1
|
Safwat SM, El Tohamy M, Aboonq MS, Alrehaili A, Assinnari AA, Bahashwan AS, ElGendy AA, Hussein AM. Vanillic Acid Ameliorates Demyelination in a Cuprizone-Induced Multiple Sclerosis Rat Model: Possible Underlying Mechanisms. Brain Sci 2023; 14:12. [PMID: 38248227 PMCID: PMC10813517 DOI: 10.3390/brainsci14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE To investigate the effect of vanillic acid (VA) on a Cuprizone (Cup) demyelinating rat model and the mechanisms behind such effect. METHODS Thirty adult male Sprague Dawley (SD) rats were randomly divided into three groups: control, Cuprizone, and VA groups. Cuprizone was administrated at a dose of 450 mg/kg per day orally via gastric gavage for 5 weeks. The nerve conduction velocity (NCV) was studied in an isolated sciatic nerve, and then the sciatic nerve was isolated for histopathological examination, electron microscope examination, immunohistochemical staining, and biochemical and PCR assay. The level of IL17 was detected using ELISA, while the antioxidant genes Nrf2, HO-1 expression at the level of mRNA, expression of the myelin basic protein (MBP), interferon-gamma factor (INF)-γ and tumor necrosis factor (TNF)-α, and apoptotic marker (caspase-3) were measured using immunohistochemistry in the sciatic nerve. RESULTS There was a significant reduction in NCV in Cup compared to normal rats (p < 0.001), which was markedly improved in the VA group (p < 0.001). EM and histopathological examination revealed significant demyelination and deterioration of the sciatic nerve fibers with significant improvement in the VA group. The level of IL17 as well as the expression of INF-γ and caspase-3 were significantly increased with a significant reduction in the expression of MBP, Nrf2, and HO-1 in the sciatic nerve (p < 0.01), and VA treatment significantly improved the studied parameters (p < 0.01). CONCLUSION The current study demonstrated a neuroprotective effect for VA against the Cup-induced demyelinating rat model. This effect might be precipitated by the inhibition of inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Sally M. Safwat
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| | - Mahmoud El Tohamy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| | - Moutasem Salih Aboonq
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Amaal Alrehaili
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Ahmad A. Assinnari
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Abdulrahman S. Bahashwan
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Ahmed A. ElGendy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| |
Collapse
|
2
|
Nociti V, Romozzi M. The Importance of Managing Modifiable Comorbidities in People with Multiple Sclerosis: A Narrative Review. J Pers Med 2023; 13:1524. [PMID: 38003839 PMCID: PMC10672087 DOI: 10.3390/jpm13111524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, degenerative demyelinating disease of the central nervous system (CNS) of unknown etiology that affects individuals in their early adulthood. In the last decade, life expectancy for people with MS (PwMS) has almost equaled that of the general population. This demographic shift necessitates a heightened awareness of comorbidities, especially the ones that can be prevented and modified, that can significantly impact disease progression and management. Vascular comorbidities are of particular interest as they are mostly modifiable health states, along with voluntary behaviors, such as smoking and alcohol consumption, commonly observed among individuals with MS. Vascular risk factors have also been implicated in the etiology of cerebral small vessel disease. Furthermore, differentiating between vascular and MS lesion load poses a significant challenge due to overlapping clinical and radiological features. This review describes the current evidence regarding the range of preventable and modifiable comorbidities and risk factors and their implications for PwMS.
Collapse
Affiliation(s)
- Viviana Nociti
- Centro Sclerosi Multipla, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marina Romozzi
- Centro Sclerosi Multipla, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
3
|
Nociti V, Romozzi M. The Role of BDNF in Multiple Sclerosis Neuroinflammation. Int J Mol Sci 2023; 24:ijms24098447. [PMID: 37176155 PMCID: PMC10178984 DOI: 10.3390/ijms24098447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and degenerative disease of the central nervous system (CNS). Inflammation is observed in all stages of MS, both within and around the lesions, and can have beneficial and detrimental effects on MS pathogenesis. A possible mechanism for the neuroprotective effect in MS involves the release of brain-derived neurotrophic factor (BDNF) by immune cells in peripheral blood and inflammatory lesions, as well as by microglia and astrocytes within the CNS. BDNF is a neurotrophic factor that plays a key role in neuroplasticity and neuronal survival. This review aims to analyze the current understanding of the role that inflammation plays in MS, including the factors that contribute to both beneficial and detrimental effects. Additionally, it explores the potential role of BDNF in MS, as it may modulate neuroinflammation and provide neuroprotection. By obtaining a deeper understanding of the intricate relationship between inflammation and BDNF, new therapeutic strategies for MS may be developed.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Centro Sclerosi Multipla, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marina Romozzi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Karimi N, Ashourizadeh H, Akbarzadeh Pasha B, Haghshomar M, Jouzdani T, Shobeiri P, Teixeira AL, Rezaei N. Blood levels of brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis (MS): A systematic review and meta-analysis. Mult Scler Relat Disord 2022; 65:103984. [PMID: 35749959 DOI: 10.1016/j.msard.2022.103984] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple sclerosis is an autoimmune demyelinating disease marked by the involvement of multiple pathophysiological pathways, including BDNF. BDNF (brain-derived neurotrophic factor) is one of the main neurotrophic factors in the adult brain. The amount of BDNF in the blood can be utilized as a surrogate for the central expression of this marker. Given contradicting reports, we set out to answer the question, "How do blood levels of BDNF differ in people with multiple sclerosis (PwMS) compared to controls?" METHODS We performed a thorough search in MEDLINE, EMBASE, Web of Science, and the Cochrane Library databases, resulting in 13 eligible investigations. Eleven studies compared BDNF in serum of PwMS versus healthy controls (HC), and two studies provided BDNF levels in the plasma of PwMs. R version 4.0.4 was used for meta-analysis and visualizations. Mean difference (MD) was used for the measurement of effect size. RESULTS The final analysis included thirteen studies with 689 patients with MS and 583 controls. The preliminary results indicated that MS patients had statistically significant lower levels of BDNF than controls: SMD -5.1992 (95% CI [-8.4488; -1.9496], p-value < 0.0001. Additionally, subgroup analysis revealed a statistically significant difference in serum and plasma levels (p-value=0.01). Performing univariate meta-regression, disease duration and the proportion of males had, respectively, a significant negative and positive correlation with BDNF levels. CONCLUSION Circulating levels of BDNF are decreased in MS. Future studies should investigate the role of BDNF as a biomarker of disease severity and/or progression for a personalized approach to MS.
Collapse
Affiliation(s)
- Nastaran Karimi
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Helia Ashourizadeh
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boshra Akbarzadeh Pasha
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran 14194, Iran
| | - Maryam Haghshomar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran 14194, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tahmineh Jouzdani
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran 14194, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran 14194, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Naegelin Y, Saeuberli K, Schaedelin S, Dingsdale H, Magon S, Baranzini S, Amann M, Parmar K, Tsagkas C, Calabrese P, Penner IK, Kappos L, Barde YA. Levels of brain-derived neurotrophic factor in patients with multiple sclerosis. Ann Clin Transl Neurol 2020; 7:2251-2261. [PMID: 33031634 PMCID: PMC7664260 DOI: 10.1002/acn3.51215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 11/24/2022] Open
Abstract
Objective To determine the levels of brain‐derived neurotrophic factor (BDNF) in the serum of patients suffering from multiple sclerosis (MS) to evaluate the potential of serum BDNF as a biomarker for MS. Methods Using a recently validated enzyme‐linked immunoassay (ELISA) we measured BDNF in patients with MS (pwMS), diagnosed according to the 2001 McDonald criteria and aged between 18 and 70 years, participating in a long‐term cohort study with annual clinical visits, including blood sampling, neuropsychological testing, and brain magnetic resonance imaging (MRI). The results were compared with an age‐ and sex‐matched cohort of healthy controls (HC). Correlations between BDNF levels and a range of clinical and magnetic resonance imaging variables were assessed using an adjusted linear model. Results In total, 259 pwMS and 259 HC were included, with a mean age of 44.42 ± 11.06 and 44.31 ± 11.26 years respectively. Eleven had a clinically isolated syndrome (CIS), 178 relapsing remitting MS (RRMS), 56 secondary progressive MS (SPMS), and 14 primary progressive MS (PPMS). Compared with controls, mean BDNF levels were lower by 8 % (p˂0.001) in pwMS. The level of BDNF in patients with SPMS was lower than in RRMS (p = 0.004). Interpretation We conclude that while the use of comparatively large cohorts enables the detection of a significant difference in BDNF levels between pwMS and HC, the difference is small and unlikely to usefully inform decision‐making processes at an individual patient level.
Collapse
Affiliation(s)
- Yvonne Naegelin
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, 4031, Switzerland.,School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Katharina Saeuberli
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Sabine Schaedelin
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, Basel, 4031, Switzerland
| | - Hayley Dingsdale
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Stefano Magon
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, 4031, Switzerland.,Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4058, Switzerland
| | - Sergio Baranzini
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Michael Amann
- Medical Image Analysis Center (MIAC) AG, Basel, 4051, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, 4031, Switzerland.,Medical Image Analysis Center (MIAC) AG, Basel, 4051, Switzerland
| | - Charidimos Tsagkas
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, 4031, Switzerland.,Medical Image Analysis Center (MIAC) AG, Basel, 4051, Switzerland
| | - Pasquale Calabrese
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, 4031, Switzerland.,Department of Psychology, Division of Molecular and Cognitive Neuroscience, University of Basel, Basel, 4055, Switzerland
| | - Iris Katharina Penner
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, 4031, Switzerland
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| |
Collapse
|
6
|
Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling. Mol Neurobiol 2020; 57:3291-3306. [PMID: 32514862 DOI: 10.1007/s12035-020-01972-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative autoimmune disease. MS is a devastating disorder that is characterized by cognitive and motor deficits. Cuprizone-induced demyelination is the most widely experimental model used for MS. Cuprizone is a copper chelator that is well characterized by microgliosis and astrogliosis and is reproducible for demyelination and remyelination. Secukinumab (SEC) is a fully human monoclonal anti-human antibody of the IgG1/kappa isotype that selectively targets IL-17A. Expression of IL-17 is associated with MS. Also, IL-17 stimulates microglia and astrocytes resulting in progression of MS through chemokine production and neutrophil recruitment. This study aimed to investigate the neuroprotective effects of SEC on cuprizone-induced demyelination with examining the underlying mechanisms. Locomotor activity, short-term spatial memory function, staining by Luxol Fast Blue, myelin basic protein, gliasosis, inflammatory, and oxidative-stress markers were assessed to evaluate neuroprotective, anti-inflammatory and antioxidant effects. Moreover, the safety profile of SEC was evaluated. The present study concludes the efficacy of SEC in Cup-induced demyelination experimental model. Interestingly, SEC had neuroprotective and antioxidant effects besides its anti-inflammatory effect in the studied experimental model of MS. Graphical abstract.
Collapse
|
7
|
Campos-García VR, Herrera-Fernández D, Espinosa-de la Garza CE, González G, Vallejo-Castillo L, Avila S, Muñoz-García L, Medina-Rivero E, Pérez NO, Gracia-Mora I, Pérez-Tapia SM, Salazar-Ceballos R, Pavón L, Flores-Ortiz LF. Process signatures in glatiramer acetate synthesis: structural and functional relationships. Sci Rep 2017; 7:12125. [PMID: 28935954 PMCID: PMC5608765 DOI: 10.1038/s41598-017-12416-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022] Open
Abstract
Glatiramer Acetate (GA) is an immunomodulatory medicine approved for the treatment of multiple sclerosis, whose mechanisms of action are yet to be fully elucidated. GA is comprised of a complex mixture of polypeptides with different amino acid sequences and structures. The lack of sensible information about physicochemical characteristics of GA has contributed to its comprehensiveness complexity. Consequently, an unambiguous determination of distinctive attributes that define GA is of highest relevance towards dissecting its identity. Herein we conducted a study of characteristic GA heterogeneities throughout its manufacturing process (process signatures), revealing a strong impact of critical process parameters (CPPs) on the reactivity of amino acid precursors; reaction initiation and polymerization velocities; and peptide solubility, susceptibility to hydrolysis, and size-exclusion properties. Further, distinctive GA heterogeneities were correlated to defined immunological and toxicological profiles, revealing that GA possesses a unique repertoire of active constituents (epitopes) responsible of its immunological responses, whose modification lead to altered profiles. This novel approach established CPPs influence on intact GA peptide mixture, whose physicochemical identity cannot longer rely on reduced properties (based on complete or partial GA degradation), providing advanced knowledge on GA structural and functional relationships to ensure a consistent manufacturing of safe and effective products.
Collapse
Affiliation(s)
- Víctor R Campos-García
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Daniel Herrera-Fernández
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Carlos E Espinosa-de la Garza
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - German González
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico.,Departamento de Farmacología, Cinvestav-IPN, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Sandra Avila
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Leslie Muñoz-García
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Néstor O Pérez
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Isabel Gracia-Mora
- Departamento de Quı́mica Inorgánica y Nuclear, Facultad de Quı́mica, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Investigación Científica 70, 04510, Ciudad de México, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico.,Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Rodolfo Salazar-Ceballos
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| | - Luis F Flores-Ortiz
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico.
| |
Collapse
|
8
|
Mashayekhi F, Salehi Z, Jamalzadeh HR. Quantitative Analysis of Cerebrospinal Fluid Brain Derived Neurotrophic Factor in the Patients with Multiple Sclerosis. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 55:83-6. [DOI: 10.14712/18059694.2015.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Multiple sclerosis (MS) is the most common cause of nontraumatic neurological disability in Europe and North America. Growth factor expression could participate in the repair process of the demyelinating disease. Among growth factors, brain derived neurotrophic factors (BDNF) has been demonstrated to play an important role in neuronal and axonal survival. In the central nervous system (CNS), neurons are the main source of BDNF. Another potential source are activated astrocytes, which are present in inflamed areas in the CNS as shown in MS. In this study, total protein concentration (TPC) and BDNF levels in the cerebrospinal fluid (CSF) samples from the patients with MS (n = 48) and control subjects (n = 53) were measured using a Bio-Rad protein assay and enzyme linked immunosorbent assay (ELISA). No significant change in the CSF TPC of patients with MS was seen as compared to normal CSF. The presence of BDNF in the CSF samples was shown by Western blot. Using ELISA, it was shown that the level of BDNF in the MS CSF is higher than in normal CSF. It is concluded that BDNF is a constant component of human CSF. Moreover, it could be implicated in the pathophysiology of MS.
Collapse
|
9
|
Xin YL, Yu JZ, Yang XW, Liu CY, Li YH, Feng L, Chai Z, Yang WF, Wang Q, Jiang WJ, Zhang GX, Xiao BG, Ma CG. FSD-C10: A more promising novel ROCK inhibitor than Fasudil for treatment of CNS autoimmunity. Biosci Rep 2015; 35:e00247. [PMID: 26223433 PMCID: PMC4721545 DOI: 10.1042/bsr20150032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022] Open
Abstract
Rho-Rho kinase (Rho-ROCK) triggers an intracellular signalling cascade that regulates cell survival, death, adhesion, migration, neurite outgrowth and retraction and influences the generation and development of several neurological disorders. Although Fasudil, a ROCK inhibitor, effectively suppressed encephalomyelitis (EAE), certain side effects may limit its clinical use. A novel and efficient ROCK inhibitor, FSD-C10, has been explored. In the present study, we present chemical synthesis and structure of FSD-C10, as well as the relationship between compound concentration and ROCK inhibition. We compared the inhibitory efficiency of ROCKI and ROCK II, the cell cytotoxicity, neurite outgrowth and dendritic formation, neurotrophic factors and vasodilation between Fasudil and FSD-C10. The results demonstrated that FSD-C10, like Fasudil, induced neurite outgrowth of neurons and dendritic formation of BV-2 microglia and enhanced the production of neurotrophic factor brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3). However, the cell cytotoxicity and vasodilation of FSD-C10 were relatively small compared with Fasudil. Although Fasudil inhibited both ROCK I and ROCK II, FSD-C10 more selectively suppressed ROCK II, but not ROCK I, which may be related to vasodilation insensitivity and animal mortality. Thus, FSD-C10 may be a safer and more promising novel ROCK inhibitor than Fasudil for the treatment of several neurological disorders.
Collapse
Affiliation(s)
- Yan-Le Xin
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Xin-Wang Yang
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Chun-Yun Liu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Yan-Hua Li
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Ling Feng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China
| | - Zhi Chai
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Wan-Fang Yang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Qing Wang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Wei-Jia Jiang
- "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong 037009, China "2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| |
Collapse
|
10
|
Linker RA, Lee DH, Flach AC, Litke T, van den Brandt J, Reichardt HM, Lingner T, Bommhardt U, Sendtner M, Gold R, Flügel A, Lühder F. Thymocyte-derived BDNF influences T-cell maturation at the DN3/DN4 transition stage. Eur J Immunol 2015; 45:1326-38. [PMID: 25627579 DOI: 10.1002/eji.201444985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/18/2014] [Accepted: 01/22/2015] [Indexed: 11/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival, regeneration, and plasticity. Emerging evidence also indicates an essential role for BDNF outside the nervous system, for instance in immune cells. We therefore investigated the impact of BDNF on T cells using BDNF knockout (KO) mice and conditional KO mice lacking BDNF specifically in this lymphoid subset. In both settings, we observed diminished T-cell cellularity in peripheral lymphoid organs and an increase in CD4(+) CD44(+) memory T cells. Analysis of thymocyte development revealed diminished total thymocyte numbers, accompanied by a significant increase in CD4/CD8 double-negative (DN) thymocytes due to a partial block in the transition from the DN3 to the DN4 stage. This was neither due to increased thymocyte apoptosis nor defects in the expression of the TCR-β chain or the pre-TCR. In contrast, pERK but not pAKT levels were diminished in DN3 BDNF-deficient thymocytes. BDNF deficiency in T cells did not result in gross deficits in peripheral acute immune responses nor in changes of the homeostatic proliferation of peripheral T cells. Taken together, our data reveal a critical autocrine and/or paracrine role of T-cell-derived BDNF in thymocyte maturation involving ERK-mediated TCR signaling pathways.
Collapse
Affiliation(s)
- Ralf A Linker
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany.,Department of Neurology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - De-Hyung Lee
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany.,Department of Neurology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Anne-Christine Flach
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany
| | - Tanja Litke
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany
| | - Jens van den Brandt
- Institute for Cellular and Molecular Immunology, University of Göttingen, Medical School, Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University of Göttingen, Medical School, Göttingen, Germany
| | - Thomas Lingner
- DNA Microarray and Deep-Sequencing Facility, Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ursula Bommhardt
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-Guericke University, Magdeburg, Germany
| | - Michael Sendtner
- Institute for Clinical Neurobiology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Ralf Gold
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany.,Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Alexander Flügel
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany
| |
Collapse
|
11
|
Dysregulated production of leukemia inhibitory factor in immune cells of relapsing remitting multiple sclerosis patients. J Neuroimmunol 2014; 278:85-9. [PMID: 25595256 DOI: 10.1016/j.jneuroim.2014.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023]
Abstract
Leukemia inhibitory factor (LIF) is known to potentiate the differentiation and survival of neuronal and oligodendrocyte precursors. Systemic therapy with LIF reportedly ameliorated the severity of experimental autoimmune encephalomyelitis and prevented oligodendrocyte death. We studied the secreted LIF levels from immune cells of relapsing remitting multiple sclerosis (RR-MS) patients compared to age- and gender-matched healthy controls (HCs). LIF was barely detected in the supernatants when the cells were not stimulated. After stimulation with anti-CD3/CD28 monoclonal antibody, LIF levels were up-regulated in both patients and controls, although to a significantly lower extent in RR-MS patients compared to HC. There were no significant differences between untreated patients and interferon-β1a treated patients. This is a heretofore unreported aspect of immune dysregulation in patients with RR-MS that may be related to insufficient remyelination and neurogenesis in MS lesions.
Collapse
|
12
|
Ellwardt E, Zipp F. Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol 2014; 262 Pt A:8-17. [DOI: 10.1016/j.expneurol.2014.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
|
13
|
Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014; 2014:861231. [PMID: 24966471 PMCID: PMC4055424 DOI: 10.1155/2014/861231] [Citation(s) in RCA: 459] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/07/2014] [Indexed: 02/08/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine that exerts both homeostatic and pathophysiological roles in the central nervous system. In pathological conditions, microglia release large amounts of TNF-α; this de novo production of TNF-α is an important component of the so-called neuroinflammatory response that is associated with several neurological disorders. In addition, TNF-α can potentiate glutamate-mediated cytotoxicity by two complementary mechanisms: indirectly, by inhibiting glutamate transport on astrocytes, and directly, by rapidly triggering the surface expression of Ca+2 permeable-AMPA receptors and NMDA receptors, while decreasing inhibitory GABAA receptors on neurons. Thus, the net effect of TNF-α is to alter the balance of excitation and inhibition resulting in a higher synaptic excitatory/inhibitory ratio. This review summarizes the current knowledge of the cellular and molecular mechanisms by which TNF-α links the neuroinflammatory and excitotoxic processes that occur in several neurodegenerative diseases, but with a special emphasis on amyotrophic lateral sclerosis (ALS). As microglial activation and upregulation of TNF-α expression is a common feature of several CNS diseases, as well as chronic opioid exposure and neuropathic pain, modulating TNF-α signaling may represent a valuable target for intervention.
Collapse
|
14
|
del Barco DG, Berlanga J, Penton E, Hardiman O, Montero E. Boosting controlled autoimmunity: a new therapeutic target for CNS disorders. Expert Rev Neurother 2014; 8:819-25. [DOI: 10.1586/14737175.8.5.819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Lo A. Advancement of therapies for neuroprotection in multiple sclerosis. Expert Rev Neurother 2014; 8:1355-66. [DOI: 10.1586/14737175.8.9.1355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Criste G, Trapp B, Dutta R. Axonal loss in multiple sclerosis: causes and mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:101-13. [PMID: 24507515 DOI: 10.1016/b978-0-444-52001-2.00005-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system and the leading cause of non-traumatic neurologic disability in young adults in the United States and Europe. The disease course is variable and starts with reversible episodes of neurologic disability which transforms into continuous and irreversible neurologic decline. It is well established that loss of axons and neurons is the major cause of the progressive neurologic decline that most MS patients endure. Current hypotheses support primary inflammatory demyelination as the underlying cause of axonal loss during earlier stages in MS. The transition to progressive disease course is thought to occur when a threshold of neuronal and axonal loss is reached and the compensatory capacity of the central nervous system is surpassed. Available immunomodulatory therapies are of little benefit to MS after entering this irreversible phase of the disease. Elucidation of mechanisms that are responsible for axonal loss is therefore essential for the development of therapies directed to stop neurologic decline in MS patients. The current chapter reviews existing data on mechanisms of axonal pathology in MS.
Collapse
Affiliation(s)
- Gerson Criste
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
17
|
Bowerman M, Vincent T, Scamps F, Perrin FE, Camu W, Raoul C. Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis. Front Cell Neurosci 2013; 7:214. [PMID: 24312006 PMCID: PMC3833095 DOI: 10.3389/fncel.2013.00214] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder characterized by the progressive and selective loss of both upper and lower motoneurons. The neurodegenerative process is accompanied by a sustained inflammation in the brain and spinal cord. The neuron-immune interaction, implicating resident microglia of the central nervous system and blood-derived immune cells, is highly dynamic over the course of the disease. Here, we discuss the timely controlled neuroprotective and neurotoxic cues that are provided by the immune environment of motoneurons and their potential therapeutic applications for ALS.
Collapse
Affiliation(s)
- Melissa Bowerman
- The Neuroscience Institute of Montpellier, INM, INSERM UMR1051, Saint Eloi Hospital Montpellier, France
| | | | | | | | | | | |
Collapse
|
18
|
Laćan G, Dang H, Middleton B, Horwitz MA, Tian J, Melega WP, Kaufman DL. Bacillus Calmette-Guerin vaccine-mediated neuroprotection is associated with regulatory T-cell induction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci Res 2013; 91:1292-302. [PMID: 23907992 DOI: 10.1002/jnr.23253] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/17/2013] [Accepted: 04/23/2013] [Indexed: 02/02/2023]
Abstract
We previously showed that, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), vaccination with bacillus Calmette-Guerin (BCG) prior to MPTP exposure limited the loss of striatal dopamine (DA) and dopamine transporter (DAT) and prevented the activation of nigral microglia. Here, we conducted BCG dose studies and investigated the mechanisms underlying BCG vaccination's neuroprotective effects in this model. We found that a dose of 1 × 10(6) cfu BCG led to higher levels of striatal DA and DAT ligand binding (28% and 42%, respectively) in BCG-vaccinated vs. unvaccinated MPTP-treated mice, but without a significant increase in substantia nigra tyrosine hydroxylase-staining neurons. Previous studies showed that BCG can induce regulatory T cells (Tregs) and that Tregs are neuroprotective in models of neurodegenerative diseases. However, MPTP is lymphotoxic, so it was unclear whether Tregs were maintained after MPTP treatment and whether a relationship existed between Tregs and the preservation of striatal DA system integrity. We found that, 21 days post-MPTP treatment, Treg levels in mice that had received BCG prior to MPTP were threefold greater than those in MPTP-only-treated mice and elevated above those in saline-only-treated mice, suggesting that the persistent BCG infection continually promoted Treg responses. Notably, the magnitude of the Treg response correlated positively with both striatal DA levels and DAT ligand binding. Therefore, BCG vaccine-mediated neuroprotection is associated with Treg levels in this mouse model. Our results suggest that BCG-induced Tregs could provide a new adjunctive therapeutic approach to ameliorating pathology associated with PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Goran Laćan
- Department of Molecular and Medical Pharmacology, the David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
19
|
Salehi Z, Hadiyan SP, Navidi R. Ciliary neurotrophic factor role in myelin oligodendrocyte glycoprotein expression in Cuprizone-induced multiple sclerosis mice. Cell Mol Neurobiol 2013; 33:531-5. [PMID: 23443463 DOI: 10.1007/s10571-013-9918-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/11/2013] [Indexed: 01/19/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. Myelin oligodendrocyte glycoprotein (MOG) is a minor component of the myelin sheath, but is an important autoantigen linked to the pathogenesis of MS. Ciliary neurotrophic factor (CNTF) has been shown to enhance the generation, maturation, and survival of oligodendrocytes in culture medium. The aim of this study was to demonstrate the role of CNTF on MOG expression in the cerebral cortex of Cuprizone-induced MS mice. The mice were treated by Cuprizone for five weeks in order to induce MS. The mice were then divided into 3 groups. The first group was injected subcutaneously (SC) by CNTF in the amount of 250 μg/kg BW per day. The second group (SHAM) was injected SC by normal saline and the third group was left without injection as the control group. After four weeks the mice were killed and the cerebral cortex was harvested and the expression of MOG was studied by Western blotting. The data from this study show that the MOG expression was significantly increased in the CNTF-injected group as compared to the other groups. It is concluded that CNTF increases the MOG expression and may be important in the pathophysiology of MS. It is also concluded that CNTF may play a role in the process of remyelination by inducing the MOG expression.
Collapse
Affiliation(s)
- Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | | | | |
Collapse
|
20
|
Lühder F, Gold R, Flügel A, Linker RA. Brain-derived neurotrophic factor in neuroimmunology: lessons learned from multiple sclerosis patients and experimental autoimmune encephalomyelitis models. Arch Immunol Ther Exp (Warsz) 2013; 61:95-105. [PMID: 23283517 DOI: 10.1007/s00005-012-0211-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
Abstract
The concept of neuroprotective autoimmunity implies that immune cells, especially autoantigen-specific T cells, infiltrate the central nervous system (CNS) after injury and contribute to neuroregeneration and repair by secreting soluble factors. Amongst others, neurotrophic factors and neurotrophins such as brain-derived neurotropic factor (BDNF) are considered to play an important role in this process. New data raise the possibility that this concept could also be extended to neuroinflammatory diseases such as multiple sclerosis (MS) where autoantigen-specific T cells infiltrate the CNS, causing axonal/neuronal damage on the one hand, but also providing neuroprotective support on the other hand. In this review, we summarize the current knowledge on BDNF levels analyzed in MS patients in different compartments and its correlation with clinical parameters. Furthermore, new approaches in experimental animal models are discussed that attempt to decipher the functional relevance of BDNF in autoimmune demyelination.
Collapse
Affiliation(s)
- Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research and The Hertie Foundation, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
21
|
Gurevich M, Achiron A. The switch between relapse and remission in multiple sclerosis: Continuous inflammatory response balanced by Th1 suppression and neurotrophic factors. J Neuroimmunol 2012; 252:83-8. [DOI: 10.1016/j.jneuroim.2012.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/13/2012] [Accepted: 07/25/2012] [Indexed: 01/28/2023]
|
22
|
Bansi J, Bloch W, Gamper U, Kesselring J. Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult Scler 2012; 19:613-21. [PMID: 22936334 DOI: 10.1177/1352458512458605] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The influences of exercising on cytokine response, fatigue and cardiorespiratory values are important aspects of rehabilitation in persons with multiple sclerosis (PwMS). Exercise performed within these programs is often practised in water but the effects of immersion on PwMS have not been systematically investigated. OBJECTIVE The objective of this study is to determine differences in cytokine and neurotrophin concentrations, fatigue and cardiorespiratory values in response to 3 week endurance training conducted on a cycle ergometer or an aquatic bike. METHODS A randomized controlled clinical trial was conducted in 60 MS patients (Expanded Disability Status Scale range 1.0-6.5). Resting serum levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), Interleukin-6, soluble receptor of IL-6 and tumor necrosis factor alpha, and concentrations in response to cardiopulmonary exercise test (CPET), fatigue and cardiorespiratory values were determined at entry and discharge. Subjects performed daily 30 minute training at 60% of VO₂max. RESULTS Cytokines and neurotrophins showed no significant differences between groups over the training intervention. Within the water group BDNF resting and post-CPET concentrations (p<0.05) showed a significant increase and NGF tended to increase after the training intervention. Short-term effects on BDNF (CEPT) tended to increase at the start and significantly thereafter (p<0.05). No changes occurred in the land group. Other cytokines and fatigue scores remained unchanged over the training period. Cardiorespiratory values improved significantly over time within both groups. CONCLUSION This study indicates that aquatic training activates BDNF regulation and can be an effective training method during rehabilitation in PwMS.
Collapse
Affiliation(s)
- J Bansi
- Rehabilitation, Klinik-Valens, Switzerland.
| | | | | | | |
Collapse
|
23
|
Roles of interferon-gamma and its target genes in schizophrenia: Proteomics-based reverse genetics from mouse to human. Proteomics 2012; 12:1815-29. [DOI: 10.1002/pmic.201100184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Lee DH, Geyer E, Flach AC, Jung K, Gold R, Flügel A, Linker RA, Lühder F. Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination. Acta Neuropathol 2012; 123:247-58. [PMID: 22009304 PMCID: PMC3259380 DOI: 10.1007/s00401-011-0890-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in neuronal and glial development and survival. While neurons and astrocytes are its main cellular source in the central nervous system (CNS), bioactive BDNF is also expressed in immune cells and in lesions of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Previous data revealed that BDNF exerts neuroprotective effects in myelin oligodendrocyte glycoprotein-induced EAE. Using a conditional knock-out model with inducible deletion of BDNF, we here show that clinical symptoms and structural damage are increased when BDNF is absent during the initiation phase of clinical EAE. In contrast, deletion of BDNF later in the disease course of EAE did not result in significant changes, either in the disease course or in axonal integrity. Bone marrow chimeras revealed that the deletion of BDNF in the CNS alone, with no deletion of BDNF in the infiltrating immune cells, was sufficient for the observed effects. Finally, the therapeutic effect of glatiramer acetate, a well-characterized disease-modifying drug with the potential to modulate BDNF expression, was partially reversed in mice in which BDNF was deleted shortly before the onset of disease. In summary, our data argue for an early window of therapeutic opportunity where modulation of BDNF may exert neuroprotective effects in experimental autoimmune demyelination.
Collapse
Affiliation(s)
- De-Hyung Lee
- Department of Neurology, Friedrich-Alexander University Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Eva Geyer
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, and the Hertie Foundation, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Anne-Christine Flach
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, and the Hertie Foundation, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Klaus Jung
- Department of Medical Statistics, University Medical Centre Göttingen, Humboldallee 32, 37073 Göttingen, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Alexander Flügel
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, and the Hertie Foundation, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Ralf A. Linker
- Department of Neurology, Friedrich-Alexander University Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, and the Hertie Foundation, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| |
Collapse
|
25
|
Groh J, Weis J, Zieger H, Stanley ER, Heuer H, Martini R. Colony-stimulating factor-1 mediates macrophage-related neural damage in a model for Charcot-Marie-Tooth disease type 1X. Brain 2012; 135:88-104. [PMID: 22094537 PMCID: PMC3267979 DOI: 10.1093/brain/awr283] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 12/22/2022] Open
Abstract
Previous studies in our laboratory have shown that in models for three distinct forms of the inherited and incurable nerve disorder, Charcot-Marie-Tooth neuropathy, low-grade inflammation implicating phagocytosing macrophages mediates demyelination and perturbation of axons. In the present study, we focus on colony-stimulating factor-1, a cytokine implicated in macrophage differentiation, activation and proliferation and fostering neural damage in a model for Charcot-Marie-Tooth neuropathy 1B. By crossbreeding a model for the X-linked form of Charcot-Marie-Tooth neuropathy with osteopetrotic mice, a spontaneous null mutant for colony-stimulating factor-1, we demonstrate a robust and persistent amelioration of demyelination and axon perturbation. Furthermore, functionally important domains of the peripheral nervous system, such as juxtaparanodes and presynaptic terminals, were preserved in the absence of colony-stimulating factor-1-dependent macrophage activation. As opposed to other Schwann cell-derived cytokines, colony-stimulating factor-1 is expressed by endoneurial fibroblasts, as revealed by in situ hybridization, immunocytochemistry and detection of β-galactosidase expression driven by the colony-stimulating factor-1 promoter. By both light and electron microscopic studies, we detected extended cell-cell contacts between the colony-stimulating factor-1-expressing fibroblasts and endoneurial macrophages as a putative prerequisite for the effective and constant activation of macrophages by fibroblasts in the chronically diseased nerve. Interestingly, in human biopsies from patients with Charcot-Marie-Tooth type 1, we also found frequent cell-cell contacts between macrophages and endoneurial fibroblasts and identified the latter as main source for colony-stimulating factor-1. Therefore, our study provides strong evidence for a similarly pathogenic role of colony-stimulating factor-1 in genetically mediated demyelination in mice and Charcot-Marie-Tooth type 1 disease in humans. Thus, colony-stimulating factor-1 or its cognate receptor are promising target molecules for treating the detrimental, low-grade inflammation of several inherited neuropathies in humans.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Josef-Schneiderstr. 11, 97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Dasgupta S, Wang G, Yu RK. Sulfoglucuronosyl paragloboside promotes endothelial cell apoptosis in inflammation: elucidation of a novel glycosphingolipid-signaling pathway. J Neurochem 2011; 119:749-59. [PMID: 21916893 DOI: 10.1111/j.1471-4159.2011.07483.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfoglucuronosyl paragloboside (SGPG), a minor glycosphingolipid of endothelial cells, is a ligand for L-selectin and has been implicated in neuro-inflammatory diseases, such as Guillian-Barré syndrome. Inflammatory cytokines, such as TNFα and IL-1β, up-regulate SGPG expression by stimulating gene expression for glucuronosyltransferases, both P and S forms (GlcATp and GlcATs), and the human natural killer antigen (HNK-1) sulfotransferase (HNK-1 ST). Transfection of a human cerebromicrovascular endothelial cell (SV-HCEC) line with HNK-1 ST siRNA down-regulated SGPG expression, inhibited cytokine-stimulated T-cell adhesion, and offered protection against apoptosis. However, the precise mechanisms of SGPG elevation in endothelial cell apoptosis and the maintenance of blood-brain or blood-nerve barrier integrity in inflammation have not been elucidated. Blocking SGPG expression inhibited cytokine-mediated stimulation of NF-κB activity but stimulated MAP kinase activity. Furthermore, elevation of SGPG by over-expression of GlcATp and GlcATs triggered endothelial cell apoptosis, with GlcATs being more potent than GlcATp. Although SGPG-mediated endothelial cell apoptosis was preceded by inhibiting the intracellular NF-κB activity, interfering with Akt and ERK activation and stimulating caspase 3 in SV-HCECs, HNK-1ST siRNA transfection also interfered with IκB phosphorylation but stimulated ERK activation. Our data indicate that SGPG is a critical regulatory molecule for maintaining endothelial cell survival and blood-brain or blood-nerve barrier function.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
27
|
McCombe PA, Henderson RD. The Role of immune and inflammatory mechanisms in ALS. Curr Mol Med 2011; 11:246-54. [PMID: 21375489 PMCID: PMC3182412 DOI: 10.2174/156652411795243450] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/25/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe progressive neurodegenerative disease. The cause is unknown, but genetic abnormalities have been identified in subjects with familial ALS and also in subjects with sporadic ALS. Environmental factors such as occupational exposure have been shown to be risk factors for the development of ALS. Patients differ in their clinical features and differ in the clinical course of disease. Immune abnormalities have been found in the central nervous system by pathological studies and also in the blood and CSF of subjects with ALS. Inflammation and immune abnormalities are also found in animals with a model of ALS due to mutations in the SOD1 gene. Previously it has been considered that immune abnormalities might contribute to the pathogenesis of disease. However more recently it has become apparent that an immune response can occur as a response to damage to the nervous system and this can be protective.
Collapse
Affiliation(s)
- P A McCombe
- The University of Queensland, UQ Centre for Clinical Research, Australia.
| | | |
Collapse
|
28
|
Urshansky N, Mausner-Fainberg K, Auriel E, Regev K, Karni A. Low and dysregulated production of follistatin in immune cells of relapsing-remitting multiple sclerosis patients. J Neuroimmunol 2011; 238:96-103. [PMID: 21880375 DOI: 10.1016/j.jneuroim.2011.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/29/2022]
Abstract
One of the mechanisms known to play a key role in neuronal and oligodendroglial fate specification of neural stem cells (NSCs) is restriction of bone morphogenic proteins (BMP) signaling by BMP antagonists. Here, we demonstrate that follistatin mRNA and protein secreted levels in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RR-MS) patients are significantly reduced compared to healthy controls (HC). We also observed a different profile of regulation mechanisms. Follistatin was similarly expressed and secreted by T lymphocytes and monocytes among the PBMCs of HC, and follistatin upregulation of HC was subjected to stimulation with both LPS and TNF-α. Among PBMCs of RR-MS patients, however, follistatin was found to be downregulated in their monocytes and unresponsive to stimulation with either LPS or TNF-α. Our results may shed some light on the mechanisms involved in remyelination failure in MS, which may be related to the inability of RR-MS patients' immune cells to provide a sufficient pro-neurogenic and oligodendrogenic niche, by expressing and secreting follistatin, in addition to the previously described noggin reduced expression. Our results indicate that the low expression of follistatin in immune cells of patients with RR-MS is a result of the altered immunoregulation of monocytes in these patients.
Collapse
Affiliation(s)
- Nataly Urshansky
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
29
|
Urshansky N, Mausner-Fainberg K, Auriel E, Regev K, Bornstein NM, Karni A. Reduced production of noggin by immune cells of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2010; 232:171-8. [PMID: 21111488 DOI: 10.1016/j.jneuroim.2010.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 09/23/2010] [Accepted: 10/04/2010] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) plaques are characterized by neurodegeneration, astrogliolis, the presence of immature oligodendrocytes and infiltrating immune cells. Recent studies revealed a putative role for noggin in both neurogenesis and oligodenrocytes development. In order to study the potential of peripheral immune cells to contribute to neurogenesis in MS, we studied the mRNA expression, protein secretion and regulation profile of noggin in peripheral blood mononuclear cells (PBMCs) of untreated patients with relapsing-remitting MS (RR-MS), interferon-β (IFN-β) treated RR-MS patients compared to matched healthy controls (HC). Basal levels of noggin mRNA expression, determined by quantitative real-time PCR were lower in untreated patients than in HC. No differences were found between untreated patients and IFN-β treated patients. Similarly, the secreted levels of noggin, detected in 24h PBMCs supernatants by ELISA, were decreased in untreated RR-MS patients than in HC. Again no significant differences were found between untreated patients and IFN-β treated patients. Stimulation with anti-CD3/CD28 mAbs increased noggin mRNA expression in untreated patients but not in HC. However, noggin mRNA levels in untreated patients PBMCs stimulated with anti-CD3/CD28 did not reach noggin levels in unstimulated PBMCs of HC. Purification of monocytes (CD14+) and T cells (CD3+ cells) by magnet-activated cell separation has demonstrated that noggin mRNA is predominantly expressed in CD3(+) cells in both HC and in RR-MS patients. This pattern also appeared in protein level of noggin, tested by Western blot. The incubation of the PBMCs with TNF-α increased the expression of noggin only in HC group. In conclusion, T cells possess the potential to participate in the induction of neurogeneration by the production of noggin. This potential seems to be defective in immune cells of RR-MS patients as there is reduced mRNA expression and protein secretion levels of noggin, insufficient stimulatory effect of CD3/CD28 stimulation and unresponsiveness to TNF-α in these patients PBMCs.
Collapse
Affiliation(s)
- Nataly Urshansky
- Neuroimmunology Laboratory and clinic, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Dogan RNE, Long N, Forde E, Dennis K, Kohm AP, Miller SD, Karpus WJ. CCL22 regulates experimental autoimmune encephalomyelitis by controlling inflammatory macrophage accumulation and effector function. J Leukoc Biol 2010; 89:93-104. [PMID: 20940325 DOI: 10.1189/jlb.0810442] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
EAE is a demyelinating disease of the CNS and serves as a mouse model of MS. Expression of CCL22 in the draining LNs and spinal cord correlated with the onset of clinical EAE development and remained elevated. Administration of anti-CCL22 at the time of autoantigen immunization delayed the initiation of clinical disease and dampened the severity of peak initial disease and relapses. Reduced EAE severity correlated with the reduction of pathology and leukocytes in the CNS, particularly, activated CD11b+Ly6C(hi) macrophages. There were no differences in effector T cell-proliferative responses or effector T cell IFN-γ or IL-17 responses. However, treatment at the onset of disease did not reduce disease progression. Treatment of adoptive T cell transfer recipient mice with anti-CCL22 resulted in decreased clinical disease development accompanied by a decrease in CNS accumulation of CD11b+Ly6C(hi) macrophages. Neutralization of CCL22 resulted in a macrophage population whose effector cytokine expression consisted of decreased TNF and increased IL-10, a phenotype more consistent with M2 macrophages. This was corroborated by in vitro cultures of macrophages with CCL22. These results suggest that CCL22 functions to regulate development of EAE through macrophage chemoattraction and effector function.
Collapse
Affiliation(s)
- Rukiye-Nazan E Dogan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Urshansky N, Mausner-Fainberg K, Auriel E, Regev K, Farhum F, Karni A. Dysregulated neurotrophin mRNA production by immune cells of patients with relapsing remitting multiple sclerosis. J Neurol Sci 2010; 295:31-7. [DOI: 10.1016/j.jns.2010.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/26/2010] [Accepted: 05/18/2010] [Indexed: 12/24/2022]
|
32
|
Linker RA, Lee DH, Demir S, Wiese S, Kruse N, Siglienti I, Gerhardt E, Neumann H, Sendtner M, Luhder F, Gold R. Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain 2010; 133:2248-63. [DOI: 10.1093/brain/awq179] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
33
|
Jones JL, Anderson JM, Phuah CL, Fox EJ, Selmaj K, Margolin D, Lake SL, Palmer J, Thompson SJ, Wilkins A, Webber DJ, Compston DA, Coles AJ. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. ACTA ACUST UNITED AC 2010; 133:2232-47. [PMID: 20659956 DOI: 10.1093/brain/awq176] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Treatment of early relapsing-remitting multiple sclerosis with the lymphocyte-depleting humanized monoclonal antibody alemtuzumab (Campath [registered trade mark]) significantly reduced the risk of relapse and accumulation of disability compared with interferon β-1a in a phase 2 trial [Coles et al., (Alemtuzumab vs. interferon β-1a in early multiple sclerosis. N Engl J Med 2008; 359: 1786-801)]. Patients treated with alemtuzumab experienced an improvement in disability at 6 months that was sustained for at least 3 years. In contrast, those treated with interferon β-1a steadily accumulated disability. Here, by post hoc subgroup analyses of the CAMMS223 trial, we show that among participants with no clinical disease activity immediately before treatment, or any clinical or radiological disease activity on-trial, disability improved after alemtuzumab but not following interferon β-1a. This suggests that disability improvement after alemtuzumab is not solely attributable to its anti-inflammatory effect. So we hypothesized that lymphocytes, reconstituting after alemtuzumab, permit or promote brain repair. Here we show that after alemtuzumab, and only when specifically stimulated with myelin basic protein, peripheral blood mononuclear cell cultures produced increased concentrations of brain-derived neurotrophic factor, platelet-derived growth factor and ciliary neurotrophic factor. Analysis by reverse transcriptase polymerase chain reaction of cell separations showed that the increased production of ciliary neurotrophic factor and brain-derived neurotrophic factor after alemtuzumab is attributable to increased production by T cells. Media from these post-alemtuzumab peripheral blood mononuclear cell cultures promoted survival of rat neurones and increased axonal length in vitro, effects that were partially reversed by neutralizing antibodies against brain-derived nerve growth factor and ciliary neurotrophic factor. This conditioned media also enhanced oligodendrocyte precursor cell survival, maturation and myelination. Taken together, the clinical analyses and laboratory findings support the interpretation that improvement in disability after alemtuzumab may result, in part, from neuroprotection associated with increased lymphocytic delivery of neurotrophins to the central nervous system.
Collapse
Affiliation(s)
- Joanne L Jones
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Correlation between functional and structural assessments of the optic nerve and retina in multiple sclerosis patients. Neurophysiol Clin 2010; 40:129-35. [DOI: 10.1016/j.neucli.2009.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 12/03/2009] [Accepted: 12/14/2009] [Indexed: 11/23/2022] Open
|
35
|
Influence of neurosteroids on the pathogenesis of multiple sclerosis. Med Hypotheses 2010; 75:229-34. [PMID: 20227191 DOI: 10.1016/j.mehy.2010.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
Abstract
This paper summarizes neuroendocrine effects on myelination and their possible relevance for the pathogenesis of multiple sclerosis (MS). Steroid hormones known as neurosteroids are synthesized in the human central nervous system (CNS) and exert local effects on glial and neuronal tissue. Progesterone derivatives seem to act as promyelinating factors in the slow but continuous process of myelin maintenance in the adult human brain. Diminished production of these myelin-promoting factors may lead to the formation of structurally altered and less stable myelin, resulting in the observed pathology of the normal-appearing white matter (NAWM) in MS. Dysmyelination, characterized by an altered myelin protein composition, reduced myelin content and increased vulnerability of the myelin sheath, precedes the formation of inflammatory lesions and the clinical onset of disease. Defects in the myelin sheath first occur in mechanically strained areas of the brain, where myelin turnover is physiologically increased. The continuous exposure of myelin proteins, normally sheltered from immunosurveillance, will lead to microglia activation and phagocytosis of myelin. Phagocytic cells from the brain and myelin material may drain to cervical lymph nodes with subsequent priming of T-cells. Finally, heterogenous focal auto-inflammatory reactions contribute to the clinical symptoms of the disease. Neurosteroids influence the biochemical composition of myelin proteins and promote myelin renewal. These promyelinating neurosteroidal functions seem to be impaired in the MS brain. Contrary to the view of auto-inflammatory demyelination being a causative factor in MS pathogenesis, it is argued here that widespread dysmyelination in the adult human brain precedes and induces a focal immune response to various myelin compounds.
Collapse
|
36
|
Luria S, Waitayawinyu T, Conniff J, Morton HJ, Nemechek NM, Sonnen JA, Katolik LI, Trumble TE. Glatiramer acetate immune system augmentation for peripheral nerve regeneration in rat crushed sciatic nerve model. J Bone Joint Surg Am 2010; 92:396-403. [PMID: 20124067 DOI: 10.2106/jbjs.i.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Protective antiself response to nervous system injury has been reported to be mediated by a T-cell subpopulation that can recognize self-antigens. Immune cells have been shown to play a role in the regulation of motor neuron survival after a peripheral nerve injury. The objective of the present study was to evaluate the effects of immune system augmentation with use of the antigen glatiramer acetate, which is known to affect T-cell immunity, on peripheral nerve regeneration. METHODS Wild-type and nude-type (T-cell-deficient) rats underwent crush injury of the sciatic nerve. Three and six weeks after the injury, the sciatic nerve was examined, both functionally (on the basis of footprint analysis and the tibialis anterior muscle response and weight) and histologically (on the basis of axon count). RESULTS Significantly greater muscle responses were measured after three weeks in the group of wild-type rats that were treated with glatiramer acetate (control limb:injured limb ratio, 0.05 for the glatiramer acetate group [n = 9], compared with 0.51 for the saline solution group [n = 8]; p < 0.05). Higher axon counts were also found in this group (control limb:injured limb ratio, -0.07 for the glatiramer acetate group [n = 10], compared with 0.29 for the saline solution group [n = 8]; p < 0.05). The nude-type rats showed no response to the intervention after three weeks but showed a delayed response after six weeks. A second dose of glatiramer acetate, delivered forty-eight hours after the injury, did not result in an improved response as compared with the control groups. CONCLUSIONS We found that a single treatment with glatiramer acetate resulted in accelerated functional and histological recovery after sciatic nerve crush injury. The role of T-cell immunity in the mechanism of glatiramer acetate was suggested by the partial and late response found in the T-cell-deficient rats.
Collapse
Affiliation(s)
- Shai Luria
- Department of Orthopaedics and Sports Medicine, University Medical Center, University of Washington School of Medicine, Seattle, WA 98195-6500, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Henderson APD, Barnett MH, Parratt JDE, Prineas JW. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 2010; 66:739-53. [PMID: 20035511 DOI: 10.1002/ana.21800] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE CD4 T-cell-dependent macrophage activation directed against a myelin or oligodendrocyte antigen is generally thought to be the mechanism causing myelin destruction in multiple sclerosis (MS). However, areas within expanding MS lesions may exhibit prominent oligodendrocyte loss and apoptosis in the absence of infiltrating lymphocytes. The present study was designed to further investigate the inflammatory profile of different regions within rapidly expanding MS lesions. METHODS Twenty-six active lesions from 11 patients with early MS were serially sectioned and immunostained for T and B cells, plasma cells, ramified microglia, macrophages, monocytes, and CD209-positive dendritic cells. Cell counts were compared in prephagocytic, phagocytic, and immediately postphagocytic areas. RESULTS Parenchymal T and B cells were largely absent in areas of initial oligodendrocyte loss and in areas of degenerate and dead myelin infiltrated by myelin phagocytes. In contrast, trailing areas of complete demyelination packed with lipid macrophages, and, in some lesions, regenerating oligodendrocytes, showed large numbers of T cells, B cells, and immunoglobulin G (IgG)-positive plasma cells. Lesions in 2 exceptionally early cases contained relatively few T and B cells, and no IgG-positive plasma cells. INTERPRETATION Early loss of oligodendrocytes is a prominent feature in tissue bordering rapidly expanding MS lesions. Macrophage activity is largely an innate scavenging response to the presence of degenerate and dead myelin. Adaptive immune activity involving T and B cells is conspicuous chiefly in recently demyelinated tissue, which may show signs of oligodendrocyte regeneration. The findings suggest that plaque formation has some basis other than destructive cell-mediated immunity directed against a myelin or oligodendrocyte antigen.
Collapse
Affiliation(s)
- Andrew P D Henderson
- Institute of Clinical Neuroscience, Department of Medicine, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
38
|
The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 2009; 17:1083-91. [DOI: 10.1038/cdd.2009.179] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
39
|
Rose JJ, Bealmear B, Nedelkoska L, Studzinski D, Lisak RP, Benjamins JA. Cytokines decrease expression of interleukin-6 signal transducer and leptin receptor in central nervous system glia. J Neurosci Res 2009; 87:3098-106. [DOI: 10.1002/jnr.22135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O, Carra A, Elovaara I, Fazekas F, Hartung HP, Hillert J, King J, Komoly S, Lubetzki C, Montalban X, Myhr KM, Ravnborg M, Rieckmann P, Wynn D, Young C, Filippi M. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 2009; 374:1503-11. [PMID: 19815268 DOI: 10.1016/s0140-6736(09)61259-9] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glatiramer acetate, approved for the treatment of relapsing-remitting multiple sclerosis, reduces relapses and disease activity and burden monitored by MRI. We assessed the efficacy of early treatment with glatiramer acetate in delaying onset of clinically definite multiple sclerosis. METHODS In this randomised, double-blind trial, undertaken in 80 sites in 16 countries, 481 patients presenting with a clinically isolated syndrome with unifocal manifestation, and two or more T2-weighted brain lesions measuring 6 mm or more, were randomly assigned to receive either subcutaneous glatiramer acetate 20 mg per day (n=243) or placebo (n=238) for up to 36 months, unless they converted to clinically definite multiple sclerosis. The randomisation scheme used SAS-based blocks stratified by centre, and patients and all personnel were masked to treatment assignment. The primary endpoint was time to clinically definite multiple sclerosis, based on a second clinical attack. Analysis was by intention to treat. A preplanned interim analysis was done for data accumulated from 81% of the 3-year study exposure. This study was registered with ClinicalTrials.gov, number NCT00666224. FINDINGS All randomly assigned participants were analysed for the primary outcome. Glatiramer acetate reduced the risk of developing clinically definite multiple sclerosis by 45% compared with placebo (hazard ratio 0.55, 95% CI 0.40-0.77; p=0.0005). The time for 25% of patients to convert to clinically definite disease was prolonged by 115%, from 336 days for placebo to 722 days for glatiramer acetate. The most common adverse events in the glatiramer acetate group were injection-site reactions (135 [56%] glatiramer acetate vs 56 [24%] placebo) and immediate post-injection reactions (47 [19%] vs 12 [5%]). INTERPRETATION Early treatment with glatiramer acetate is efficacious in delaying conversion to clinically definite multiple sclerosis in patients presenting with clinically isolated syndrome and brain lesions detected by MRI. FUNDING Teva Pharmaceutical Industries, Israel.
Collapse
Affiliation(s)
- G Comi
- Institute of Experimental Neurology, Department of Neurology, University Vita-Salute, Scientific Institute San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In multiple sclerosis, physiological repair mechanisms can help the nervous system to recover from tissue injury. Enhancing such repair mechanisms is an important, and increasingly realistic, therapeutic goal in multiple sclerosis. With respect to remyelination, several promising therapeutic avenues are currently being explored, including stem cell transplantation, LINGO-1, prolactin and glatiramer acetate. Glatiramer acetate is believed to act by the induction of specific populations of anti-inflammatory Th2 cells or Type 2 monocytes which infiltrate sites of injury in the nervous system where they release anti-inflammatory cytokines leading to bystander suppression of inflammation. In addition, these cells can release neurotrophic factors such as BDNF and IGF-1 which have been shown to stimulate the differentiation of oligodendrocyte precursor cells and thus enhance remyelination. In addition, neurotrophic factors released in response to glatiramer acetate may stimulate the differentiation of neuronal progenitor cells into mature neurones that can replace neurones lost through the disease process. This repair capacity of glatiramer acetate may contribute to the long-term well-being of patients with multiple sclerosis treated with glatiramer acetate.
Collapse
Affiliation(s)
- V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neuroscience, University of Calgary, Calgary, Canada.
| |
Collapse
|
42
|
Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Souza GHMF, Marangoni S, Novello JC, Turck CW, Dias-Neto E. Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 2009; 43:978-86. [PMID: 19110265 DOI: 10.1016/j.jpsychires.2008.11.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/08/2008] [Accepted: 11/13/2008] [Indexed: 12/15/2022]
Abstract
Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann's Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients' dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratório de Neurociências, Instituto de Psiquiatria, Faculdade de Medicina da USP, Rua Dr. Ovídio Pires de Campos, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Elhofy A, Depaolo RW, Lira SA, Lukacs NW, Karpus WJ. Mice deficient for CCR6 fail to control chronic experimental autoimmune encephalomyelitis. J Neuroimmunol 2009; 213:91-9. [PMID: 19535153 DOI: 10.1016/j.jneuroim.2009.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/27/2009] [Accepted: 05/20/2009] [Indexed: 12/13/2022]
Abstract
Chemokines are a superfamily of chemotactic cytokines that play an important role in leukocyte trafficking and have been implicated as functional mediators of immunopathology in experimental autoimmune encephalomyelitis (EAE). In the present study, we investigated the role of the CCL20 receptor, CCR6, in chronic EAE. After immunization with myelin oligodendrocyte glycoprotein 35-55 in CFA, CCR6(-/-) mice developed a significantly more severe chronic EAE as compared to wild type immunized animals. CCR6 expression was not required by T cells to induce EAE. Measurement of peripheral T cell responses showed differences in IFN-gamma and IL-17 responses between CCR6(-/-) and wild type mice. At the time when CCR6(-/-) mice showed significantly more severe chronic EAE there was a significant decrease in PD-L1-expressing mDC in the spleens and no differences in Foxp3 Treg. Furthermore, add back of mDC with increased PD-L1 expression to CCR6(-/-) mice reduced the severe chronic EAE disease phase to that of wild type controls. The results suggest a role for CCR6-expressing PDL1(+) mDC in regulating EAE progression.
Collapse
Affiliation(s)
- Adam Elhofy
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago IL 60611, USA
| | | | | | | | | |
Collapse
|
44
|
Interferon-β therapy up-regulates BDNF secretion from PBMCs of MS patients through a CD40-dependent mechanism. J Neuroimmunol 2009; 211:114-9. [DOI: 10.1016/j.jneuroim.2009.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 04/04/2009] [Accepted: 04/08/2009] [Indexed: 01/10/2023]
|
45
|
Frota ERC, Rodrigues DH, Donadi EA, Brum DG, Maciel DRK, Teixeira AL. Increased plasma levels of brain derived neurotrophic factor (BDNF) after multiple sclerosis relapse. Neurosci Lett 2009; 460:130-2. [PMID: 19477225 DOI: 10.1016/j.neulet.2009.05.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/06/2009] [Accepted: 05/19/2009] [Indexed: 12/23/2022]
Abstract
Brain derived neurotrophic factor (BDNF) has been related to neuroprotection in a series of central nervous system diseases, although its role in multiple sclerosis (MS) was only partially investigated. In this work, we aimed to evaluate the plasma levels of BDNF from 29 MS patients and 24 control subjects. MS patients had decreased levels of BDNF in comparison with healthy controls. BDNF levels increased significantly after MS relapse. Our results provide some evidence for the involvement of BDNF in the pathogenesis of MS and suggest a role for this neurotrophin during the recovery of acute demyelinating inflammatory lesion.
Collapse
Affiliation(s)
- Elizabeth Regina Comini Frota
- Neurology Unit, University Hospital, Federal University of Minas Gerais, Avenida Alfredo Balena, 110. Belo Horizonte, MG 30130-100, Brazil.
| | | | | | | | | | | |
Collapse
|
46
|
Tumani H, Hartung HP, Hemmer B, Teunissen C, Deisenhammer F, Giovannoni G, Zettl UK. Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis 2009; 35:117-27. [PMID: 19426803 DOI: 10.1016/j.nbd.2009.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/10/2009] [Accepted: 04/27/2009] [Indexed: 12/25/2022] Open
Abstract
In patients with multiple sclerosis (MS) intensive efforts are directed at identifying biomarkers in bodily fluids related to underlying disease mechanisms, disease activity and progression, and therapeutic response. Besides MR imaging parameters cerebrospinal fluid (CSF) biomarkers provide important and specific information since changes in the CSF composition may reflect disease mechanisms inherent to MS. The different cellular and protein-analytical methods of the CSF and the recommended standard of the diagnostic CSF profile in MS are described. A brief update on possible CSF biomarkers that might reflect key pathological processes of MS such as inflammation, demyelination, neuroaxonal loss, gliosis and regeneration is provided.
Collapse
Affiliation(s)
- Hayrettin Tumani
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm D-89081, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Habibi L, Ebtekar M, Jameie SB. Immune and nervous systems share molecular and functional similarities: memory storage mechanism. Scand J Immunol 2009; 69:291-301. [PMID: 19284492 DOI: 10.1111/j.1365-3083.2008.02215.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most complex and important features of both the nervous and immune systems is their data storage and retrieval capability. Both systems encounter a common and complex challenge on how to overcome the cumbersome task of data management. Because each neuron makes many synapses with other neurons, they are capable of receiving data from thousands of synaptic connections. The immune system B and T cells have to deal with a similar level of complexity because of their unlimited task of recognizing foreign antigens. As for the complexity of memory storage, it has been proposed that both systems may share a common set of molecular mechanisms. Here, we review the molecular bases of memory storage in neurons and immune cells based on recent studies and findings. The expression of certain molecules and mechanisms shared between the two systems, including cytokine networks, and cell surface receptors, are reviewed. Intracellular signaling similarities and certain mechanisms such as diversity, memory storage, and their related molecular properties are briefly discussed. Moreover, two similar genetic mechanisms used by both systems is discussed, putting forward the idea that DNA recombination may be an underlying mechanism involved in CNS memory storage.
Collapse
Affiliation(s)
- L Habibi
- Medical Human Genetics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
48
|
Abstract
Inflammatory and immune responses play important roles following ischaemic stroke. Inflammatory responses contribute to damage and also contribute to repair. Injury to tissue triggers an immune response. This is initiated through activation of the innate immune system. In stroke there is microglial activation. This is followed by an influx of lymphocytes and macrophages into the brain, triggered by production of pro-inflammatory cytokines. This inflammatory response contributes to further tissue injury. There is also a systemic immune response to stroke, and there is a degree of immunosuppression that may contribute to the stroke patient's risk of infection. This immunosuppressive response may also be protective, with regulatory lymphocytes producing cytokines and growth factors that are neuroprotective. The specific targets of the immune response after stroke are not known, and the details of the immune and inflammatory responses are only partly understood. The role of inflammation and immune responses after stroke is twofold. The immune system may contribute to damage after stroke, but may also contribute to repair processes. The possibility that some of the immune response after stroke may be neuroprotective is exciting and suggests that deliberate enhancement of these responses may be a therapeutic option.
Collapse
Affiliation(s)
- P A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital and Neuroimmunology Research Unit, Central Clinical School, University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
49
|
Yan J, Greer JM, Etherington K, Cadigan GP, Cavanagh H, Henderson RD, O'Sullivan JD, Pandian JD, Read SJ, McCombe PA. Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol 2008; 206:112-7. [PMID: 19058859 DOI: 10.1016/j.jneuroim.2008.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/11/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
Lymphocytes, neutrophils and macrophages are found in the brain in areas of acute ischaemic stroke. There is also evidence of modulation of systemic immune function after stroke, with post-stroke immunosuppression being observed. Because lymphocytes are activated in the peripheral immune compartment, before entry to the target organ, we reasoned that activated lymphocytes would be present in the circulation, prior to entering the brain, in patients after stroke. Because immune responses are controlled by regulatory mechanisms, we also reasoned that the post-stroke immunosuppression would involve T regulatory cells. The aim of the study was to look for evidence of immune activation and alterations in regulatory T cells in the peripheral blood of patients after acute ischaemic stroke, in comparison to age-matched healthy controls and patients with other neurological diseases (OND), and to determine the phenotype of the activated cells. The percentages of total and activated T cells, B cells, monocyte/ macrophages, and NK/NK-T cells were determined by labelling peripheral blood leukocytes with specific cell surface markers and analysis with 4-colour flow cytometry. The percentages of activated T cells and regulatory T cells were significantly increased in patients with ischemic stroke compared to healthy subjects and patients with OND. There was also an increase in the percentage of CCR7+ T cells. There were no significant differences in the activation of other cell types. In conclusion, there is evidence of immune activation and Treg cells in acute ischaemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm (Vienna) 2008; 116:275-89. [DOI: 10.1007/s00702-008-0156-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/29/2008] [Indexed: 12/15/2022]
|