1
|
Namiot ED, Zembatov GM, Tregub PP. Insights into brain tumor diagnosis: exploring in situ hybridization techniques. Front Neurol 2024; 15:1393572. [PMID: 39022728 PMCID: PMC11252041 DOI: 10.3389/fneur.2024.1393572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Diagnosing brain tumors is critical due to their complex nature. This review explores the potential of in situ hybridization for diagnosing brain neoplasms, examining their attributes and applications in neurology and oncology. Methods The review surveys literature and cross-references findings with the OMIM database, examining 513 records. It pinpoints mutations suitable for in situ hybridization and identifies common chromosomal and gene anomalies in brain tumors. Emphasis is placed on mutations' clinical implications, including prognosis and drug sensitivity. Results Amplifications in EGFR, MDM2, and MDM4, along with Y chromosome loss, chromosome 7 polysomy, and deletions of PTEN, CDKN2/p16, TP53, and DMBT1, correlate with poor prognosis in glioma patients. Protective genetic changes in glioma include increased expression of ADGRB3/1, IL12B, DYRKA1, VEGFC, LRRC4, and BMP4. Elevated MMP24 expression worsens prognosis in glioma, oligodendroglioma, and meningioma patients. Meningioma exhibits common chromosomal anomalies like loss of chromosomes 1, 9, 17, and 22, with specific genes implicated in their development. Main occurrences in medulloblastoma include the formation of isochromosome 17q and SHH signaling pathway disruption. Increased expression of BARHL1 is associated with prolonged survival. Adenomas mutations were reviewed with a focus on adenoma-carcinoma transition and different subtypes, with MMP9 identified as the main metalloprotease implicated in tumor progression. Discussion Molecular-genetic diagnostics for common brain tumors involve diverse genetic anomalies. In situ hybridization shows promise for diagnosing and prognosticating tumors. Detecting tumor-specific alterations is vital for prognosis and treatment. However, many mutations require other methods, hindering in situ hybridization from becoming the primary diagnostic method.
Collapse
Affiliation(s)
- E. D. Namiot
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G. M. Zembatov
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P. P. Tregub
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
- Brain Research Department, Federal State Scientific Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center, Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
2
|
Benito R, Gil-Benso R, Quilis V, Perez M, Gregori-Romero M, Roldan P, Gonzalez-Darder J, Cerdá-Nicolas M, Lopez-Gines C. Primary glioblastomas with and without EGFR amplification: relationship to genetic alterations and clinicopathological features. Neuropathology 2009; 30:392-400. [PMID: 20051017 DOI: 10.1111/j.1440-1789.2009.01081.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glioblastomas express a notable heterogeneity in both the histological and cell patterns with glial astrocytic differentiation. Primary glioblastoma, which is the most frequent presentation (90-95%), occurs mainly in older patients and arises de novo, without any clinical or histological evidence of a less malignant precursor lesion. EGFR amplification has been identified as a genetic hallmark of primary glioblastomas and occurs in 40-60% of cases. However, there exist primary glioblastomas without EGFR amplification/overexpression. The purpose of this study was to stabilize the association between cases with and without EGFR gene amplification with clinical and genetic parameters in 45 cases of primary glioblastomas. EGFR amplification was observed in 24 cases (53%), while in the remaining 21 cases (47%) this alteration was not displayed. And whereas EGFR was overexpressed in 79% of cases with EGFR amplification, only 33% of the cases without EGFR amplification showed overexpression. The amplification of EGFR was associated with amplifications in MDM2 and CDK4 and a higher percentage of cases with promoter methylation of INK4a. Only one case of glioblastoma with EGFR amplification presented TP53 mutation simultaneously. Seven remaining cases with TP53 mutations were glioblastomas without EGFR amplification. The INK4a, INK4b and ARF deletions were similar in the two groups. Primary glioblastomas with and without EGFR amplification did not show any significant differences in average survival. The genetic studies suggest the existence of molecular subtypes within primary glioblastoma that may, when fully defined, contribute toward the development of drugs that specifically target tumors with divergent genetic profiles.
Collapse
Affiliation(s)
- Rafael Benito
- Department of Pathology, University of Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Smilowitz HM, Weissenberger J, Weis J, Brown JD, O'Neill RJ, Laissue JA. Orthotopic transplantation of v-src–expressing glioma cell lines into immunocompetent mice: establishment of a new transplantable in vivo model for malignant glioma. J Neurosurg 2007; 106:652-9. [PMID: 17432718 DOI: 10.3171/jns.2007.106.4.652] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice.
Methods
Striatal implantation of a 1-μl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription–3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18.
Conclusions
The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.
Collapse
Affiliation(s)
- Henry M Smilowitz
- Department of Pharmacology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Moreno Luna LE, Kipp B, Halling KC, Sebo TJ, Kremers. WK, Roberts LR, Barr Fritcher EG, Levy MJ, Gores GJ. Advanced cytologic techniques for the detection of malignant pancreatobiliary strictures. Gastroenterology 2006; 131:1064-72. [PMID: 17030177 PMCID: PMC1769444 DOI: 10.1053/j.gastro.2006.08.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 07/05/2006] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Two advanced cytologic techniques for detecting aneuploidy-digital image analysis (DIA) and fluorescence in situ hybridization (FISH)-have recently been developed to help identify malignant pancreatobiliary strictures. The aim of this study was to assess the clinical utility of cytology, DIA, and FISH for the identification of malignant pancreatobiliary strictures. METHODS Brush cytologic specimens from 233 consecutive patients undergoing endoscopic retrograde cholangiopancreatography for pancreatobiliary strictures were examined by all 3 (cytology, DIA, and FISH) techniques. Strictures were stratified as proximal (n = 33) or distal (n = 114) based on whether they occurred above or below the cystic duct, respectively. Strictures in patients with primary sclerosing cholangitis (n = 86) were analyzed separately. RESULTS Despite the stratification, the performances of the tests were similar. Conventional cytology has a low sensitivity (4%-20%) but 100% specificity. Because of the high specificity for cytology, we assessed the performance of the other tests when conventional cytology was negative. In this clinical context, FISH had an increased sensitivity (35%-60%) when assessing for chromosomal gains (polysomy) while preserving the specificity of cytology. The sensitivity and specificity of DIA was intermediate as compared with routine cytology and FISH but was additive to FISH values demonstrating only trisomy of chromosome 7 or chromosome 3. CONCLUSIONS These findings suggest that FISH and DIA increase the sensitivity for the diagnosis of malignant pancreatobiliary tract strictures over that obtained by conventional cytology while maintaining an acceptable specificity.
Collapse
Affiliation(s)
- Laura E. Moreno Luna
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Benjamin Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Kevin C. Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Thomas J. Sebo
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Walter K. Kremers.
- Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Emily G. Barr Fritcher
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Michael J. Levy
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
- Address for correspondence: Gregory J. Gores M.D., Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905,
| |
Collapse
|
5
|
Pyakurel P, Montag U, Castaños-Vélez E, Kaaya E, Christensson B, Tönnies H, Biberfeld P, Heiden T. CGH of microdissected Kaposi's sarcoma lesions reveals recurrent loss of chromosome Y in early and additional chromosomal changes in late tumour stages. AIDS 2006; 20:1805-12. [PMID: 16954721 DOI: 10.1097/01.aids.0000244199.72887.3d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is still unclear if Kaposi's sarcoma (KS) is a monoclonal cell proliferation or a polyclonal, hyperplastic, reactive process. Reports on KS cytogenetics are few and restricted to late stage disease and cell lines. METHOD We analysed 27 KS, early and late, AIDS related (AKS) and endemic (EKS) by laser microdissection, global DNA amplification and comparative genomic hybridization (CGH). RESULT Loss of Y chromosome was detected in 20/23 male KS, which was the only recurrent chromosomal aberration in all nine male early (patch) KS. Only one patch EKS showed in addition to the Y loss a loss of Xq. Late (nodular) AKS and EKS showed recurrent copy number changes in chromosomes 16, 17, 21, X and Y, as well as other random changes. The loss of chromosome 16, 17 and Y was confirmed by interphase fluorescence in situ hybridization (FISH) on paraffin sections. EKS showed a higher number of chromosomal abnormalities than AKS, indicating that rapid growth of AKS is less dependent on genetic changes than is EKS, possibly because of the immunosuppressed host environment in AKS. CONCLUSION Clonal loss of chromosome Y was detected in all early male KS, while additional chromosomal aberrations appeared during development to late KS. This increase in chromosomal abnormalities during tumour growth indicates genetic instability and the selection of survival cell clones establishing late, aggressive sarcoma growth. Our data support the view that KS (in males) develops into a clonal tumour yet initially is a hyperplastic reactive cell proliferation.
Collapse
Affiliation(s)
- Pawan Pyakurel
- Immunopathology Laboratory, Department of Pathology and Oncology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
CONTEXT Recent studies have identified fundamental biological differences in the effects of epidermal growth factor receptor (EGFR) amplification on survival in older versus younger patients with glioblastoma multiforme (GBM). Cell cycle labeling indices have also been found to be inordinately high in older GBM patients and may contribute to the known adverse prognosis in this cohort. However, testing has not been conducted on significant numbers of patients of very advanced age, in whom these features might be expected to emerge as even more significant factors. OBJECTIVE To assess EGFR amplification status and MIB-1 indices in patients with GBM who are older than 75 years. DESIGN We identified 20 patients (female-male ratio, 11:9; 11 aged 75-79 years and 9 aged 80-87 years) and studied tumor tissue samples with immunohistochemistry for cell cycle labeling index and by fluorescence in situ hybridization for EGFR amplification. Survival data were obtained from the Colorado Tumor Registry. RESULTS Mean MIB-1 index was high (24.8%), but individual indices did not correlate with survival. EGFR amplification was detected in 25% of cases, with gain of chromosome 7 in all but one of the remaining patients. Ninety-five percent of patients manifested EGFR amplification and/or polysomy of chromosome 7. Heterogeneity was found within a given tumor, with 10% to 60% of cells showing gain of chromosome 7. Overall patient survival was poor (mean, 4.6 months), but was significantly longer in those with EGFR gene amplification (mean, 8.3 months; median, 10.5 months) versus those without (mean, 3.2 months; median, 2.0 months) (P = .04). CONCLUSION The presence of EGFR amplification is a significant predictor of survival time in older old patients.
Collapse
|
7
|
Abstract
Brain tumors, like many other common tumors, are frequently associated with chromosomal numerical abnormalities. However, as the identification of abnormal characteristics by conventional cytogenetic or molecular methods has been hampered by technical difficulties, minimal information has been available about specific chromosomal or locus-specific gene alterations. Recently, fluorescence in situ hybridization (FISH) has emerged as a powerful clinical and research tool for the assessment of genomic instability within interphase nuclei. Here, we developed a modified FISH protocol including short-term microwave treatment to analyze specimens from the pathology archives that had been routinely processed and stored. The FISH signals obtained using this modified method showed a significant improvement compared with those obtained using the standard FISH method. This new technique thus enables the analysis of various paraffin-embedded tissue sections of intracranial tumors obtained under inappropriate fixation conditions. We highlight the advantages of this modified FISH procedure on a tissue microarray of archival materials for current diagnostic and investigative neuropathology applications.
Collapse
Affiliation(s)
- Yasuhiko Kitayama
- Department of Pathology, Shizuoka Saiseikai General Hospital, Oshika, Shizuoka, Japan.
| |
Collapse
|
8
|
Krupp W, Geiger K, Schober R, Siegert G, Froster UG. Cytogenetic and molecular cytogenetic analyses in diffuse astrocytomas. ACTA ACUST UNITED AC 2004; 153:32-8. [PMID: 15325091 DOI: 10.1016/j.cancergencyto.2003.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/30/2003] [Accepted: 12/22/2003] [Indexed: 11/27/2022]
Abstract
Diffuse astrocytomas are highly variable tumors and show complex biologic behavior that is based on multi-step oncogenesis. We report cytogenetic and molecular cytogenetic investigations in 23 cases of diffuse astrocytomas. The results of conventional karyotyping, interphase fluorescence in situ hybridization (FISH), comparative genomic hybridization, multicolor FISH, and spectral karyotyping are reported. Various numerical and structural chromosomal aberrations were identified. Clustering of structural alterations in the short arm of chromosome 2 (2p) and the long arm of chromosome 7 (7q) were detected. Using spectral karyotyping, additional chromosome rearrangements not detectable by conventional methods were found. Some of these anomalies have not been previously described in diffuse astrocytomas. An independent validation of these discrepant findings is required.
Collapse
Affiliation(s)
- Wolfgang Krupp
- Department of Neurosurgery, University of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
9
|
Wessels PH, Twijnstra A, Kubat B, Ummelen MIJ, Claessen SMH, Sciot R, Merlo A, Ramaekers FCS, Speel EJM, Hopman AHN. 10q25.3 (DMBT1) copy number changes in astrocytoma grades II and IV. Genes Chromosomes Cancer 2003; 39:22-8. [PMID: 14603438 DOI: 10.1002/gcc.10288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the literature, it has been suggested that loss of the 10q25-26 region, including the DMBT1 gene (10q25.3), is correlated with initiation and/or malignant progression of astrocytomas, although the results of the studies on the loss of heterozygosity that led to this assumption are not unequivocal. For this reason, using double-target fluorescence in situ hybridization, we compared copy number changes of 10q25.3 to those of the pericentromeric region (10q12) in 10 cases each of astrocytoma grades II and IV. The same specimens were analyzed for copy number changes of chromosome 1, as a marker for polyploidy, and chromosome 7, which is often gained in astrocytomas of all grades. Our results show that selective loss of the 10q25.3 region was present in 2 of 10 specimens in both astrocytoma grade II and grade IV, occurring only in tumors with polysomy for 10q12. Furthermore, astrocytoma grade II often showed polyploidy for chromosomes 1, 7, and 10 (8 of 10 specimens). In addition, astrocytoma grade IV frequently exhibited losses of chromosome 10 in a high percentage of nuclei. Although based on a small number of cases, the results clearly show that loss of the 10q25.3 region is uncommon in astrocytoma grade II and mostly coincident with loss of chromosome 10 in grade IV tumors. These data indicate that selective loss of the 10q25.3 region, including the DMBT1 gene, is not an initiating event in the genesis of astrocytoma grade II.
Collapse
Affiliation(s)
- Peter H Wessels
- Research Institute Growth and Development (GROW), Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fuller CE, Wang H, Zhang W, Fuller GN, Perry A. High-throughput molecular profiling of high-grade astrocytomas: the utility of fluorescence in situ hybridization on tissue microarrays (TMA-FISH). J Neuropathol Exp Neurol 2002; 61:1078-84. [PMID: 12484570 DOI: 10.1093/jnen/61.12.1078] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Due to recent biological and technical advances, the list of potentially useful candidate genes is rapidly expanding in the study of brain tumors. However, traditional methods of screening individual genes in individual samples are slow and tedious, often with consumption of precious resources after only a few experiments. This study evaluates the feasibility of high-throughput molecular analysis using fluorescence in situ hybridization (FISH) on glioma tissue microarrays (TMA). A single microarray paraffin block was constructed using 65 WHO grade III and IV astrocytomas, sampled in duplicate with 0.6-mm-diameter punch cores. FISH was used to detect common alterations, such as EGFR amplification, chromosome 7, 9, and 10 aneusomies and deletions of 1p, 19q, PTEN, DMBT1, and p16. Of 585 hybridization sets, 508 (87%) yielded interpretable data, with hybridization failure in 33 (5.5%) and dislodged tissue in 44 sets (7.5%), respectively. Glioblastomas harbored significantly more alterations than anaplastic astrocytomas, with the overall frequencies of alterations similar to those reported using other techniques. The overall concordance rate between paired tumor core samples was 93%. We conclude that TMA-FISH is an efficient and reliable method for detecting molecular alterations in high-grade astrocytomas.
Collapse
Affiliation(s)
- Christine E Fuller
- Division of Neuropathology, Barnes-Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
11
|
Shapiro JR. Genetic alterations associated with adult diffuse astrocytic tumors. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 115:194-201. [PMID: 12407701 DOI: 10.1002/ajmg.10690] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Astrocytic tumors make up a wide range of neoplasms that differ in their location in the central nervous system, morphologic features, progressive and invasive behaviors, and the age and gender of people they affect. This report reviews the cytogenetic, molecular cytogenetic, and molecular genetic abnormalities associated with diffuse infiltrating astrocytomas in adults. This group of tumors is subdivided into low-grade astrocytomas (WHO grade II), anaplastic astrocytomas (WHO grade III), and glioblastoma multiforme (WHO grade IV).
Collapse
Affiliation(s)
- Joan Rankin Shapiro
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| |
Collapse
|
12
|
Rubes J, Vozdova M, Robbins WA, Rezacova O, Perreault SD, Wyrobek AJ. Stable variants of sperm aneuploidy among healthy men show associations between germinal and somatic aneuploidy. Am J Hum Genet 2002; 70:1507-19. [PMID: 11992257 PMCID: PMC379139 DOI: 10.1086/340791] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Accepted: 03/19/2002] [Indexed: 11/03/2022] Open
Abstract
Repeated semen specimens from healthy men were analyzed by sperm fluorescence in situ hybridization (FISH), to identify men who consistently produced elevated frequencies of aneuploid sperm and to determine whether men who were identified as stable variants of sperm aneuploidy also exhibited higher frequencies of aneuploidy in their peripheral blood lymphocytes. Seven semen specimens were provided by each of 15 men over a 2-year period and were evaluated by the X-Y-8 multicolor sperm FISH method (i.e., approximately 1,050,000 sperm were analyzed from 105 specimens). Three men were identified as stable aneuploidy variants producing significantly higher frequencies of XY, disomy X, disomy Y, disomy 8, and/or diploid sperm over time. In addition, one man and three men were identified as sperm-morphology and sperm-motility variants, respectively. Strong correlations were found between the frequencies of sperm with autosomal and sex-chromosome aneuploidies and between the two types of meiosis II diploidy; but not between sperm aneuploidy and semen quality. A significant association was found between the frequencies of sex-chromosome aneuploidies in sperm and lymphocytes in a subset of 10 men (r2=0.67, P=.004), especially between XY sperm and sex-chromosome aneuploidy in lymphocytes (r2=0.70, P=.003). These findings suggest that certain apparently healthy men can produce significantly higher frequencies of both aneuploid sperm and lymphocytes. Serious long-term somatic and reproductive health consequences may include increased risks of aneuploidy-related somatic diseases and of having children with paternally transmitted aneuploidies, such as Klinefelter, Turner, triple-X, and XYY syndromes.
Collapse
Affiliation(s)
- Jiri Rubes
- Veterinary Research Institute, Hudcova 70, 621 32 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Fuller CE, Perry A. Fluorescence in situ hybridization (FISH) in diagnostic and investigative neuropathology. Brain Pathol 2002; 12:67-86. [PMID: 11770903 PMCID: PMC8095867 DOI: 10.1111/j.1750-3639.2002.tb00424.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Over the last decade, fluorescence in situ hybridization (FISH) has emerged as a powerful clinical and research tool for the assessment of target DNA dosages within interphase nuclei. Detectable alterations include aneusomies, deletions, gene amplifications, and translocations, with primary advantages to the pathologist including its basis in morphology, its applicability to archival, formalin-fixed paraffin-embedded (FFPE) material, and its similarities to immunohistochemistry. Recent technical advances such as improved hybridization protocols, markedly expanded probe availability resulting from the human genome sequencing initiative, and the advent of high-throughput assays such as gene chip and tissue microarrays have greatly enhanced the applicability of FISH. In our lab, we currently utilize only a limited battery of DNA probes for routine diagnostic purposes, with determination of chromosome 1p and 19q dosage in oligodendroglial neoplasms representing the most common application. However, research applications are numerous and will likely translate into a growing list of clinically useful markers in the near future. In this review, we highlight the advantages and disadvantages of FISH and familiarize the reader with current applications in diagnostic and investigative neuropathology.
Collapse
Affiliation(s)
- Christine E. Fuller
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Mo
| | - Arie Perry
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Mo
| |
Collapse
|