1
|
Nayak L, Bettegowda C, Scherer F, Galldiks N, Ahluwalia M, Baraniskin A, von Baumgarten L, Bromberg JEC, Ferreri AJM, Grommes C, Hoang-Xuan K, Kühn J, Rubenstein JL, Rudà R, Weller M, Chang SM, van den Bent MJ, Wen PY, Soffietti R. Liquid biopsy for improving diagnosis and monitoring of CNS lymphomas: A RANO review. Neuro Oncol 2024; 26:993-1011. [PMID: 38598668 PMCID: PMC11145457 DOI: 10.1093/neuonc/noae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The utility of liquid biopsies is well documented in several extracranial and intracranial (brain/leptomeningeal metastases, gliomas) tumors. METHODS The RANO (Response Assessment in Neuro-Oncology) group has set up a multidisciplinary Task Force to critically review the role of blood and cerebrospinal fluid (CSF)-liquid biopsy in CNS lymphomas, with a main focus on primary central nervous system lymphomas (PCNSL). RESULTS Several clinical applications are suggested: diagnosis of PCNSL in critical settings (elderly or frail patients, deep locations, and steroid responsiveness), definition of minimal residual disease, early indication of tumor response or relapse following treatments, and prediction of outcome. CONCLUSIONS Thus far, no clinically validated circulating biomarkers for managing both primary and secondary CNS lymphomas exist. There is need of standardization of biofluid collection, choice of analytes, and type of technique to perform the molecular analysis. The various assays should be evaluated through well-organized central testing within clinical trials.
Collapse
Affiliation(s)
- Lakshmi Nayak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Florian Scherer
- Department of Medicine I, Faculty of Medicine, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Norbert Galldiks
- Department of Neurology, University of Cologne, Medical Faculty and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), and Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Manmeet Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland OH and Miami Cancer Institute, Baptist Health South Florida, International University, Miami, Florida, USA
| | - Alexander Baraniskin
- Department of Hematology, Oncology and Palliative Care, Evangelisches Krankenhaus Hamm, Hamm, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians—University of Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Andrés J M Ferreri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Khê Hoang-Xuan
- APHP, Department of Neuro-oncology, Groupe Hospitalier Pitié-Salpêtrière; Sorbonne Université, Paris Brain Institute ICM, Paris, France
| | - Julia Kühn
- Department of Medicine I, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany
| | - James L Rubenstein
- UCSF Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, California, USA
| | | | - Patrick Y Wen
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| |
Collapse
|
2
|
Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K, Hu LS, Illerhaus G, Nayak L, Ponzoni M, Batchelor TT. Primary central nervous system lymphoma. Nat Rev Dis Primers 2023; 9:29. [PMID: 37322012 PMCID: PMC10637780 DOI: 10.1038/s41572-023-00439-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a diffuse large B cell lymphoma in which the brain, spinal cord, leptomeninges and/or eyes are exclusive sites of disease. Pathophysiology is incompletely understood, although a central role seems to comprise immunoglobulins binding to self-proteins expressed in the central nervous system (CNS) and alterations of genes involved in B cell receptor, Toll-like receptor and NF-κB signalling. Other factors such as T cells, macrophages or microglia, endothelial cells, chemokines, and interleukins, probably also have important roles. Clinical presentation varies depending on the involved regions of the CNS. Standard of care includes methotrexate-based polychemotherapy followed by age-tailored thiotepa-based conditioned autologous stem cell transplantation and, in patients unsuitable for such treatment, consolidation with whole-brain radiotherapy or single-drug maintenance. Personalized treatment, primary radiotherapy and only supportive care should be considered in unfit, frail patients. Despite available treatments, 15-25% of patients do not respond to chemotherapy and 25-50% relapse after initial response. Relapse rates are higher in older patients, although the prognosis of patients experiencing relapse is poor independent of age. Further research is needed to identify diagnostic biomarkers, treatments with higher efficacy and less neurotoxicity, strategies to improve the penetration of drugs into the CNS, and roles of other therapies such as immunotherapies and adoptive cell therapies.
Collapse
Affiliation(s)
| | - Teresa Calimeri
- Lymphoma Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | - Jorg Dietrich
- Cancer and Neurotoxicity Clinic and Brain Repair Research Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Khê Hoang-Xuan
- APHP, Groupe Hospitalier Salpêtrière, Sorbonne Université, IHU, ICM, Service de Neurologie 2, Paris, France
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, AZ, USA
| | - Gerald Illerhaus
- Clinic of Hematology, Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Lakshmi Nayak
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ateneo Vita-Salute San Raffaele, Milan, Italy
| | - Tracy T Batchelor
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Yokogami K, Azuma M, Takeshima H, Hirai T. Lymphomas of Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:527-543. [PMID: 37452952 DOI: 10.1007/978-3-031-23705-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Central nervous system (CNS) lymphoma consists of primary central nervous system lymphoma (PCNSL) and secondary CNS involvement by systemic lymphoma. This chapter focuses on the former. PCNSL is a relative rare disease, accounting for approximately 2.4-4.9% of all primary CNS tumors. It is an extra-nodal variant of non-Hodgkin's lymphoma (NHL), confined to the brain, leptomeninges, spinal cord, and eyes, with no systemic involvement. Recently, elderly patients (≥ 60 years) are increasing. Histologically, B cell blasts, which originate from late germinal center exit B cell, are growing and homing in CNS. Immunohistochemically, these cells are positive for PAX5, CD19, CD20, CD22, and CD79a. PCNSL shows relatively characteristic appearances on CT, MR imaging, and PET. Treatment first line of PCNSL is HD-MTX-based chemotherapy with or without rituximab and irradiation. Severe side-effect of this treatment is delayed onset neurotoxicity, which cause of cognitive impairment. Therefore, combined chemotherapy alone or chemotherapy with reduced-dose irradiation is more recommended for elderly patients. There is no established standard care for relapse of the PCNSLs. Temsirolimus, lenalidomide, temozolomide, and Bruton's tyrosine kinase (BTK) inhibitor ibrutinib are candidates for refractory patients. The prognosis of PCNSL has significantly improved over the last decades (median OS: 26 months, 5-year survival: 31%). Younger than 60 age and WHO performance status less than < or = 1 are associated with a significantly better overall survival.
Collapse
Affiliation(s)
- Kiyotaka Yokogami
- Departments of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Minako Azuma
- Departments of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideo Takeshima
- Departments of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshinori Hirai
- Departments of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
4
|
Deng J, Hua L, Bian L, Chen H, Chen L, Cheng H, Dou C, Geng D, Hong T, Ji H, Jiang Y, Lan Q, Li G, Liu Z, Qi S, Qu Y, Shi S, Sun X, Wang H, You Y, Yu H, Yue S, Zhang J, Zhang X, Wang S, Mao Y, Zhong P, Gong Y. Molecular diagnosis and treatment of meningiomas: an expert consensus (2022). Chin Med J (Engl) 2022; 135:1894-1912. [PMID: 36179152 PMCID: PMC9746788 DOI: 10.1097/cm9.0000000000002391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Meningiomas are the most common primary intracranial neoplasm with diverse pathological types and complicated clinical manifestations. The fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), published in 2021, introduces major changes that advance the role of molecular diagnostics in meningiomas. To follow the revision of WHO CNS5, this expert consensus statement was formed jointly by the Group of Neuro-Oncology, Society of Neurosurgery, Chinese Medical Association together with neuropathologists and evidence-based experts. The consensus provides reference points to integrate key biomarkers into stratification and clinical decision making for meningioma patients. REGISTRATION Practice guideline REgistration for transPAREncy (PREPARE), IPGRP-2022CN234.
Collapse
Affiliation(s)
- Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyang Hua
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Changwu Dou
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 750306, China
| | - Dangmurenjiapu Geng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Medical University Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, Jiangsu 215004, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250063, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Songsheng Shi
- Department of Neurosurgery, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian 350001, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Haijun Wang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hualin Yu
- Department of Neurosurgery, Kunming Medical University First Affiliated Hospital, Kunming, Yunnan 650032, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jianming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ping Zhong
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Downs BM, Ding W, Cope LM, Umbricht CB, Li W, He H, Ke X, Holdhoff M, Bettegowda C, Tao W, Sukumar S. Methylated markers accurately distinguish primary central nervous system lymphomas (PCNSL) from other CNS tumors. Clin Epigenetics 2021; 13:104. [PMID: 33952317 PMCID: PMC8097855 DOI: 10.1186/s13148-021-01091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Definitive diagnosis of primary central nervous system lymphoma (PCNSL) requires invasive surgical brain biopsy, causing treatment delays. In this paper, we identified and validated tumor-specific markers that can distinguish PCNSL from other CNS tumors in tissues. In a pilot study, we tested these newly identified markers in plasma. RESULTS The Methylation Outlier Detector program was used to identify markers in TCGA dataset of 48 diffuse large B-cell lymphoma (DLBCL) and 656 glioblastomas and lower-grade gliomas. Eight methylated markers clearly distinguished DLBCL from gliomas. Marker performance was verified (ROC-AUC of ≥ 0.989) in samples from several GEO datasets (95 PCNSL; 2112 other primary CNS tumors of 11 types). Next, we developed a novel, efficient assay called Tailed Amplicon Multiplexed-Methylation-Specific PCR (TAM-MSP), which uses two of the methylation markers, cg0504 and SCG3 triplexed with ACTB. FFPE tissue sections (25 cases each) of PCNSL and eight types of other primary CNS tumors were analyzed using TAM-MSP. TAM-MSP distinguished PCNSL from the other primary CNS tumors with 100% accuracy (AUC = 1.00, 95% CI 0.95-1.00, P < 0.001). The TAM-MSP assay also detected as few as 5 copies of fully methylated plasma DNA spiked into 0.5 ml of healthy plasma. In a pilot study of plasma from 15 PCNSL, 5 other CNS tumors and 6 healthy individuals, methylation in cg0504 and SCG3 was detectable in 3/15 PCNSL samples (20%). CONCLUSION The Methylation Outlier Detector program identified methylated markers that distinguish PCNSL from other CNS tumors with accuracy. The high level of accuracy achieved by these markers was validated in tissues by a novel method, TAM-MSP. These studies lay a strong foundation for a liquid biopsy-based test to detect PCNSL-specific circulating tumor DNA.
Collapse
Affiliation(s)
- Bradley M Downs
- Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Wanjun Ding
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| | - Leslie M Cope
- Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christopher B Umbricht
- Departments of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Wenge Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Huihua He
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiaokang Ke
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Matthias Holdhoff
- Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Chetan Bettegowda
- Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Weiping Tao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| | - Saraswati Sukumar
- Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
6
|
You H, Wei L, Kaminska B. Emerging insights into origin and pathobiology of primary central nervous system lymphoma. Cancer Lett 2021; 509:121-129. [PMID: 33766752 DOI: 10.1016/j.canlet.2021.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/03/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive cancer typically confined to the brain, eyes, leptomeninges and spinal cord, without evidence of systemic involvement. PCNSL remains a challenge for scientists and clinicians due to insufficient biological knowledge, a lack of appropriate animal models and validated diagnostic biomarkers. We summarize recent findings on genomic, transcriptomic and epigenetic alterations identified in PCNSL. These findings help to define pathobiology of the disease and delineate defects in B cell differentiation. Evidence from genomic and transcriptomic studies helps to separate PCNSL from other hematological malignancies, improves diagnostics and reveals new therapeutic targets for treatment. Discovery of the CNS lymphatic system may be instrumental in better understanding the origin of the disease. We critically assess the attempts to model PCNSL in rodents, and conclude that there is a lack of a genetic/transgenic model that adequately mimics pathogenesis of the disease. Contribution of the tumor microenvironment in tumorigenesis and aggressiveness of PCNSL remains understudied. Assessing heterogeneity of immune infiltrates, cytokine profiling and molecular markers, may improve diagnostics and put forward new therapeutic strategies.
Collapse
Affiliation(s)
- Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Bozena Kaminska
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China; Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
7
|
Abstract
Thrombospondins are encoded in vertebrates by a family of 5 THBS genes. THBS1 is infrequently mutated in most cancers, but its expression is positively regulated by several tumor suppressor genes and negatively regulated by activated oncogenes and promoter hypermethylation. Consequently, thrombospondin-1 expression is frequently lost during oncogenesis and is correlated with a poor prognosis for some cancers. Thrombospondin-1 is a secreted protein that acts in the tumor microenvironment to inhibit angiogenesis, regulate antitumor immunity, stimulate tumor cell migration, and regulate the activities of extracellular proteases and growth factors. Differential effects of thrombospondin-1 on the sensitivity of normal versus malignant cells to ischemic and genotoxic stress also regulate the responses to tumors to therapeutic radiation and chemotherapy.
Collapse
Affiliation(s)
| | - David D Roberts
- Biochemical Pathology Section, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Zheng M, Perry AM, Bierman P, Loberiza F, Nasr MR, Szwajcer D, Del Bigio MR, Smith LM, Zhang W, Greiner TC. Frequency of MYD88 and CD79B mutations, and MGMT methylation in primary central nervous system diffuse large B-cell lymphoma. Neuropathology 2017; 37:509-516. [PMID: 28856744 DOI: 10.1111/neup.12405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022]
Abstract
Primary CNS diffuse large B-cell lymphoma (PCNS-DLBCL) and systemic DLBCL harbor mutations in MYD88 and CD79B. DNA methyltransferase (MGMT) is methylated in some DLBCL. Our goal was to investigate the frequencies of these events, which have not been previously reported within the same series of patients with PCNS-DLBCL. Fifty-four cases of PCNS-DLBCL from two institutions were analyzed by Sanger sequencing for MYD88 and CD79B, and pyrosequencing for MGMT. MYD88 mutations were identified in 68.8% (35 of 51 cases), with L265P being the most frequent mutation. Mutations other than L265P were identified in 21.6% of cases, of which eight novel MYD88 mutations were identified. Of mutated cases, 17.6% had homozygous/hemizygous MYD88 mutations, which has not been previously reported in PCNS-DLBCL. CD79B mutations were found in six of 19 cases (31.6%), all in the Y196 mutation hotspot. MGMT methylation was observed in 37% (20 of 54 cases). There was no significant difference in median overall survival (OS) between the wild type and mutated MYD88 cases, or between methylated and unmethylated MGMT cases. However, a significant difference (P = 0.028) was noted in median OS between the wild type and mutated CD79B cases.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anamarija M Perry
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Philip Bierman
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fausto Loberiza
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michel R Nasr
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Szwajcer
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Deckert M, Montesinos-Rongen M, Brunn A, Siebert R. Systems biology of primary CNS lymphoma: from genetic aberrations to modeling in mice. Acta Neuropathol 2014; 127:175-88. [PMID: 24240734 DOI: 10.1007/s00401-013-1202-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/21/2013] [Indexed: 12/15/2022]
Abstract
Primary lymphoma of the central nervous system (CNS, PCNSL) is a specific diffuse large B cell lymphoma entity arising in and confined to the CNS. Despite extensive research since many decades, the pathogenetic mechanisms underlying the remarkable tropism of this peculiar malignant hematopoietic tumor remain still to be elucidated. In the present review, we summarize the present knowledge on the genotypic and phenotypic characteristics of the tumor cells of PCNSL, give an overview over deregulated molecular pathways in PCNSL and present recent progress in the field of preclinical modeling of PCNSL in mice. With regard to the phenotype, PCNSL cells resemble late germinal center exit IgM+IgD+ B cells with blocked terminal B cell differentiation. They show continued BCL6 activity in line with ongoing activity of the germinal center program. This together with the pathways deregulated by genetic alterations may foster B cell activation and brisk proliferation, which correlated with the simultaneous MYC and BCL2 overexpression characteristic for PCNSL. On the genetic level, PCNSL are characterized by ongoing aberrant somatic hypermutation that, besides the IG locus, targets the PAX5, TTF, MYC, and PIM1 genes. Moreover, PCNSL cells show impaired IG class switch due to sμ region deletions, and PRDM1 mutations. Several important pathways, i.e., the B cell receptor (BCR), the toll-like receptor, and the nuclear factor-κB pathway, are activated frequently due to genetic changes affecting genes like CD79B, SHIP, CBL, BLNK, CARD11, MALT1, BCL2, and MYD88. These changes likely foster tumor cell survival. Nevertheless, many of these features are also present in subsets of systemic DLBLC and might not be the only reasons for the peculiar tropism of PCNSL. Here, preclinical animal models that closely mimic the clinical course and neuropathology of human PCNSL may provide further insight and we discuss recent advances in this field. Such models enable us to understand the pathogenetic interaction between the malignant B cells, resident cell populations of the CNS, and the associated inflammatory infiltrate. Indeed, the immunophenotype of the CNS as well as tumor cell characteristics and intracerebral interactions may create a micromilieu particularly conducive to PCNSL that may foster aggressiveness of tumor cells and accelerate the fatal course of disease. Suitable animal models may also serve as a well-defined preclinical system and may provide a useful tool for developing new specific therapeutic strategies.
Collapse
|
10
|
Alexandrova EM, Moll UM. Role of p53 family members p73 and p63 in human hematological malignancies. Leuk Lymphoma 2012; 53:2116-29. [PMID: 22497596 DOI: 10.3109/10428194.2012.684348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p53, mutated in over half of human cancers and about 13% of all hematological malignancies, maintains genomic integrity and triggers cellular senescence and apoptosis of damaged cells. In contrast to p53, the homologs p73 and p63 play critical roles in development of the central nervous system and skin/limbs, respectively. Moreover, dependent on the context they can exert tumor suppressor activities that cooperate with p53. Unlike p53, p73 and p63 are rarely mutated in cancers. Instead, up-regulation of the anti-apoptotic dominant-negative ΔNp73 and ΔNp63 isoforms is the most frequent abnormality in solid cancers. In hematological malignancies the most frequent p73 defect is promoter methylation and loss of expression, associated with unfavorable clinical outcomes. This suggests an essential tumor suppressor role of p73 in blood cells, also supported by genetic mouse models. Many therapeutic approaches aiming to restore p73 activity are currently being investigated. In contrast, the most frequent p63 abnormality is protein overexpression, associated with higher disease grade and poorer prognosis. Surprisingly, although available data are still scarce, the emerging picture is up-regulation of transactivation-competent TAp63 isoforms, suggesting a tumor-promoting role in this context.
Collapse
|
11
|
Richter J, Ammerpohl O, Martín-Subero JI, Montesinos-Rongen M, Bibikova M, Wickham-Garcia E, Wiestler OD, Deckert M, Siebert R. Array-based DNA methylation profiling of primary lymphomas of the central nervous system. BMC Cancer 2009; 9:455. [PMID: 20025734 PMCID: PMC2807878 DOI: 10.1186/1471-2407-9-455] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/21/2009] [Indexed: 12/02/2022] Open
Abstract
Background Although primary lymphomas of the central nervous system (PCNSL) and extracerebral diffuse large B-cell lymphoma (DLBCL) cannot be distinguished histologically, it is still a matter of debate whether PCNSL differ from systemic DLBCL with respect to their molecular features and pathogenesis. Analysis of the DNA methylation pattern might provide further data distinguishing these entities at a molecular level. Methods Using an array-based technology we have assessed the DNA methylation status of 1,505 individual CpG loci in five PCNSL and compared the results to DNA methylation profiles of 49 DLBCL and ten hematopoietic controls. Results We identified 194 genes differentially methylated between PCNSL and normal controls. Interestingly, Polycomb target genes and genes with promoters showing a high CpG content were significantly enriched in the group of genes hypermethylated in PCNSL. However, PCNSL and systemic DLBCL did not differ in their methylation pattern. Conclusions Based on the data presented here, PCNSL and DLBCL do not differ in their DNA methylation pattern. Thus, DNA methylation analysis does not support a separation of PCNSL and DLBCL into individual entities. However, PCNSL and DLBCL differ in their DNA methylation pattern from non- malignant controls.
Collapse
Affiliation(s)
- Julia Richter
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
NIELÄNDER INGA, BUG STEFANIE, RICHTER JULIA, GIEFING MACIEJ, IGNACIO MARTÍN-SUBERO JOSÉ, SIEBERT REINER. Combining array-based approaches for the identification of candidate tumor suppressor loci in mature lymphoid neoplasms. APMIS 2007; 115:1107-34. [DOI: 10.1111/j.1600-0463.2007.apm_883.xml.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Rizzi M, Tschan MP, Britschgi C, Britschgi A, Hügli B, Grob TJ, Leupin N, Mueller BU, Simon HU, Ziemiecki A, Torbett BE, Fey MF, Tobler A. The death-associated protein kinase 2 is up-regulated during normal myeloid differentiation and enhances neutrophil maturation in myeloid leukemic cells. J Leukoc Biol 2007; 81:1599-608. [PMID: 17347302 DOI: 10.1189/jlb.0606400] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The death-associated protein kinase 2 (DAPK2) belongs to a family of Ca(2+)/calmodulin-regulated serine/threonine kinases involved in apoptosis. During investigation of candidate genes operative in granulopoiesis, we identified DAPK2 as highly expressed. Subsequent investigations demonstrated particularly high DAPK2 expression in normal granulocytes compared with monocytes/macrophages and CD34(+) progenitor cells. Moreover, significantly increased DAPK2 mRNA levels were seen when cord blood CD34(+) cells were induced to differentiate toward neutrophils in tissue culture. In addition, all-trans retinoic acid (ATRA)-induced neutrophil differentiation of two leukemic cell lines, NB4 and U937, revealed significantly higher DAPK2 mRNA expression paralleled by protein induction. In contrast, during differentiation of CD34(+) and U937 cells toward monocytes/macrophages, DAPK2 mRNA levels remained low. In primary leukemia, low expression of DAPK2 was seen in acute myeloid leukemia samples, whereas chronic myeloid leukemia samples in chronic phase showed intermediate expression levels. Lentiviral vector-mediated expression of DAPK2 in NB4 cells enhanced, whereas small interfering RNA-mediated DAPK2 knockdown reduced ATRA-induced granulocytic differentiation, as evidenced by morphology and neutrophil stage-specific maturation genes, such as CD11b, G-CSF receptor, C/EBPepsilon, and lactoferrin. In summary, our findings implicate a role for DAPK2 in granulocyte maturation.
Collapse
Affiliation(s)
- Mattia Rizzi
- Experimental Oncology/Hematology, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chu LC, Eberhart CG, Grossman SA, Herman JG. Epigenetic silencing of multiple genes in primary CNS lymphoma. Int J Cancer 2006; 119:2487-91. [PMID: 16858686 DOI: 10.1002/ijc.22124] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epigenetic silencing of functionally important genes is important in the development of malignancies and is a source of potential markers for molecular detection. Primary central nervous system lymphoma (PCNSL) is an increasingly common tumor that has not been extensively examined for changes in promoter region methylation. We examined 14 tumor suppressor genes in 25 cases of PCNSL using methylation-specific PCR. Methylation was observed in DAPK (84%), TSP1 (68%), CRBP1 (67%), p16(INK) (4a) (64%), p14(ARF) (59%), MGMT (52%), RARbeta2 (50%), TIMP3 (44%), TIMP2 (42%), p15(INK) (4b) (40%), p73 (28%), hMLH1 (12%), RB1 (8%) and GSTP1 (8%). Promoter methylation of p14(ARF), p16(INK) (4a) and MGMT was correlated with loss of expression by immunohistochemical staining. The methylation of many of these genes in PCNSL is similar to that reported in other high-grade B-cell lymphomas. All 25 cases of PCNSL had methylation of at least 2 genes. Methylation of DAPK, p16(INK) (4a) or MGMT was found in 96% of the tumors, suggesting simple marker strategies to detect circulating methylated DNA in serum that might facilitate early tumor detection. Our study provides insight into the epigenetic alterations in PCNSL and provides potential biomarkers of disease.
Collapse
Affiliation(s)
- Linda C Chu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
15
|
Pluta A, Nyman U, Joseph B, Robak T, Zhivotovsky B, Smolewski P. The role of p73 in hematological malignancies. Leukemia 2006; 20:757-66. [PMID: 16541141 DOI: 10.1038/sj.leu.2404166] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The P73 gene is a homologue of the P53 tumor suppressor. Owing to its structural similarity with p53, p73 was originally considered to have tumor suppressor function. However, the discovery of N-terminal truncated isoforms with oncogenic properties showed a 'two in one' structure of its product, p73 protein. The full-length variants are strong inducers of apoptosis, whereas the truncated isoforms inhibit proapoptotic activity of p53 and the full-length p73. Thus, p73 is involved in the regulation of cell cycle, cell death and development. Moreover, it plays a role in carcinogenesis and controls tumor sensitivity to treatment. p73 is commonly expressed in tumor cells in hematological malignancies. Overexpression of p73 protein and aberrant expression of its particular isoforms, with very low frequency of P73 hypermethylation or mutations, were found in malignant myeloproliferations, including acute myeloblastic leukemia. In contrast, hypermethylation and subsequent inactivation of the P73 gene are the most common findings in malignant lymphoproliferative disorders, especially acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphomas. Assessment of P73 methylation may provide important prognostic information, as was confirmed in patients with ALL. This review summarizes some aspects of p73 biology with particular reference to its possible pathogenetic role and prognostic significance in hematological malignancies.
Collapse
Affiliation(s)
- A Pluta
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
16
|
Nakamura M, Ishida E, Shimada K, Nakase H, Sakaki T, Konishi N. Defective expression of HRK is associated with promoter methylation in primary central nervous system lymphomas. Oncology 2006; 70:212-21. [PMID: 16809940 DOI: 10.1159/000094322] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 05/15/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Recently, it has been reported that expression of the HRK gene was significantly reduced by hypermethylation in astrocytic tumors. Our aim is to verify the alterations in the HRK gene in primary central nervous system lymphomas (PCNSLs). METHODS We analyzed the hypermethylation status and expression of the gene and 12q13.1 loss of heterozygosity in 31 PCNSLs. RESULTS A total of 13 PCNSLs (31%) demonstrated hypermethylation in either the promoter or exon 1; loss of HRK expression was immunohistochemically observed in 9 tumors and was significantly associated with promoter methylation. In addition, higher apoptotic counts were associated with HRK positivity. PCNSLs with HRK methylation also showed methylation of multiple genes, such as p14ARF, p16INK4a, RB1, p27Kip1 and O6-MGMT. Patients with tumors demonstrating concurrent methylation of more than half of their genes demonstrated significantly poorer survival and earlier recurrence. Hypermethylation of the HRK promoter alone was not associated with overall outcome, but relapse-free survival was significantly shorter. CONCLUSIONS Our findings suggest that transcriptional repression of HRK is caused by promoter hypermethylation in PCNSL, and that the loss of HRK associated with the methylation profile of other genes is a potential step in the modulation of cellular death by apoptosis during PCNSL tumorigenesis.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Department of Pathology , Nara Medical University School of Medicine, Nara, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Ferreri AJM, Reni M. Prognostic factors in primary central nervous system lymphomas. Hematol Oncol Clin North Am 2005; 19:629-49, vi. [PMID: 16083827 DOI: 10.1016/j.hoc.2005.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efforts to identify survival predictors in primary central nervous system lymphoma (PCNSL) have produced isolated, unconfirmed observations in small retrospective and prospective series. Age and performance status are two unanimously accepted prognostic factors. These and other independent predictors of survival were used by the International Extranodal Lymphoma Study Group (IELSG) to establish a prognostic scoring system able to distinguish risk groups in PCNSL. The IELSG score will improve further with better knowledge of these malignancies, especially with the inclusion of molecular and pharmacogenetic variables able to identify lymphomas with different chemosensitivities or degrees of aggressiveness. In the years ahead, a well-established prognostic score will allow the separation of patients into risk groups, which could result in the application of risk-tailored therapeutic strategies.
Collapse
Affiliation(s)
- Andrés J M Ferreri
- Medical Oncology Unit, Department of Oncology, San Raffaele H Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| | | |
Collapse
|
18
|
Zhang SJ, Endo S, Saito T, Kouno M, Kuroiwa T, Washiyama K, Kumanishi T. Primary malignant lymphoma of the brain: frequent abnormalities and inactivation of p14 tumor suppressor gene. Cancer Sci 2005; 96:38-41. [PMID: 15649253 PMCID: PMC11159332 DOI: 10.1111/j.1349-7006.2005.00003.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ten primary central nervous system lymphomas (PCNSL, brain lymphomas) were examined for p14 gene exon 1beta deletion, mutation and methylation by Southern blot analysis, nucleotide analysis of polymerase chain reaction clones and Southern blot-based methylation assay. In Southern blot analysis, from the signal densities of the hybridized bands and their similarities to those of exons 2 and 3 in our previous quantitative study, we found that exon 1beta was homozygously deleted in four cases, hemizygously deleted in five cases and not deleted in one case. Thus, the same deletion patterns covered the entire p14 gene for all cases except for one case, which suggested the hemizygous deletion of exons 1beta and 2 and homozygous deletion of exon 3. In addition, although exon 1beta mutation is rare in various tumors, we detected a missense mutation (L50R) in one case with a hemizygous deletion. Methylation of the 5'CpG island of the p14 gene was not suggested for any case without homozygous deletion. Our observation of frequent p14 gene abnormalities (90%) and inactivation (40-60%) was in striking contrast to the same pathological subtype of systemic lymphoma in which p14 gene abnormalities and inactivation were infrequent, suggesting a difference in carcinogenesis between PCNSL and systemic lymphoma.
Collapse
Affiliation(s)
- Shu-Jing Zhang
- Molecular Neuropathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585
| | | | | | | | | | | | | |
Collapse
|
19
|
Ferreri AJM, Dell'Oro S, Capello D, Ponzoni M, Iuzzolino P, Rossi D, Pasini F, Ambrosetti A, Orvieto E, Ferrarese F, Arrigoni G, Foppoli M, Reni M, Gaidano G. Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nervous system lymphomas. Br J Haematol 2004; 126:657-64. [PMID: 15327516 DOI: 10.1111/j.1365-2141.2004.05109.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the prevalence and prognostic role of CpG island methylation of the reduced folate carrier (RFC) gene promoter region in primary central nervous system lymphoma (PCNSL) in immunocompetent patients. Genomic DNA from 40 PCNSL was used for methylation-specific polymerase chain reaction and bisulphite genomic sequencing of the RFC promoter region. Human immunodeficiency virus-negative systemic diffuse large B-cell lymphomas (DLBCL) were used as controls (n = 50). The impact on outcome of RFC promoter methylation was assessed in 37 PCNSL patients treated with high-dose methotrexate (HD-MTX)-based chemotherapy +/- radiotherapy. RFC promoter methylation occurred in 12 of 40 (30%) PCNSL and in four of 50 (8%) DLBCL (P = 0.01). Of 37 PCNSL treated with HD-MTX-based chemotherapy, methylation occurred in nine cases (24%, M-PCNSL), while 28 cases (76%, U-PCNSL) were negative. Three M-PCNSL (33%) and 15 U-PCNSL (54%) achieved complete remission (CR) after primary chemotherapy. Logistic regression confirmed the independent association between CR rate and International Extranodal Lymphoma Study Group score (P = 0.03), RFC promoter methylation (P = 0.07) and use of cytarabine (P = 0.08). The 3-year failure-free survival (FFS) and overall survival for M-PCNSL and U-PCNSL was 0% vs. 31 +/- 9% (P = 0.34) and 0% vs. 31 +/- 9% (P = 0.35) respectively. This is the first study to assess the methylation status of the RFC promoter in human tumour samples. RFC methylation is more common in PCNSL compared with systemic DLBCL, and is associated with a lower CR rate to HD-MTX-based chemotherapy. If confirmed in prospective trials on PCNSL treated with HD-MTX alone, these data may suggest the necessity for alternative strategies in M-PCNSL considering the increased risk of MTX resistance by tumour cells.
Collapse
Affiliation(s)
- Andrés J M Ferreri
- Department of Radiochemotherapy, San Raffaele H Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kinoshita T. Epigenetic Inactivation of Tumor Suppressor Genes in Hematologic Malignancies. Int J Hematol 2004; 80:108-19. [PMID: 15481438 DOI: 10.1532/ijh97.04056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of genetic alterations are involved in the development of hematologic malignancies. These alterations include the activation of oncogenes by chromosomal translocation or gene amplification and the inactivation of tumor suppressor genes by gene deletion or mutations. Recently, epigenetic change has been proven to be another important means of inactivating tumor suppressor genes in tumor cells, and hypermethylation of promoter DNA is one of the most important mechanisms. In hematologic malignancies, many kinds of tumor suppressor genes and candidate suppressor genes are epigenetically inactivated. Inactivation of tumor suppressor genes usually occurs in a disease-specific manner and plays important roles in the development and progression of the disease. Some of these alterations have clinical effects on treatment results or the prognoses of the patients.
Collapse
Affiliation(s)
- Tomohiro Kinoshita
- Department of Hematology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
21
|
Linnebank M, Schmidt S, Kölsch H, Linnebank A, Heun R, Schmidt-Wolf IGH, Glasmacher A, Fliessbach K, Klockgether T, Schlegel U, Pels H. The methionine synthase polymorphism D919G alters susceptibility to primary central nervous system lymphoma. Br J Cancer 2004; 90:1969-71. [PMID: 15138479 PMCID: PMC2409477 DOI: 10.1038/sj.bjc.6601777] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSL) frequently reveal genomic instability. We analysed different functional genetic variants affecting the folate and homocysteine metabolism important for DNA integrity in 31 PCNSL patients and 142 controls. We found significantly less carriers of the methionine synthase c.2756A>G (D919G) missense polymorphism among the patients (0.16 vs 0.42; odds ratio 0.26, CI(95%): 0.09-0.74; P=0.005), suggesting a protective function of the G allele. These data stimulate further epidemiological and functional studies focusing on the role of homocysteine and folate metabolism in lymphoma tumorigenesis.
Collapse
Affiliation(s)
- M Linnebank
- Department of Neurology, University Hospital of Bonn, Sigmund-Freud-Str. 25, Bonn D-53125, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gonzalez-Gomez P, Bello MJ, Lomas J, Arjona D, Alonso ME, Amiñoso C, Lopez-Marin I, Anselmo NP, Sarasa JL, Gutierrez M, Casartelli C, Rey JA. Aberrant methylation of multiple genes in neuroblastic tumours. relationship with MYCN amplification and allelic status at 1p. Eur J Cancer 2003; 39:1478-85. [PMID: 12826052 DOI: 10.1016/s0959-8049(03)00312-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aberrant hypermethylation occurs in tumour cell CpG islands and is an important pathway for the repression of gene transcription in cancers. We investigated aberrant hypermethylation of 11 genes by methylation-specific polymerase chain reaction (PCR), after treatment of the DNA with bisulphite, and correlated the findings with MYCN amplification and allelic status at 1p in a series of 44 neuroblastic tumours. This tumour series includes five ganglioneuromas (G), one ganglioneuroblastoma (GN) and 38 neuroblastomas (six stage 1 tumours; five stage 2 tumours; six stage 3 cases; 19 stage 4 tumours, and two stage 4S cases). Aberrant methylation of at least one of the 11 genes studied was detected in 95% (42 of 44) of the cases. The frequencies of aberrant methylation were: 64% for thrombospondin-1 (THBS1); 30% for tissue inhibitor of metalloproteinase 3 (TIMP-3); 27% for O6-methylguanine-DNA methyltransferase (MGMT); 25% for p73; 18% for RB1; 14% for death-associated protein kinase (DAPK), p14ARF, p16INK4a and caspase 8, and 0% for TP53 and glutathione S-transferase P1 (GSTP1). No aberrant methylation was observed in four control normal tissue samples (brain and adrenal medulla). MYCN amplification was found in 11 cases (all stage 4 neuroblastomas), whereas allelic loss at 1p was identified in 16 samples (13 stage 4 and two stage 3 neuroblastomas, and one ganglioneuroma). All but one case with caspase 8 methylation also displayed MYCN amplification. Our results suggest that promoter hypermethylation is a frequent epigenetic event in the tumorigenesis of neuroblastic tumours, but no specific pattern of hypermethylated genes could be demonstrated.
Collapse
Affiliation(s)
- P Gonzalez-Gomez
- Laboratorio de Oncogenética Molecular, Dept. C. Experimental, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|