A recently proposed semimolecular classification system for chronic myeloid disorders recognizes 3 broad categories: the myelodysplastic syndrome, classic myeloproliferative disorders (MPD), and atypical MPD. Classic MPD includes polycythemia vera, essential thrombocythemia, myelofibrosis with myeloid metaplasia, and chronic myeloid leukemia. Both myelodysplastic syndrome and BCR/ABL-negative classic MPD were previously discussed as part of the current ongoing symposium on hematological malignancies. The current review focuses on the diagnosis and treatment of both molecularly defined and clinicopathologically assigned categories of atypical MPD: chronic myelomonocytic leukemia, juvenile myelomonocytic leukemia, chronic neutrophilic leukemia, chronic basophilic leukemia, chronic eosinophilic leukemia, idiopathic eosinophilia including hypereosinophilic syndrome, systemic mastocytosis, unclassified MPD, and eosinophilic/mast cell disorders associated with mutations of platelet-derived growth factor receptors alpha (PDGFRA) and beta (PDGFRB), FGFR1, and KIT.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
34
|
Lichtman MA, Segel GB. Uncommon phenotypes of acute myelogenous leukemia: basophilic, mast cell, eosinophilic, and myeloid dendritic cell subtypes: a review. Blood Cells Mol Dis 2005; 35:370-83. [PMID: 16203163 DOI: 10.1016/j.bcmd.2005.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 11/21/2022]
Abstract
The potential of the transformed (leukemic) multipotential hematopoietic cell to differentiate and mature along any myeloid lineage forms the basis for the phenotypic classification of acute and chronic myelogenous leukemia. Although most cases of leukemia can be classified phenotypically by the dominant lineage expressed, the genotype within each phenotype is heterogeneous. Thus, covert genetic factors, cryptic mutations, and/or polymorphisms may interact with the seminal transforming genetic mutations to determine phenotype. The phenotype usually is expressed sufficiently to determine the lineage that is dominant in the leukemic clone by light microscopic examination, by cytochemistry of blood and marrow cells, and by immunophenotyping. The basis for the frequency of the AML phenotypes is unclear, although there is a rough concordance with the frequency of marrow precursor cells of different lineages. The least common AML phenotypes are a reflection of the least common blood or marrow cell lineages: acute basophilic, acute mast cell, acute eosinophilic, and acute myeloid dendritic cell leukemia. We discuss the features of these uncommon phenotypes and review the criteria used for their diagnosis.
Collapse
|
35
|
Atfi A, Abécassis L, Bourgeade MF. Bcr-Abl activates the AKT/Fox O3 signalling pathway to restrict transforming growth factor-beta-mediated cytostatic signals. EMBO Rep 2005; 6:985-91. [PMID: 16113647 PMCID: PMC1369182 DOI: 10.1038/sj.embor.7400501] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 07/06/2005] [Accepted: 07/07/2005] [Indexed: 11/09/2022] Open
Abstract
The fusion of Abl with either Bcr or Tel in human leukaemia leads to the constitutive activation of Abl tyrosine kinase, which in turn induces growth-factor-independent proliferation and cell survival. However, the mechanism by which Bcr-Abl induces cellular transformation has not yet been well characterized. Here, we show that Bcr-Abl-expressing cells are resistant to growth inhibition and apoptosis mediated by transforming growth factor-beta (TGF-beta). Interestingly, we observed that the suppressive effects of Bcr-Abl on TGF-beta responses were not mediated by an impairment of Smad signalling, which is believed to act as the principal mediator of TGF-beta responses. In contrast, we found that Bcr-Abl can target the protein kinase AKT and the transcription factor Fox O3 to interfere with growth inhibition and apoptosis in response to TGF-beta. Our results show a novel mechanism of cellular transformation by the oncogenic fusion protein Bcr-Abl through suppression of the cytostatic actions of TGF-beta.
Collapse
Affiliation(s)
- Azeddine Atfi
- INSERM U482, 184 Rue du Faubourg St-Antoine, 75571 Paris, France.
| | | | | |
Collapse
|
36
|
Meyer-Monard S, Mühlematter D, Streit A, Chase AJ, Gratwohl A, Cross NCP, Jotterand M, Tichelli A. Broad molecular screening of an unclassifiable myeloproliferative disorder reveals an unexpected ETV6/ABL1 fusion transcript. Leukemia 2005; 19:1096-9. [PMID: 15789067 DOI: 10.1038/sj.leu.2403697] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/07/2005] [Indexed: 11/08/2022]
|
37
|
Abstract
Acquired blood eosinophilia is considered either a primary or a secondary phenomenon. Causes of secondary (ie, reactive) eosinophilia include tissue-invasive parasitosis, allergic or inflammatory conditions, and malignancies in which eosinophils are not considered part of the neoplastic process. Primary eosinophilia is classified operationally into 2 categories: clonal and idiopathic. Clonal eosinophilia stipulates the presence of either cytogenetic evidence or bone marrow histological evidence of an otherwise classified hematologic malignancy such as acute leukemia or a chronic myeloid disorder. Idiopathic eosinophilia is a diagnosis of exclusion (ie, not secondary or clonal). Hypereosinophilic syndrome is a subcategory of idiopathic eosinophilia; diagnosis requires documentation of both sustained eosinophilia (absolute eosinophil count > or = 1500 cells/microL for at least 6 months) and target organ damage (eg, involvement of the heart, lung, skin, or nerve tissue). Genetic mutations involving the platelet-derived growth factor receptor genes (PDGFR-alpha and PDGFR-beta) have been pathogenetically linked to clonal eosinophilia, and their presence predicts treatment response to imatinib. Accordingly, cytogenetic and/or molecular investigations for the presence of an imatinib-sensitive molecular target should accompany current evaluation for primary eosinophilia. In the absence of such a drug target, specific treatment is dictated by the underlying hematologic malignancy in cases of clonal eosinophilia; however, the initial treatment of choice for symptomatic patients with hypereosinophilic syndrome is prednisone and/or interferon alfa.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Department of Internal Medicine and Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA.
| |
Collapse
|
38
|
Tirado CA, Sebastian S, Moore JO, Gong JZ, Goodman BK. Molecular and cytogenetic characterization of a novel rearrangement involving chromosomes 9, 12, and 17 resulting in ETV6 (TEL) and ABL fusion. ACTA ACUST UNITED AC 2005; 157:74-7. [PMID: 15676152 DOI: 10.1016/j.cancergencyto.2004.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/26/2004] [Accepted: 06/03/2004] [Indexed: 11/23/2022]
Abstract
We performed chromosome analysis on the bone marrow of a patient with BCR/ABL negative chronic myelogenous leukemia (CML). By interphase fluorescence in situ hybridization (FISH), an extra ABL signal was present in interphase nuclei and appeared to be located at 17p in the metaphase cells. Chromosome analysis showed a subtle abnormality at 17p13 and 12p13 but no visible rearrangement at 9q34 (ABL). Additional FISH experiments disclosed a rearrangement between the short arms of chromosomes 12 and 17 at approximately bands 12p13 and 17p13, respectively. In addition, subtelomeric FISH analysis confirmed the presence of terminal 12p at 17p13 and showed terminal 9q34 to be intact on each chromosome 9. Taken together, these results indicated a rearrangement involving chromosomes 9, 12, and 17 that suggested the possibility of juxtaposition of part of the ETV6 (also known as TEL) locus (12p13) with a portion of ABL (9q34) together at 17p13. The ETV6/ABL fusion was confirmed by RT-PCR, which showed that the first 5 exons of ETV6 were fused in frame with ABL at exon 2. Wild-type ETV6 and ABL were also expressed, in accordance with the FISH results that showed no loss of the second ETV6 or ABL allele.
Collapse
Affiliation(s)
- C A Tirado
- Department of Pathology, Duke University Medical Center, Box 3631, M347 Davison Bldg., Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The recent discovery of an eosinophilia-specific, imatinib-sensitive, karyotypically occult but fluorescence in situ hybridization-apparent molecular lesion in a subset of patients with blood eosinophilia has transformed the diagnostic as well as treatment approach to eosinophilic disorders. Primary (i.e. nonreactive) eosinophilia is considered either "clonal" or "idiopathic" based on the presence or absence, respectively, of either a molecular or bone marrow histological evidence for a myeloid neoplasm. Clonal eosinophilia might accompany a spectrum of clinicopathological entities, the minority of whom are molecularly characterized; Fip1-like-1-platelet-derived growth factor receptor alpha (FIP1L1-PDGFRA(+)) systemic mastocytosis, platelet-derived growth factor receptor beta (PDGFRB)-rearranged atypical myeloproliferative disorder, chronic myeloid leukemia, and the 8p11 syndrome that is associated with fibroblast growth factor receptor 1 (FGFR1) rearrangement. Hypereosinophilic syndrome (HES) is a subcategory of idiopathic eosinophilia and is characterized by an absolute eosinophil count of > or =1.5 x 10(9)/l for at least 6 months as well as eosinophil-mediated tissue damage. At present, a working diagnosis of primary eosinophilia mandates a bone marrow examination, karyotype analysis, and additional molecular studies in order to provide the patient with accurate prognostic information as well as select appropriate therapy. For example, the presence of either PDGFRA or PDGFRB mutations warrants the use of imatinib in clonal eosinophilia. In HES, prednisone, hydroxyurea, and interferon-alpha constitute first-line therapy, whereas imatinib, cladribine, and monoclonal antibodies to either interleukin-5 (mepolizumab) or CD52 (alemtuzumab) are considered investigational. Allogeneic transplantation offers a viable treatment option for drug-refractory cases.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Bone Marrow/pathology
- Humans
- Hypereosinophilic Syndrome/diagnosis
- Hypereosinophilic Syndrome/pathology
- Hypereosinophilic Syndrome/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Mastocytosis, Systemic/diagnosis
- Mastocytosis, Systemic/pathology
- Mastocytosis, Systemic/therapy
- Oncogene Proteins, Fusion
- Receptor, Platelet-Derived Growth Factor alpha/analysis
- Stem Cell Transplantation
- Transplantation, Homologous
- mRNA Cleavage and Polyadenylation Factors/analysis
Collapse
Affiliation(s)
- A Tefferi
- Divisions of Hematology and Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Abstract
Acquired blood eosinophilia is considered either a primary or a secondary phenomenon. Causes of secondary (ie, reactive) eosinophilia include tissue-invasive parasitosis, allergic or inflammatory conditions, and malignancies in which eosinophils are not considered part of the neoplastic process. Primary eosinophilia is classified operationally into 2 categories: clonal and idiopathic. Clonal eosinophilia stipulates the presence of either cytogenetic evidence or bone marrow histological evidence of an otherwise classified hematologic malignancy such as acute leukemia or a chronic myeloid disorder. Idiopathic eosinophilia is a diagnosis of exclusion (ie, not secondary or clonal). Hypereosinophilic syndrome is a subcategory of idiopathic eosinophilia; diagnosis requires documentation of both sustained eosinophilia (absolute eosinophil count > or = 1500 cells/microL for at least 6 months) and target organ damage (eg, involvement of the heart, lung, skin, or nerve tissue). Genetic mutations involving the platelet-derived growth factor receptor genes (PDGFR-alpha and PDGFR-beta) have been pathogenetically linked to clonal eosinophilia, and their presence predicts treatment response to imatinib. Accordingly, cytogenetic and/or molecular investigations for the presence of an imatinib-sensitive molecular target should accompany current evaluation for primary eosinophilia. In the absence of such a drug target, specific treatment is dictated by the underlying hematologic malignancy in cases of clonal eosinophilia; however, the initial treatment of choice for symptomatic patients with hypereosinophilic syndrome is prednisone and/or interferon alfa.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Department of Internal Medicine and Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA.
| |
Collapse
|
41
|
Gotlib J. Molecular classification and pathogenesis of eosinophilic disorders: 2005 update. Acta Haematol 2005; 114:7-25. [PMID: 15995322 DOI: 10.1159/000085559] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Use of the term "idiopathic hypereosinophilic syndrome (HES)" has highlighted our basic lack of understanding of the molecular pathophysiology of eosinophilic disorders. However, over the last 10 years, the study of hypereosinophilia has enjoyed a revival. This interest has been rekindled by two factors: (1) the development of increasingly sophisticated molecular biology techniques that have unmasked recurrent genetic abnormalities linked to eosinophilia, and (2) the successful application of targeted therapy with agents such as imatinib to treat eosinophilic diseases. To date, most of these recurrent molecular abnormalities have resulted in constitutively activated fusion tyrosine kinases whose phenotypic consequence is an eosinophilia-associated myeloid disorder. Most notable among these are rearrangements of platelet-derived growth factor receptors alpha and beta (PDGFRalpha, PDGFRbeta), which define a small subset of patients with eosinophilic chronic myeloproliferative disorders (MPDs) and/or overlap myelodysplastic syndrome/MPD syndromes, including chronic myelomonocytic leukemia. Discovery of the cryptic FIP1L1-PDGFRA gene fusion in cytogenetically normal patients with systemic mast cell disease with eosinophilia or idiopathic HES has redefined these diseases as clonal eosinophilias. A growing list of fibroblast growth factor receptor 1 fusion partners has similarly emerged in the 8p11 myeloproliferative syndromes, which are often characterized by elevated eosinophil counts. Herein the focus is on the molecular gains made in these MPD-type eosinophilias, and the classification and clinicopathological issues related to hypereosinophilic syndromes, including the lymphocyte variant. Success in establishing the molecular basis of a group of once seemingly heterogeneous diseases has now the laid the foundation for establishing a semi-molecular classification scheme of eosinophilic disorders.
Collapse
MESH Headings
- Humans
- Hypereosinophilic Syndrome/classification
- Hypereosinophilic Syndrome/genetics
- Hypereosinophilic Syndrome/pathology
- Leukemia, Myelomonocytic, Chronic/classification
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/pathology
- Mastocytosis, Systemic/classification
- Mastocytosis, Systemic/genetics
- Mastocytosis, Systemic/pathology
- Myeloproliferative Disorders/classification
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins/genetics
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Translocation, Genetic/genetics
- mRNA Cleavage and Polyadenylation Factors/genetics
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Center, 875 Blake Wilbur Drive, Rm. 2327B, Stanford, CA 94305-5821, USA.
| |
Collapse
|
42
|
Tefferi A, Pardanani A. Imatinib Therapy in Clonal Eosinophilic Disorders, Including Systemic Mastocytosis. Int J Hematol 2004; 79:441-7. [PMID: 15239393 DOI: 10.1532/ijh97.04046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary (nonreactive) eosinophilia is operationally classified as either a "clonal" or an "idiopathic" process. Clonal eosinophilia stipulates the presence of cytogenetic, molecular, or bone marrow histologic evidence of acute leukemia or a chronic myeloid disorder. Idiopathic eosinophilia is a diagnosis of exclusion that is made after ruling out both "secondary" (reactive) and clonal eosinophilia. Hypereosinophilic syndrome is a subclass of idiopathic eosinophilia that requires the documentation of both sustained eosinophilia (> or = 1500/microL for at least 6 months) and target-organ damage. A series of novel observations in the last 5 years have warranted a refined approach to the diagnosis as well as the treatment of clonal eosinophilic disorders, including systemic mastocytosis. At the center of these new developments are mutations involving the platelet-derived growth factor receptor genes (PDGFRA and PDGFRB), which have been pathogenetically linked to clonal eosinophilia, and their presence predicts complete as well as durable treatment responses to imatinib mesylate. The bone marrow histologic phenotype of these imatinib-sensitive eosinophilic disorders includes systemic mastocytosis, chronic eosinophilic leukemia, chronic myelomonocytic leukemia, and atypical chronic myeloproliferative disorder.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
43
|
Million RP, Harakawa N, Roumiantsev S, Varticovski L, Van Etten RA. A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase. Mol Cell Biol 2004; 24:4685-95. [PMID: 15143164 PMCID: PMC416425 DOI: 10.1128/mcb.24.11.4685-4695.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 02/05/2004] [Accepted: 02/10/2004] [Indexed: 12/31/2022] Open
Abstract
A direct binding site for the Grb2 adapter protein is required for the induction of fatal chronic myeloid leukemia (CML)-like disease in mice by Bcr-Abl. Here, we demonstrate direct binding of Grb2 to the Tel-Abl (ETV6-Abl) fusion protein, the product of complex (9;12) chromosomal translocations in human leukemia, via tyrosine 314 encoded by TEL exon 5. A Tel-Abl point mutant (Y314F) and a splice variant without TEL exon 5 sequences (Deltae5) lacked Grb2 interaction and exhibited decreased binding and phosphorylation of the scaffolding protein Gab2 and impaired activation of phosphatidylinositol 3-kinase, Akt, and extracellular signal-regulated kinase/mitogen-activated protein kinase in hematopoietic cells. Tel-Abl Y314F and Deltae5 were unable to transform fibroblasts to anchorage-independent growth and were defective for B-lymphoid transformation in vitro and lymphoid leukemogenesis in vivo. Previously, we demonstrated that full-length Tel-Abl induced two distinct myeloproliferative diseases in mice: CML-like leukemia similar to that induced by Bcr-Abl and a novel syndrome of small-bowel myeloid infiltration endotoxemia and hepatic and renal failure. Lack of the Grb2 binding site had no effect on development of small bowel syndrome but significantly attenuated the induction of CML-like disease by Tel-Abl. These results suggest that direct binding of Grb2 is a common mechanism contributing to leukemogenesis by oncogenic Abl fusion proteins.
Collapse
Affiliation(s)
- Ryan P Million
- Molecular Oncology Research Institute, Tufts-New England Medical Center, 750 Washington St., Box 5609, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW This review discusses the dosage effects of some oncogenes in leukemogenesis and compares various methods that model human hematologic malignancies in mice by introducing genetic lesions in a cell type-specific, time-controlled, and dosage-relevant manner. RECENT FINDINGS Recent evidence indicates that optimal dosage of cancer-related gene products plays an important role in the induction of mouse tumors that recapitulate their human counterparts. SUMMARY The mouse is a very valuable model system for experimentally dissecting the in vivo pathogenesis of cancer, for identifying pharmacological targets of cancer and for evaluating cancer therapies. In modeling human cancer, it has been shown that both the timing of introducing/activating oncogenic mutation(s) and the cell types into which the genetic lesion(s) is targeted are critical for cancer development. Recent studies also showed that efficient induction of relevant human leukemia in mice by certain oncogenes, such as PML/RARalpha and TEL/ABL, only occurred when they were expressed at a low level or close to pathophysiologically relevant level. These studies stress the importance of studying oncoprotein function at pathophysiologically relevant expression levels. Conditional gene expression systems are powerful tools for developing mouse models for human cancer by introducing genetic lesions in a cell type-specific, time-controlled and dosage-relevant manner. The bone marrow retroviral transduction and transplantation system can also mimic the cell and temporally specific origin of hematological malignancies by targeting oncogenes into sorted hematopoietic cells. This versatile approach is particularly powerful in structure-function analysis of oncogenes in vivo. However, overexpression of a transgene driven by retroviral vectors may alter the biological outcomes of the transgene in vivo. My colleagues and I have shown that generating vectors with modulated transgene expression can overcome this limitation of the retroviral transduction system in modeling human cancer in mice. Conditional gene expression and the modified retroviral transduction systems will be complimentary in studying human cancers in mice.
Collapse
Affiliation(s)
- Ruibao Ren
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|