1
|
Li H, Yang F, Chang K, Yu X, Guan F, Li X. The synergistic function of long and short forms of β4GalT1 in p53-mediated drug resistance in bladder cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119409. [PMID: 36513218 DOI: 10.1016/j.bbamcr.2022.119409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
β1,4-galactosyltransferase-1 (β4GalT1) is a type II membrane protein that catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc) and forms a LacNAc structure. β4GalT1 has a long form (termed β4GalT1-L) and a short form (termed β4GalT1-S) in mammalian cells. Although β4GalT1 has been proven to play an important role in many biological and pathological processes, such as differentiation, immune responses and cancer development, the different functions of the two β4GalT1 forms remain ambiguous. In this study, we demonstrated that total β4GalT1 was upregulated in bladder cancer. Overexpression of β4GalT1-S, but not β4GalT1-L, increased drug resistance in bladder epithelial cells by upregulating p53 expression. Glycoproteomic analysis revealed that the substrate specificities of the two β4GalT1 forms were different. Among the LacNAcylated proteins, the E3 ligase MDM2 could be preferentially modified by β4GalT1-L compared to β4GalT1-S, and this modification could increase the binding of MDM2 and p53 and further facilitate the degradation of p53. Our data proved that the two forms of β4GalT1 could synergistically regulate p53-mediated cell survival under chemotherapy treatment. These results provide insights into the role of β4GalT1-L and β4GalT1-S and suggest their differentially important implications in the development of bladder cancer.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Fenfang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Kaijing Chang
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinwen Yu
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Nutrient-responsive O-GlcNAcylation dynamically modulates the secretion of glycan-binding protein galectin 3. J Biol Chem 2022; 298:101743. [PMID: 35183508 PMCID: PMC8920928 DOI: 10.1016/j.jbc.2022.101743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Endomembrane glycosylation and cytoplasmic O-GlcNAcylation each play essential roles in nutrient sensing, and characteristic changes in glycan patterns have been described in disease states such as diabetes and cancer. These changes in glycosylation have important functional roles and can drive disease progression. However, little is known about the molecular mechanisms underlying how these signals are integrated and transduced into biological effects. Galectins are proteins that bind glycans and that are secreted by a poorly characterized nonclassical secretory mechanism. Once outside the cell, galectins bind to the terminal galactose residues of cell surface glycans and modulate numerous extracellular functions, such as clathrin-independent endocytosis (CIE). Originating in the cytoplasm, galectins are predicted substrates for O-GlcNAc addition and removal; and as we have shown, galectin 3 is a substrate for O-GlcNAc transferase. In this study, we also show that galectin 3 secretion is sensitive to changes in O-GlcNAc levels. We determined using immunoprecipitation and Western blotting that there is a significant difference in O-GlcNAcylation status between cytoplasmic and secreted galectin 3. We observed dramatic alterations in galectin 3 secretion in response to nutrient conditions, which were dependent on dynamic O-GlcNAcylation. Importantly, we showed that these O-GlcNAc-driven alterations in galectin 3 secretion also facilitated changes in CIE. These results indicate that dynamic O-GlcNAcylation of galectin 3 plays a role in modulating its secretion and can tune its function in transducing nutrient-sensing information coded in cell surface glycosylation into biological effects.
Collapse
|
3
|
|
4
|
Dang K, Yu HJ, Xu SH, Ma TR, Wang HP, Li Y, Li Z, Gao YF. Remarkable Homeostasis of Protein Sialylation in Skeletal Muscles of Hibernating Daurian Ground Squirrels (Spermophilus dauricus). Front Physiol 2020; 11:37. [PMID: 32116753 PMCID: PMC7020753 DOI: 10.3389/fphys.2020.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/16/2020] [Indexed: 11/18/2022] Open
Abstract
As the most common post-translational protein modification, glycosylation is intimately linked to muscle atrophy. This study aimed to investigate the performance of protein glycosylation in the soleus muscle (SOL) in Daurian ground squirrels (Spermophilus dauricus) and to determine the potential role of protein glycosylation in the mechanism underlying disuse muscle atrophy prevention. The results showed that (1) seven glycan structures comprising sialic acid α2-3 galactose (SAα2-3Gal) were altered during hibernation; (2) alterations in the SAα2-3Gal structure during hibernation were based on changes in the expression levels of beta-galactoside alpha-2 and 3-sialyltransferases; and (3) α2-3–linked sialylated modifications of heat shock cognate 70 and pyruvate kinase and expression of 14-3-3 epsilon protein were oscillatorily changed during hibernation. Our findings indicate that the skeletal muscles of hibernating Daurian ground squirrels maintain protein sialylation homeostasis by restoring sialylation modification during periodic interbout arousal, which might protect the skeletal muscles against disuse atrophy.
Collapse
Affiliation(s)
- Kai Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Han-Jie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Shen-Hui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Tian-Ran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Hui-Ping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Zheng Li,
| | - Yun-Fang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Yun-Fang Gao,
| |
Collapse
|
5
|
Canassa-DeLeo T, Campo VL, Rodrigues LC, Marchiori MF, Fuzo C, Brigido MM, Sandomenico A, Ruvo M, Maranhão AQ, Dias-Baruffi M. Multifaceted antibodies development against synthetic α-dystroglycan mucin glycopeptide as promising tools for dystroglycanopathies diagnostic. Glycoconj J 2019; 37:77-93. [PMID: 31823246 DOI: 10.1007/s10719-019-09893-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 01/19/2023]
Abstract
Dystroglycanopathies are diseases characterized by progressive muscular degeneration and impairment of patient's quality of life. They are associated with altered glycosylation of the dystrophin-glycoprotein (DGC) complex components, such as α-dystroglycan (α-DG), fundamental in the structural and functional stability of the muscle fiber. The diagnosis of dystroglycanopathies is currently based on the observation of clinical manifestations, muscle biopsies and enzymatic measures, and the available monoclonal antibodies are not specific for the dystrophic hypoglycosylated muscle condition. Thus, modified α-DG mucins have been considered potential targets for the development of new diagnostic strategies toward these diseases. In this context, this work describes the synthesis of the hypoglycosylated α-DG mimetic glycopeptide NHAc-Gly-Pro-Thr-Val-Thr[αMan]-Ile-Arg-Gly-BSA (1) as a potential tool for the development of novel antibodies applicable to dystroglycanopathies diagnosis. Glycopeptide 1 was used for the development of polyclonal antibodies and recombinant monoclonal antibodies by Phage Display technology. Accordingly, polyclonal antibodies were reactive to glycopeptide 1, which enables the application of anti-glycopeptide 1 antibodies in immune reactive assays targeting hypoglycosylated α-DG. Regarding monoclonal antibodies, for the first time variable heavy (VH) and variable light (VL) immunoglobulin domains were selected by Phage Display, identified by NGS and described by in silico analysis. The best-characterized VH and VL domains were cloned, expressed in E. coli Shuffle T7 cells, and used to construct a single chain fragment variable that recognized the Glycopeptide 1 (GpαDG1 scFv). Molecular modelling of glycopeptide 1 and GpαDG1 scFv suggested that their interaction occurs through hydrogen bonds and hydrophobic contacts involving amino acids from scFv (I51, Y33, S229, Y235, and P233) and R8 and α-mannose from Glycopeptide 1.
Collapse
Affiliation(s)
- Thais Canassa-DeLeo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Vanessa Leiria Campo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil.,Centro Universitário Barão de Mauá, Rua Ramos de Azevedo 423, Jardim Paulista, CEP, Ribeirão Preto, 14090-180, SP, Brazil
| | - Lílian Cataldi Rodrigues
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marcelo Fiori Marchiori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Carlos Fuzo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marcelo Macedo Brigido
- Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília, DF, CEP 70910-900, Brazil
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Andrea Queiroz Maranhão
- Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília, DF, CEP 70910-900, Brazil
| | - Marcelo Dias-Baruffi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
6
|
Regular alteration of protein glycosylation in skeletal muscles of hibernating Daurian ground squirrels (Spermophilus dauricus). Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110323. [PMID: 31454680 DOI: 10.1016/j.cbpb.2019.110323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022]
Abstract
Glycosylation is one of the most common post-translational protein modifications and is closely associated with muscle atrophy. This study aims to investigate the changes in glycan profiles in the fast-twitch extensor digitorum longus (EDL) muscles of Daurian ground squirrels (Spermophilus dauricus) during hibernation as well as the correlation between protein glycosylation and muscle atrophy prevention in hibernating animals. The results showed that there was no significant change in the muscle-to-body mass ratio, muscle fiber cross-sectional area (CSA), fiber distribution and ultrastructures in the EDL muscles of ground squirrels during hibernation. Alterations of six glycans comprising sialic acid α2-3 galactose (Sia2-3Gal) and Fucα1-2Galβ1-4Glc(NAc) in the EDL muscles were observed. In addition, the observed downregulation of sialyltransferase (ST3Gals) mRNA levels and upregulation of fucosyltransferase (FUT1 and FUT2) mRNA levels during hibernation and the subsequent restoration to normal levels during periodic interbout arousal were consistent with the changes in sialic acid and fucose modifications. Our results indicate that changes in ST3Gals and FUTs in the EDL muscles of Daurian ground squirrels during hibernation can alter sialylation and fucosylation of muscle glycoproteins, which may protect the skeletal muscles of hibernating Daurian ground squirrels from disuse atrophy.
Collapse
|
7
|
Marchiori MF, Iossi GP, Bortot LO, Dias-Baruffi M, Campo VL. Synthesis of novel triazole-derived glycopeptides as analogs of α-dystroglycan mucins. Carbohydr Res 2019; 472:23-32. [PMID: 30453095 DOI: 10.1016/j.carres.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
α-Dystroglycan (α-DG) mucins are essential for maintenance of the structural and functional stability of the muscle fiber and, when hypoglycosylated, they are directly involved in pathological processes such as dystroglycanopathies. Thus, this work reports the synthesis of the novel 1,2,3-triazole-derived glycosyl amino acids αGlcNAc-1-O-triazol-2Manα-ThrOH (1) and Gal-β1,4-αGlcNAc-1-O-triazol-2Manα-ThrOH (2), followed by solid-phase assembly to get the corresponding glycopeptides NHAcThrVal[αGlcNAc-1-triazol-2Manα]ThrIleArgGlyOH (3) and NHAcThrVal[Gal-β1,4-αGlcNAc-1-triazol-2Manα]ThrIleArgGlyOH (4) as analogs of α-DG mucins. The glycosyl amino acids 1 (72%) and 2 (35%) were synthesized by Cu(I)-assisted 1,3-dipolar azide-alkyne cycloaddition reactions (CuAAC) between the azide-glycosyl amino acid αManN3-FmocThrOBn (5) and the corresponding alkyne-functionalyzed sugars 2'-propynyl-αGlcNAc (6) and 2'-propynyl-Gal-β1,4-αGlcNAc (7), followed by hydrogenation reactions. Subsequently, glycopeptides 3 (23%) and 4 (12%) were obtained by solid phase synthesis, involving sequential couplings of Fmoc-protected amino acids or the glycosyl amino acids 1 and 2, followed by cleavage from resin, N-acetylation and O-deacetylation (NaOMe) reactions. Lastly, enzymatic galactosylation of glycopeptide 3 with bovine β-1,4-GalT showed that it was not a substrate for this enzyme, which could be better elucidated by docking simulations with β-1,4-GalT.
Collapse
Affiliation(s)
- Marcelo Fiori Marchiori
- Faculty of Pharmaceutical Sciences of Ribeirão Preto - USP, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Giulia Pompolo Iossi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto - USP, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Leandro Oliveira Bortot
- Faculty of Pharmaceutical Sciences of Ribeirão Preto - USP, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Marcelo Dias-Baruffi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto - USP, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Vanessa Leiria Campo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto - USP, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil; Barão de Mauá University Centre, 423 Ramos de Azevedo Street, Jardim Paulista, CEP 14090-180, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Milcheva R, Janega P, Celec P, Petkova S, Hurniková Z, Izrael-Vlková B, Todorova K, Babál P. Accumulation of α-2,6-sialyoglycoproteins in the Muscle Sarcoplasm Due to Trichinella Sp. Invasion. Open Life Sci 2019; 14:470-481. [PMID: 33817183 PMCID: PMC7874827 DOI: 10.1515/biol-2019-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 01/02/2023] Open
Abstract
The sialylation of the glycoproteins in skeletal muscle tissue is not well investigated, even though the essential role of the sialic acids for the proper muscular function has been proven by many researchers. The invasion of the parasitic nematode Trichinella spiralis in the muscles with subsequent formation of Nurse cell-parasite complex initiates increased accumulation of sialylated glycoproteins within the affected area of the muscle fiber. The aim of this study is to describe some details of the α-2,6-sialylation in invaded muscle cells. Asynchronous invasion with infectious T. spiralis larvae was experimentally induced in mice. The areas of the occupied sarcoplasm were reactive towards α-2,6-sialic acid specific Sambucus nigra agglutinin during the whole process of transformation to a Nurse cell.The cytoplasm of the developing Nurse cell reacted with Helix pomatia agglutinin, Arachis hypogea agglutinin and Vicia villosa lectin-B4 after neuraminidase pretreatment.Up-regulation of the enzyme ST6GalNAc1 and down-regulation of the enzyme ST6GalNAc3 were detected throughout the course of this study. The results from our study assumed accumulation of sialyl-Tn-Ag, 6`-sialyl lactosamine, SiA-α-2,6-Gal-β-1,3-GalNAc-α-Ser/Thr and Gal-β-1,3-GalNAc(SiA-α-2,6-)-α-1-Ser/Thr oligosaccharide structures into the occupied sarcoplasm. Further investigations in this domain will develop the understanding about the amazing adaptive capabilities of skeletal muscle tissue.
Collapse
Affiliation(s)
- Rositsa Milcheva
- Department of Pathology, IEMPAM, Bulgarian Academy of Sciences, ‘’Acad. G. Bonchev’’ Str. 25, 1113, Sofia, Bulgaria
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM), Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. 25, 1113Sofia, Bulgaria
| | - Pavol Janega
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81372Bratislava, Slovakia
| | - Peter Celec
- Department of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81372Bratislava, Slovakia
| | - Svetlozara Petkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM), Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. 25, 1113Sofia, Bulgaria
| | - Zuzana Hurniková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01Košice, Slovak Republic
| | - Barbora Izrael-Vlková
- Department of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81372Bratislava, Slovakia
| | - Katerina Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM), Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. 25, 1113Sofia, Bulgaria
| | - Pavel Babál
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81372Bratislava, Slovakia
| |
Collapse
|
9
|
Yang W, Shen H, Fang G, Li H, Li L, Deng F, Gu W, Li K, Ma L, Gu J, Wang Y. Mutations of rat surfactant protein A have distinct effects on its glycosylation, secretion, aggregation and degradation. Life Sci 2014; 117:47-55. [PMID: 25242514 DOI: 10.1016/j.lfs.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023]
Abstract
AIMS Surfactant protein A (SP-A) plays critical roles in the innate immune system and surfactant homeostasis of the lung. Mutations in SP-A2 of the carbohydrate recognition domain (CRD) impair its glycosylation and are associated with pulmonary fibrosis in humans. We aim to examine how mutations in SP-A that impair its glycosylation affect its biological properties and lead to disease. MAIN METHODS We generated rat SP-A constructs with two types of mutations that impair its glycosylation: N-glycosylation site mutations (N21T, N207S and N21T/N207S) and disease-associated CRD mutations (G231V, F198S). We transfected these constructs into Chinese hamster ovary (CHO)-K1 cells and assessed biochemical differences in cellular and secreted wild-type and mutant SP-As by western blot, immunofluorescence, and sensitivity to enzymatic digestion. KEY FINDINGS Mutations of the CRD completely impaired SP-A secretion, whereas mutations of N-glycosylation sites had little effect. Both types of mutations formed nonidet p-40 (NP-40) insoluble aggregates, but the aggregates only from CRD mutations could be partially rescued by a chemical chaperone, 4-phenylbutyrate acid (4-PBA). The majority of CRD mutant SP-A was retained in the endoplasmic reticulum. Moreover, both types of mutations reduced SP-A stability, with CRD mutant SP-A being more sensitive to chymotrypsin digestion. Both types of soluble mutant SP-A could be degraded by the proteasome pathway, while insoluble aggregates could be additionally degraded by the lysosomal pathway. SIGNIFICANCE Our data provide evidence that the differential glycosylation of SP-A may play distinct roles in SP-A secretion, aggregation and degradation which may contribute to familial pulmonary fibrosis caused by SP-A2 mutations.
Collapse
Affiliation(s)
- Wenbing Yang
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Haitao Shen
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guodong Fang
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hui Li
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lan Li
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Fang Deng
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jiang Gu
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yongyu Wang
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China.
| |
Collapse
|
10
|
Lichti CF, Wildburger NC, Emmett MR, Mostovenko E, Shavkunov AS, Strain SK, Nilsson CL. Post-translational Modifications in the Human Proteome. TRANSLATIONAL BIOINFORMATICS 2014. [DOI: 10.1007/978-94-017-9202-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Abstract
We introduce three software tools, Cartoonist, GlycoWorkbench, and MultiGlycan, for N-glycan profiling of complex biological samples. Detailed instructions for using these tools are provided, and their performances are demonstrated by using real glycan profiling data.
Collapse
Affiliation(s)
| | | | - Haixu Tang
- Corresponding author: Haixu Tang, Informatics 225, Informatics Building, 901 E. 10th St. Bloomington, IN 47408-3912, , Phone: (812)-856-1859, Fax: (812)-856-4764
| |
Collapse
|
12
|
A general approach for the purification and quantitative glycomic analysis of human plasma. Anal Bioanal Chem 2012; 402:2687-700. [DOI: 10.1007/s00216-012-5712-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 11/26/2022]
|
13
|
Probing the oligomeric state and interaction surfaces of Fukutin-I in dilauroylphosphatidylcholine bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:199-207. [PMID: 22075563 PMCID: PMC3269570 DOI: 10.1007/s00249-011-0773-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/10/2011] [Accepted: 10/24/2011] [Indexed: 01/07/2023]
Abstract
Fukutin-I is localised to the endoplasmic reticulum or Golgi apparatus within the cell, where it is believed to function as a glycosyltransferase. Its localisation within the cell is thought to to be mediated by the interaction of its N-terminal transmembrane domain with the lipid bilayers surrounding these compartments, each of which possesses a distinctive lipid composition. However, it remains unclear at the molecular level how the interaction between the transmembrane domains of this protein and the surrounding lipid bilayer drives its retention within these compartments. In this work, we employed chemical cross-linking and fluorescence resonance energy transfer measurements in conjunction with multiscale molecular dynamics simulations to determine the oligomeric state of the protein within dilauroylphosphatidylcholine bilayers to identify interactions between the transmembrane domains and to ascertain any role these interactions may play in protein localisation. Our studies reveal that the N-terminal transmembrane domain of Fukutin-I exists as dimer within dilauroylphosphatidylcholine bilayers and that this interaction is driven by interactions between a characteristic TXXSS motif. Furthermore residues close to the N-terminus that have previously been shown to play a key role in the clustering of lipids are shown to also play a major role in anchoring the protein in the membrane.
Collapse
|
14
|
Alhamidi M, Kjeldsen Buvang E, Fagerheim T, Brox V, Lindal S, Van Ghelue M, Nilssen Ø. Fukutin-related protein resides in the Golgi cisternae of skeletal muscle fibres and forms disulfide-linked homodimers via an N-terminal interaction. PLoS One 2011; 6:e22968. [PMID: 21886772 PMCID: PMC3160285 DOI: 10.1371/journal.pone.0022968] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/04/2011] [Indexed: 12/01/2022] Open
Abstract
Limb-Girdle Muscular Dystrophy type 2I (LGMD2I) is an inheritable autosomal, recessive disorder caused by mutations in the FuKutin-Related Protein (FKRP) gene (FKRP) located on chromosome 19 (19q13.3). Mutations in FKRP are also associated with Congenital Muscular Dystrophy (MDC1C), Walker-Warburg Syndrome (WWS) and Muscle Eye Brain disease (MEB). These four disorders share in common an incomplete/aberrant O-glycosylation of the membrane/extracellular matrix (ECM) protein α-dystroglycan. However, further knowledge on the FKRP structure and biological function is lacking, and its intracellular location is controversial. Based on immunogold electron microscopy of human skeletal muscle sections we demonstrate that FKRP co-localises with the middle-to-trans-Golgi marker MG160, between the myofibrils in human rectus femoris muscle fibres. Chemical cross-linking experiments followed by pairwise yeast 2-hybrid experiments, and co-immune precipitation, demonstrate that FKRP can exist as homodimers as well as in large multimeric protein complexes when expressed in cell culture. The FKRP homodimer is kept together by a disulfide bridge provided by the most N-terminal cysteine, Cys6. FKRP contains N-glycan of high mannose and/or hybrid type; however, FKRP N-glycosylation is not required for FKRP homodimer or multimer formation. We propose a model for FKRP which is consistent with that of a Golgi resident type II transmembrane protein.
Collapse
Affiliation(s)
- Maisoon Alhamidi
- Division of Child and Adolescent Health, Department of Medical Genetics, University Hospital of North-Norway, Tromsø, Norway
- Department of Clinical Medicine – Medical Genetics, University of Tromsø, Tromsø, Norway
| | | | - Toril Fagerheim
- Division of Child and Adolescent Health, Department of Medical Genetics, University Hospital of North-Norway, Tromsø, Norway
| | - Vigdis Brox
- Division of Child and Adolescent Health, Department of Medical Genetics, University Hospital of North-Norway, Tromsø, Norway
| | - Sigurd Lindal
- Department of Pathology, University Hospital of North-Norway, Tromsø, Norway
- Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Marijke Van Ghelue
- Division of Child and Adolescent Health, Department of Medical Genetics, University Hospital of North-Norway, Tromsø, Norway
- Department of Clinical Medicine – Medical Genetics, University of Tromsø, Tromsø, Norway
| | - Øivind Nilssen
- Division of Child and Adolescent Health, Department of Medical Genetics, University Hospital of North-Norway, Tromsø, Norway
- Department of Clinical Medicine – Medical Genetics, University of Tromsø, Tromsø, Norway
- * E-mail:
| |
Collapse
|
15
|
Baycin-Hizal D, Tian Y, Akan I, Jacobson E, Clark D, Chu J, Palter K, Zhang H, Betenbaugh MJ. GlycoFly: A Database of Drosophila N-linked Glycoproteins Identified Using SPEG–MS Techniques. J Proteome Res 2011; 10:2777-84. [DOI: 10.1021/pr200004t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deniz Baycin-Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Ilhan Akan
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Elena Jacobson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dean Clark
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey Chu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Karen Palter
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Holdbrook DA, Leung YM, Piggot TJ, Marius P, Williamson PTF, Khalid S. Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study. Biochemistry 2010; 49:10796-802. [PMID: 21105749 PMCID: PMC3005826 DOI: 10.1021/bi101743w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
The N-terminal domain of fukutin-I has been implicated in the localization of the protein in the endoplasmic reticulum and Golgi Apparatus. It has been proposed to mediate this through its interaction with the thinner lipid bilayers found in these compartments. Here we have employed multiscale molecular dynamics simulations and circular dichroism spectroscopy to explore the structure, stability, and orientation of the short 36-residue N-terminus of fukutin-I (FK1TMD) in lipids with differing tail lengths. Our results show that FK1TMD adopts a stable helical conformation in phosphatidylcholine lipids when oriented with its principal axis perpendicular to the bilayer plane. The stability of the helix is largely insensitive to the lipid tail length, preventing hydrophobic mismatch by virtue of its mobility and ability to tilt within the lipid bilayers. This suggests that changes in FK1TMD tilt in response to bilayer properties may be implicated in the regulation of its trafficking. Coarse-grained simulations of the complex Golgi membrane suggest the N-terminal domain may induce the formation of microdomains in the surrounding membrane through its preferential interaction with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol 4,5-bisphosphate lipids.
Collapse
Affiliation(s)
- Daniel A Holdbrook
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | | | | | | | | | | |
Collapse
|
17
|
Reed UC. Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 67:343-62. [PMID: 19547838 DOI: 10.1590/s0004-282x2009000200035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/14/2009] [Indexed: 11/22/2022]
Abstract
The congenital muscular dystrophies (CMDs) are a group of genetically and clinically heterogeneous hereditary myopathies with preferentially autosomal recessive inheritance, that are characterized by congenital hypotonia, delayed motor development and early onset of progressive muscle weakness associated with dystrophic pattern on muscle biopsy. The clinical course is broadly variable and can comprise the involvement of the brain and eyes. From 1994, a great development in the knowledge of the molecular basis has occurred and the classification of CMDs has to be continuously up dated. In the last number of this journal, we presented the main clinical and diagnostic data concerning the different subtypes of CMD. In this second part of the review, we analyse the main reports from the literature concerning the pathogenesis and the therapeutic perspectives of the most common subtypes of CMD: MDC1A with merosin deficiency, collagen VI related CMDs (Ullrich and Bethlem), CMDs with abnormal glycosylation of alpha-dystroglycan (Fukuyama CMD, Muscle-eye-brain disease, Walker Warburg syndrome, MDC1C, MDC1D), and rigid spine syndrome, another much rare subtype of CMDs not related with the dystrophin/glycoproteins/extracellular matrix complex.
Collapse
|
18
|
Expression and purification of the transmembrane domain of Fukutin-I for biophysical studies. Protein Expr Purif 2010; 72:107-12. [PMID: 20117215 PMCID: PMC2937224 DOI: 10.1016/j.pep.2010.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/24/2010] [Indexed: 11/23/2022]
Abstract
Fukutin-I is a member of a family of putative O-linked glycosyltransferases linked to the glycosylation of the dystrophin complex. Mutations in this family of proteins have been linked to a number of congenital muscular dystrophies that arise from the hypoglycosylation of α-dystroglycan. Critical to the function of Fukutin and other members of this family is their localisation within the cell, which has been shown to depend critically on the interactions between the N-terminal transmembrane domain of these proteins and the lipid bilayer within the ER/Golgi. To investigate how the interactions between the N-terminal transmembrane domain and the lipid bilayer regulate the localisation of Fukutin-I, we have developed an efficient expression and purification protocol in Escherichia coli to allow biophysical studies to be performed. Expressing the N-terminal domain of Fukutin-1 fused to a His6 tag resulted in the localisation of the protein to the bacterial membrane. A purification strategy has been developed to isolate the highly hydrophobic transmembrane domain of Fukutin-1 from the membrane with yields of approximately 4 mg per litre of minimal media. Preliminary biophysical analyses have confirmed the identity of the peptide and revealed that in hydrophobic solvents mimicking the bilayer, the peptide adopts a well-structured α-helix as predicted from the sequence.
Collapse
|
19
|
Erb A, Weiss H, Härle J, Bechthold A. A bacterial glycosyltransferase gene toolbox: generation and applications. PHYTOCHEMISTRY 2009; 70:1812-21. [PMID: 19559449 DOI: 10.1016/j.phytochem.2009.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/20/2009] [Accepted: 05/25/2009] [Indexed: 05/18/2023]
Abstract
The bioactivity of many natural products produced by microorganisms can be attributed to their sugar substituents. These substituents are transferred as nucleotide-activated sugars to an aglycon by glycosyltransferases. Engineering these enzymes can broaden their substrate specificity and can therefore have an impact on the bioactivity of the secondary metabolites. In this review we present the generation of a glycosyltransferase gene toolbox which contains more than 70 bacterial glycosyltransferases to date. Investigations of the function, specificity and structure of these glycosyltransferases help to understand the great potential of these enzymes for natural product biosynthesis.
Collapse
Affiliation(s)
- Annette Erb
- Albert-Ludwigs-Universität, Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie und Biotechnologie, Freiburg, Germany
| | | | | | | |
Collapse
|
20
|
Li H, Xing X, Ding G, Li Q, Wang C, Xie L, Zeng R, Li Y. SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics 2009; 8:1839-49. [PMID: 19366988 DOI: 10.1074/mcp.m900030-mcp200] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
With the rapid expansion of protein post-translational modification (PTM) research based on large-scale proteomic work, there is an increasing demand for a suitable repository to analyze PTM data. Here we present a curated, web-accessible PTM data base, SysPTM. SysPTM provides a systematic and sophisticated platform for proteomic PTM research equipped not only with a knowledge base of manually curated multi-type modification data but also with four fully developed, in-depth data mining tools. Currently, SysPTM contains data detailing 117,349 experimentally determined PTM sites on 33,421 proteins involving nearly 50 PTM types, curated from public resources including five data bases and four web servers and more than one hundred peer-reviewed mass spectrometry papers. Protein annotations including Pfam domains, KEGG pathways, GO functional classification, and ortholog groups are integrated into the data base. Four online tools have been developed and incorporated, including PTMBlast, to compare a user's PTM dataset with PTM data in SysPTM; PTMPathway, to map PTM proteins to KEGG pathways; PTMPhylog, to discover potentially conserved PTM sites; and PTMCluster, to find clusters of multi-site modifications. The workflow of SysPTM was demonstrated by analyzing an in-house phosphorylation dataset identified by MS/MS. It is shown that in SysPTM, the role of single-type and multi-type modifications can be systematically investigated in a full biological context. SysPTM could be an important contribution to modificomics research. SysPTM is freely available online at www.sysbio.ac.cn/SysPTM.
Collapse
Affiliation(s)
- Hong Li
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu Y, Kuan CT, Mi J, Zhang X, Clary BM, Bigner DD, Sullenger BA. Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis. Biol Chem 2009; 390:137-44. [PMID: 19040357 DOI: 10.1515/bc.2009.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) is a glycoprotein uniquely expressed in glioblastoma, but not in normal brain tissues. To develop targeted therapies for brain tumors, we selected RNA aptamers against the histidine-tagged EGFRvIII ectodomain, using an Escherichia coli system for protein expression and purification. Representative aptamer E21 has a dissociation constant (Kd) of 33x10(-9) m, and exhibits high affinity and specificity for EGFRvIII in ELISA and surface plasmon resonance assays. However, selected aptamers cannot bind the same protein expressed from eukaryotic cells because glycosylation, a post-translational modification present only in eukaryotic systems, significantly alters the structure of the target protein. By transfecting EGFRvIII aptamers into cells, we find that membrane-bound, glycosylated EGFRvIII is reduced and the percentage of cells undergoing apoptosis is increased. We postulate that transfected aptamers can interact with newly synthesized EGFRvIII, disrupt proper glycosylation, and reduce the amount of mature EGFRvIII reaching the cell surface. Our work establishes the feasibility of disrupting protein post-translational modifications in situ with aptamers. This finding is useful for elucidating the function of proteins of interest with various modifications, as well as dissecting signal transduction pathways.
Collapse
Affiliation(s)
- Yingmiao Liu
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Vaklavas C, Chatzizisis YS, Ziakas A, Zamboulis C, Giannoglou GD. Molecular basis of statin-associated myopathy. Atherosclerosis 2009; 202:18-28. [DOI: 10.1016/j.atherosclerosis.2008.05.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 12/18/2022]
|
23
|
Waite A, Tinsley CL, Locke M, Blake DJ. The neurobiology of the dystrophin-associated glycoprotein complex. Ann Med 2009; 41:344-59. [PMID: 19172427 DOI: 10.1080/07853890802668522] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
While the function of dystrophin in muscle disease has been thoroughly investigated, dystrophin and associated proteins also have important roles in the central nervous system. Many patients with Duchenne and Becker muscular dystrophies (D/BMD) have cognitive impairment, learning disability, and an increased incidence of some neuropsychiatric disorders. Accordingly, dystrophin and members of the dystrophin-associated glycoprotein complex (DGC) are found in the brain where they participate in macromolecular assemblies that anchor receptors to specialized sites within the membrane. In neurons, dystrophin and the DGC participate in the postsynaptic clustering and stabilization of some inhibitory GABAergic synapses. During development, alpha-dystroglycan functions as an extracellular matrix receptor controlling, amongst other things, neuronal migration in the developing cortex and cerebellum. Several types of congenital muscular dystrophy caused by impaired alpha-dystroglycan glycosylation cause neuronal migration abnormalities and mental retardation. In glial cells, the DGC is involved in the organization of protein complexes that target water-channels to the plasma membrane. Finally, mutations in the gene encoding epsilon-sarcoglycan cause the neurogenic movement disorder, myoclonus-dystonia syndrome implicating epsilon-sarcoglycan in dopaminergic neurotransmission. In this review we describe the recent progress in defining the role of the DGC and associated proteins in the brain.
Collapse
Affiliation(s)
- Adrian Waite
- Department of Psychological Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
24
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
O’Connell K, Doran P, Gannon J, Ohlendieck K. Lectin-based proteomic profiling of aged skeletal muscle: Decreased pyruvate kinase isozyme M1 exhibits drastically increased levels of N-glycosylation. Eur J Cell Biol 2008; 87:793-805. [DOI: 10.1016/j.ejcb.2008.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/10/2008] [Accepted: 04/21/2008] [Indexed: 12/24/2022] Open
|
26
|
|
27
|
Phelan JA, Lowe LH, Glasier CM. Pediatric neurodegenerative white matter processes: leukodystrophies and beyond. Pediatr Radiol 2008; 38:729-49. [PMID: 18446335 DOI: 10.1007/s00247-008-0817-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 02/07/2008] [Accepted: 02/22/2008] [Indexed: 11/26/2022]
Abstract
Pediatric neurodegenerative white matter processes are complex, numerous and result from a vast array of causes ranging from white matter injury or inflammation to congenital metabolic disorders. When faced with a neurodegenerative white matter process on neuroimaging, the first step for the radiologist is to determine whether the findings represent a congenital metabolic leukodystrophy or one of various other white matter processes. In this review we first describe a general approach to neurodegenerative white matter disorders. We will briefly describe a few white matter diseases that mimic metabolic leukodystrophies. In the second half of the review we discuss an approach to distinguishing and classifying white matter leukodystrophies.
Collapse
Affiliation(s)
- Jonathan A Phelan
- Department of Radiology, Kansas City University of Medicine and Biosciences, University of Missouri-Kansas City, and The Children's Mercy Hospital and Clinics, 1750 Independence Ave., Kansas City, MO 64106, USA.
| | | | | |
Collapse
|
28
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
29
|
Schröder JE, Tegeler MR, Grosshans U, Porten E, Blank M, Lee J, Esapa C, Blake DJ, Kröger S. Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS. Dev Biol 2007; 307:62-78. [PMID: 17512925 DOI: 10.1016/j.ydbio.2007.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/08/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
In the developing CNS alpha- and beta-dystroglycan are highly concentrated in the endfeet of radial neuroepithelial cells at the contact site to the basal lamina. We show that injection of anti-dystroglycan Fab fragments, knockdown of dystroglycan using RNAi, and overexpression of a dominant-negative dystroglycan protein by microelectroporation in neuroepithelial cells of the chick retina and optic tectum in vivo leads to the loss of their radial morphology, to hyperproliferation, to an increased number of postmitotic neurons, and to an altered distribution of several basally concentrated proteins. Moreover, these treatments also altered the oriented growth of axons from retinal ganglion cells and from tectal projection neurons. In contrast, expression of non-cleavable dystroglycan protein in neuroepithelial cells reduced their proliferation and their differentiation to postmitotic neurons. These results demonstrate that dystroglycan plays a key role in maintaining neuroepithelial cell morphology, and that interfering with dystroglycan function influences proliferation and differentiation of neuroepithelial cells. These data also suggest that an impaired dystroglycan function in neuroepithelial cells might be responsible for some of the severe brain abnormalities observed in certain forms of congenital muscular dystrophy.
Collapse
Affiliation(s)
- Jörn E Schröder
- Department of Physiological Chemistry, University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yatsenko AS, Gray EE, Shcherbata HR, Patterson LB, Sood VD, Kucherenko MM, Baker D, Ruohola-Baker H. A Putative Src Homology 3 Domain Binding Motif but Not the C-terminal Dystrophin WW Domain Binding Motif Is Required for Dystroglycan Function in Cellular Polarity in Drosophila. J Biol Chem 2007; 282:15159-69. [PMID: 17355978 DOI: 10.1074/jbc.m608800200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved dystroglycan-dystrophin (Dg.Dys) complex connects the extracellular matrix to the cytoskeleton. In humans as well as Drosophila, perturbation of this complex results in muscular dystrophies and brain malformations and in some cases cellular polarity defects. However, the regulation of the Dg.Dys complex is poorly understood in any cell type. We now find that in loss-of-function and overexpression studies more than half (34 residues) of the Dg proline-rich conserved C-terminal regions can be truncated without significantly compromising its function in regulating cellular polarity in Drosophila. Notably, the truncation eliminates the WW domain binding motif at the very C terminus of the protein thought to mediate interactions with dystrophin, suggesting that a second, internal WW binding motif can also mediate this interaction. We confirm this hypothesis by using a sensitive fluorescence polarization assay to show that both WW domain binding sites of Dg bind to Dys in humans (K(d) = 7.6 and 81 microM, respectively) and Drosophila (K(d) = 16 and 46 microM, respectively). In contrast to the large deletion mentioned above, a single proline to an alanine point mutation within a predicted Src homology 3 domain (SH3) binding site abolishes Dg function in cellular polarity. This suggests that an SH3-containing protein, which has yet to be identified, functionally interacts with Dg.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Vajsar J. MRI findings in congenital muscular dystrophies associated with brain abnormalities. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.6.765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic resonance imaging (MRI) has become an important tool in diagnosing complex congenital muscular dystrophies (CMD) with brain abnormalities. Currently, there are two recognized types of CMDs with MRI brain abnormalities, firstly, laminin α2-chain-deficient CMD (MDC1A) with mutations in the LAMA2 gene, and secondly CMDs with hypoglycosylated α-dystroglycan which include Walker–Warburg syndrome (WWS), muscle–eye–brain disease (MEB), Fukuyama CMD (FCMD) and CMD types 1C and 1D (MDC1C and 1D). Brain MRI in MDC1A demonstrates abnormal white matter but rarely other brain abnormalities. In the latter group of CMDs, there is a whole spectrum of abnormalities involving both white and gray matter. The most severe MRI findings are in WWS. Patients with MEB, FCMD and MDC1C and lD also have gray and white matter abnormalities, which, in general, are less severe than those observed in WWS. There may be an overlap in these complex CMDs, both genotypically and in MRI findings.
Collapse
Affiliation(s)
- Jiri Vajsar
- The Hospital for Sick Children & University of Toronto, Division of Neurology, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
33
|
Vajsar J, Schachter H. Walker-Warburg syndrome. Orphanet J Rare Dis 2006; 1:29. [PMID: 16887026 PMCID: PMC1553431 DOI: 10.1186/1750-1172-1-29] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 08/03/2006] [Indexed: 11/12/2022] Open
Abstract
Walker-Warburg Syndrome (WWS) is a rare form of autosomal recessive congenital muscular dystrophy associated with brain and eye abnormalities. WWS has a worldwide distribution. The overall incidence is unknown but a survey in North-eastern Italy has reported an incidence rate of 1.2 per 100,000 live births. It is the most severe form of congenital muscular dystrophy with most children dying before the age of three years. WWS presents at birth with generalized hypotonia, muscle weakness, developmental delay with mental retardation and occasional seizures. It is associated with type II cobblestone lissencephaly, hydrocephalus, cerebellar malformations, eye abnormalities and congenital muscular dystrophy characterized by hypoglycosylation of α-dystroglycan. Several genes have been implicated in the etiology of WWS, and others are as yet unknown. Several mutations were found in the Protein O-Mannosyltransferase 1 and 2 (POMT1 and POMT2) genes, and one mutation was found in each of the fukutin and fukutin-related protein (FKRP) genes. Laboratory investigations usually show elevated creatine kinase, myopathic/dystrophic muscle pathology and altered α-dystroglycan. Antenatal diagnosis is possible in families with known mutations. Prenatal ultrasound may be helpful for diagnosis in families where the molecular defect is unknown. No specific treatment is available. Management is only supportive and preventive.
Collapse
Affiliation(s)
- Jiri Vajsar
- Division of Child Neurology, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, ON, Canada
| | - Harry Schachter
- Program in Structural Biology and Biochemistry, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, ON, Canada
| |
Collapse
|
34
|
Vogtländer NPJ, Tamboer WPM, Bakker MAH, Campbell KP, van der Vlag J, Berden JHM. Reactive oxygen species deglycosilate glomerular alpha-dystroglycan. Kidney Int 2006; 69:1526-34. [PMID: 16672922 DOI: 10.1038/sj.ki.5000138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the kidney, dystroglycan (DG) has been shown to cover the basolateral and apical membranes of the podocyte. alpha-DG is heavily glycosilated, which is important for its binding to laminin and agrin in the glomerular basement membrane. Furthermore, alpha-DG is negatively charged, which maintains the filtration slit open. Reactive oxygen species (ROS) are known to degrade and depolymerize carbohydrates, and to play a role in several glomerular diseases. Therefore, we evaluated the effect of ROS on the glycosilation of glomerular alpha-DG. By using specific antibodies directed against the core protein or glyco-epitopes of alpha-DG, this was studied in a solid-phase assay, in situ on kidney sections, and in vivo in adriamycin nephropathy. A ligand overlay assay was used to study binding of alpha-DG to its ligands. Exposure to ROS leads to a loss of carbohydrate epitopes on alpha-DG both in vitro and on kidney sections. In the in vitro assays, a decreased binding of deglycosilated alpha-DG to laminin and agrin was found. In adriamycin nephropathy, where radicals play a role, we observed a loss of alpha-DG carbohydrate epitopes. We conclude that deglycosilation of glomerular alpha-DG by ROS leads to disruption of the agrin-DG complex, which in vivo may lead to the detachment of podocytes. Furthermore, loss of negative charge in the filtration slit may lead to foot process effacement of podocytes.
Collapse
Affiliation(s)
- N P J Vogtländer
- Division of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Jiménez-Farfán D, Guevara J, Zenteno E, Hernández-Guerrero JC. Alteration of the sialylation pattern of the murine tooth germ after ethanol exposure. ACTA ACUST UNITED AC 2006; 73:980-8. [PMID: 16323169 DOI: 10.1002/bdra.20198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ethanol consumption during pregnancy leads to changes in murine dental morphogenesis, dental size, cellular differentiation, enamel mineralization, and delayed eruption. It has been proposed that glycoproteins play a role during embryonic dental development that may determine the dental morphological pattern and extracellular matrix secretion. O-glycosylation and sialylation appear to actively participate in the differentiation and maturation processes. Because glycosylation may be affected by teratogens that can alter the maturation of several organisms, in this work we describe the main modifications of the sialylation pattern in prenatal day (PD) 18.5 murine tooth germs exposed to ethanol. METHODS Pregnant female mice were divided into groups that were given 15% or 20% ethanol solutions, or water as a control. The histochemistry of tooth germs from PD 18.5 fetuses was revealed with lectins specific for sialic acid (Neu5Ac), such as Sambucus nigra (SNA), Maackia amurensis (MAA), and Machrobrachium rosenbergii (MRL), and for sialylated-O-glycosidically linked glycans, such as Amaranthus leucocarpus (ALL). RESULTS The basement membrane, preameloblasts, inner-enamel epithelium, preodontoblasts, and subodontoblastic cells of the test groups showed changes in labeling according to the 4 lectins used. Intranuclear staining was observed with SNA (specific for Neu5Acalpha2,6Gal/GalNAc) in the control group, but this was reduced in the test groups. The nuclei of dental papillary cells under the experimental conditions were stained with MAA (Neu5Acalpha2,3Gal). CONCLUSIONS Dental development involves different types of sialylated O-glycosidically linked glycans that are likely to regulate cell-to-cell and cell-to-matrix interactions. Our results suggest that ethanol consumption during pregnancy alters the sialylation pattern during murine dental morphogenesis.
Collapse
Affiliation(s)
- Dolores Jiménez-Farfán
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | | | | |
Collapse
|
36
|
Blake DJ, Esapa CT, Martin-Rendon E, McIlhinney RAJ. Glycosylation defects and muscular dystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 564:97-8. [PMID: 16400811 DOI: 10.1007/0-387-25515-x_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Derek J Blake
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | | | | | | |
Collapse
|
37
|
Parry S, Hadaschik D, Blancher C, Kumaran MK, Bochkina N, Morris HR, Richardson S, Aitman TJ, Gauguier D, Siddle K, Scott J, Dell A. Glycomics investigation into insulin action. Biochim Biophys Acta Gen Subj 2006; 1760:652-68. [PMID: 16473469 DOI: 10.1016/j.bbagen.2005.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 11/30/2022]
Abstract
Defects in glycosylation are becoming increasingly associated with a range of human diseases. In some cases, the disease is caused by the glycosylation defect, whereas in others, the aberrant glycosylation may be a consequence of the disease. The implementation of highly sensitive and rapid mass spectrometric screening strategies for profiling the glycans present in model biological systems is revealing valuable insights into disease phenotypes. In addition, glycan screening is proving useful in the analysis of knock-out mice where it is possible to assess the role of glycosyltransferases and glycosidases and what function they have at the cellular and whole organism level. In this study, we analysed the effect of insulin on the glycosylation of 3T3-L1 cells and the effect of insulin resistance on glycosylation in a mouse model. Transcription profiling of 3T3-L1 cells treated with and without insulin revealed expression changes of several glycogenes. In contrast, mass spectrometric screening analysis of the glycans from these cells revealed very similar profiles suggesting that any changes in glycosylation were most likely on specific proteins rather than a global phenomenon. A fat-fed versus carbohydrate-fed mouse insulin resistant model was analysed to test the consequences of chronic insulin resistance. Muscle and liver N-glycosylation profiles from these mice are reported.
Collapse
Affiliation(s)
- Simon Parry
- Division of Molecular Biosciences, Imperial College, London, South Kensington, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- John F O'Brien
- Department of Laboratory Medicine and Pathology, Division of Genetics, Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN. USA 55905-0001, USA
| |
Collapse
|
39
|
Affiliation(s)
- Erik A Eklund
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
40
|
Mahmood I, Green MD. Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet 2005; 44:331-47. [PMID: 15828849 DOI: 10.2165/00003088-200544040-00001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
With an increasing number of therapeutic proteins moving into preclinical and clinical development, pharmacokinetic factors play an important role in the development of these macromolecules. It is also important that the pharmacokinetic evaluation of these compounds be done as accurately as possible. For macromolecules, evaluation of pharmacokinetic parameters is often complicated by a number of factors. Bioanalytical methods are essential for any pharmacokinetic study, but for many therapeutic proteins the immunoassay and bioassay methodologies are often nonspecific and sometimes the estimation of pharmacokinetic parameters becomes assay dependent. In vivo binding proteins, metabolites and antibody formation may also interfere with bioanalytical methodologies and thus may have significant impact on the pharmacokinetics of therapeutic proteins. There are also difficulties in identifying and quantifying metabolites as well as the binding of therapeutic proteins to endogenous proteins. Some macromolecules exhibit species specificity that complicates the preclinical pharmacological and toxicological evaluation of these compounds. Antibody formation is a particular problem in the preclinical evaluation of therapeutic proteins. Changes in structure or sequence of protein molecules (glycosylation or pegylation) may cause changes in the pharmacokinetics of these compounds. The size of therapeutic proteins may become a hindrance for absorption. Low absorption of intact molecules across biological membranes frequently occurs. Other factors that may affect the pharmacokinetics of a therapeutic protein are immunogenicity, presence of endogenous protein, time of drug administration, and rate and site of drug delivery. The relationship between pharmacokinetics and pharmacodynamics of therapeutic proteins is complex and in most cases is unclear. In many cases the mechanism and site of action are unknown for these compounds.
Collapse
Affiliation(s)
- Iftekhar Mahmood
- Clinical Pharmacology and Toxicology Branch, Office of Drug Evaluation VI, Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852, USA.
| | | |
Collapse
|
41
|
van der Zwaag B, Burbach JPH, Scharfe C, Oefner PJ, Brunner HG, Padberg GW, van Bokhoven H. Identifying new candidate genes for hereditary facial paresis on chromosome 3q21–q22 by RNA in situ hybridization in mouse. Genomics 2005; 86:55-67. [PMID: 15953540 DOI: 10.1016/j.ygeno.2005.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 11/12/2022]
Abstract
Hereditary congenital facial paresis (HCFP) belongs to the family of congenital cranial dysinnervation disorders and is characterized by an isolated dysfunction of the facial nerve (nVII). While genetic defects have been identified for several members of this disease family, genes underlying congenital facial paresis and Möbius syndrome remain to be discovered. Here we focus on HCFP linked to chromosome 3q21-q22 and identify new candidate genes using expression analysis by means of RNA in situ hybridization during mouse embryogenesis. We selected 28 positional candidates and identified 17 genes with undetectable expression levels during mouse development, ubiquitous expression, or expression in tissues not affected in HCFP. Additionally, 7 genes were excluded by direct sequence or reverse transcription-PCR analysis. The remaining 4 genes (Klf15, Flj40083, Kiaa0779, and Podxl2) were found to be expressed at spatial and temporal positions during mouse development that correlate with HCFP regions in humans, defining these genes as primary candidates in HCFP.
Collapse
Affiliation(s)
- Bert van der Zwaag
- Department of Neurology, University Medical Centre Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Matsumura K, Zhong D, Saito F, Arai K, Adachi K, Kawai H, Higuchi I, Nishino I, Shimizu T. Proteolysis of beta-dystroglycan in muscular diseases. Neuromuscul Disord 2005; 15:336-41. [PMID: 15833425 DOI: 10.1016/j.nmd.2005.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/05/2005] [Accepted: 01/11/2005] [Indexed: 11/19/2022]
Abstract
Alpha-dystroglycan is a cell surface peripheral membrane protein which binds to the extracellular matrix (ECM), while beta-dystroglycan is a type I integral membrane protein which anchors alpha-dystroglycan to the cell membrane via the N-terminal extracellular domain. The complex composed of alpha-and beta-dystroglycan is called the dystroglycan complex. We reported previously a matrix metalloproteinase (MMP) activity that disrupts the dystroglycan complex by cleaving the extracellular domain of beta-dystroglycan. This MMP creates a characteristic 30 kDa fragment of beta-dystroglycan that is detected by the monoclonal antibody 43DAG/8D5 directed against the C-terminus of beta-dystroglycan. We also reported that the 30 kDa fragment of beta-dystroglycan was increased in the skeletal and cardiac muscles of cardiomyopathic hamsters, the model animals of sarcoglycanopathy, and that this resulted in the disruption of the link between the ECM and cell membrane via the dystroglycan complex. In this study, we investigated the proteolysis of beta-dystroglycan in the biopsied skeletal muscles of various human muscular diseases, including sarcoglycanopathy, Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, Fukuyama congenital muscular dystrophy, Miyoshi myopathy, LGMD2A, facioscapulohumeral muscular dystrophy, myotonic dystrophy and dermatomyositis/polymyositis. We show that the 30 kDa fragment of beta-dystroglycan is increased significantly in sarcoglycanopathy and DMD, but not in the other diseases. We propose that the proteolysis of beta-dystroglycan may contribute to skeletal muscle degeneration by disrupting the link between the ECM and cell membrane in sarcoglycanopathy and DMD.
Collapse
Affiliation(s)
- Kiichiro Matsumura
- Department of Neurology and Neuroscience, Teikyo University School of Medicine,2-11-1 Kaga Itabashi-ku, Tokyo 173-8605, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Walker-Warburg syndrome (WWS) is the most severe of a group of multiple congenital anomaly disorders known as the cobblestone lissencephalies. These are characterized by congenital muscular dystrophy in conjunction with severe brain malformation and ocular abnormalities. In the last 3 years, important progress has been made towards the elucidation of the genetic causes of these disorders. Mutations in three genes, POMT1, fukutin and FKRP, have been described for WWS, which together account for approximately 20% of patients with Walker-Warburg. It has become evident that some of the underlying genes may cause a broad spectrum of phenotypes, ranging from limb girdle muscular dystrophy type 2I to WWS. In some cases, a genotype-phenotype correlation can be recognized. In line with the known or proposed functions of the resolved genes, all patients with cobblestone lissencephaly show defects in the O-linked glycosylation of the glycoprotein alpha-dystroglycan. Perhaps, the missing genes underlying the remainder of the unexplained WWS patients have also to be sought in the pathways involved in O-linked protein glycosylation.
Collapse
Affiliation(s)
- J van Reeuwijk
- Department of Human Genetics, Radboud University Nijmegen Medical center, The Netherlands
| | | | | |
Collapse
|
44
|
van Reeuwijk J, Janssen M, van den Elzen C, Beltran-Valero de Bernabé D, Sabatelli P, Merlini L, Boon M, Scheffer H, Brockington M, Muntoni F, Huynen MA, Verrips A, Walsh CA, Barth PG, Brunner HG, van Bokhoven H. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 2005; 42:907-12. [PMID: 15894594 PMCID: PMC1735967 DOI: 10.1136/jmg.2005.031963] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Walker-Warburg syndrome (WWS) is an autosomal recessive condition characterised by congenital muscular dystrophy, structural brain defects, and eye malformations. Typical brain abnormalities are hydrocephalus, lissencephaly, agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigration, which causes a cobblestone cortex. Ocular abnormalities include cataract, microphthalmia, buphthalmos, and Peters anomaly. WWS patients show defective O-glycosylation of alpha-dystroglycan (alpha-DG), which plays a key role in bridging the cytoskeleton of muscle and CNS cells with extracellular matrix proteins, important for muscle integrity and neuronal migration. In 20% of the WWS patients, hypoglycosylation results from mutations in either the protein O-mannosyltransferase 1 (POMT1), fukutin, or fukutin related protein (FKRP) genes. The other genes for this highly heterogeneous disorder remain to be identified. OBJECTIVE To look for mutations in POMT2 as a cause of WWS, as both POMT1 and POMT2 are required to achieve protein O-mannosyltransferase activity. METHODS A candidate gene approach combined with homozygosity mapping. RESULTS Homozygosity was found for the POMT2 locus at 14q24.3 in four of 11 consanguineous WWS families. Homozygous POMT2 mutations were present in two of these families as well as in one patient from another cohort of six WWS families. Immunohistochemistry in muscle showed severely reduced levels of glycosylated alpha-DG, which is consistent with the postulated role for POMT2 in the O-mannosylation pathway. CONCLUSIONS A fourth causative gene for WWS was uncovered. These genes account for approximately one third of the WWS cases. Several more genes are anticipated, which are likely to play a role in glycosylation of alpha-DG.
Collapse
Affiliation(s)
- J van Reeuwijk
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matsumoto H, Hayashi YK, Kim DS, Ogawa M, Murakami T, Noguchi S, Nonaka I, Nakazawa T, Matsuo T, Futagami S, Campbell KP, Nishino I. Congenital muscular dystrophy with glycosylation defects of α-dystroglycan in Japan. Neuromuscul Disord 2005; 15:342-8. [PMID: 15833426 DOI: 10.1016/j.nmd.2005.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/19/2005] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
Glycosylation defects of alpha-dystroglycan (alpha-DG) cause various muscular dystrophies. We performed clinical, pathological and genetic analyses of 62 Japanese patients with congenital muscular dystrophy, whose skeletal muscle showed deficiency of glycosylated form of alpha-DG. We found, the first Japanese patient with congenital muscular dystrophy 1C with a novel compound heterozygous mutation in the fukutin-related protein gene. Fukuyama-type congenital muscular dystrophy was genetically confirmed in 54 of 62 patients. Two patients with muscle-eye-brain disease and one Walker-Warburg syndrome were also genetically confirmed. Four patients had no mutation in any known genes associated with glycosylation of alpha-DG. Interestingly, the molecular mass of alpha-DG in the skeletal muscle was similar and was reduced to approximately 90 kDa among these patients, even though the causative gene and the clinico-pathological severity were different. This result suggests that other factors can modify clinical features of the patients with glycosylation defects of alpha-DG.
Collapse
Affiliation(s)
- Hiroshi Matsumoto
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
At high levels as seen in diabetes, glucose reacts with and forms adducts (advanced glycation end products; AGEs) on macromolecules including proteins and DNA, eliciting cellular dysfunction and leading to vascular disease. The major means is through cellular receptors; the best characterized is the receptor for advanced glycation end products (RAGE). Accumulation of both AGE/RAGE in addition to other identified ligands of RAGE, including S100/calgranulins, is the hallmark of this receptor in disease pathogenesis. Blockade of ligand-receptor interaction directly at the protein level, or transgenetically, prevents development of micro vascular (nephropathy) and macro vascular (atherosclerosis/restenosis) disease in small animal models. Furthermore, allelic variants of RAGE exist that alter the protein function and gene expression, which may further affect disease outcome. In conclusion, RAGE is a target for drug development to prevent vascular disease in diabetic and nondiabetic subjects.
Collapse
Affiliation(s)
- Barry I Hudson
- College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | | |
Collapse
|
47
|
Schachter H, Vajsar J, Zhang W. The role of defective glycosylation in congenital muscular dystrophy. Glycoconj J 2005; 20:291-300. [PMID: 15229394 DOI: 10.1023/b:glyc.0000033626.65127.e4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The dystrophin glycoprotein complex (DGC) is an assembly of proteins spanning the sarcolemma of skeletal muscle cells. Defects in the DGC appear to play critical roles in several muscular dystrophies due to disruption of basement membrane organization. O -mannosyl oligosaccharides on alpha-dystroglycan, a major extracellular component of the DGC, are essential for normal binding of alpha-dystroglycan to ligands (such as laminin) in the extracellular matrix and subsequent signal transmission to actin in the cytoskeleton of the muscle cell. Muscle-Eye-Brain disease (MEB) and Walker-Warburg Syndrome (WWS) have mutations in genes encoding glycosyltransferases needed for O -mannosyl oligosaccharide synthesis. Myodystrophic myd mice and humans with Fukuyama Congenital Muscular Dystrophy (FCMD), congenital muscular dystrophy due to defective fukutin-related protein (FKRP) and MDC1D have mutations in putative glycosyltransferases. These human congenital muscular dystrophies and the myd mouse are associated with defective glycosylation of alpha-dystroglycan. It is expected other congenital muscular dystrophies will prove to have mutations in genes involved in glycosylation.
Collapse
Affiliation(s)
- Harry Schachter
- Department of Structural Biology and Biochemistry, The Hospital for Sick Children, 555 University Avenue, Toronto, Ont. M5G 1X8, Canada.
| | | | | |
Collapse
|
48
|
Cohn RD. Dystroglycan: important player in skeletal muscle and beyond. Neuromuscul Disord 2005; 15:207-17. [PMID: 15725582 DOI: 10.1016/j.nmd.2004.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/02/2004] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
Dystroglycan is a transmembrane protein that connects the extracellular matrix to the cytoskeleton. Given the ubiquitous tissue expression of dystroglycan, different functional roles in various organ systems have been characterized during the past decade. More recently, aberrant glycosylation of dystroglycan has been identified as a novel pathogenetic mechanism in several forms of congenital and late onset muscular dystrophy syndromes. The current review summarizes the recent scientific achievements as they relate to the function of dystroglycan under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Ronald D Cohn
- Johns Hopkins Hospital, Children's Center, McKusick-Nathans Institute of Genetic Medicine, 600 N Wolfe Street, Blalock 1008, Baltimore, MD 21287, USA.
| |
Collapse
|
49
|
Jenniskens GJ, Veerkamp JH, van Kuppevelt TH. Heparan sulfates in skeletal muscle development and physiology. J Cell Physiol 2005; 206:283-94. [PMID: 15991249 DOI: 10.1002/jcp.20450] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have seen an emerging interest in the composition of the skeletal muscle extracellular matrix (ECM) and in the developmental and physiological roles of its constituents. Many cell surface-associated and ECM-embedded molecules occur in highly organized spatiotemporal patterns, suggesting important roles in the development and functioning of skeletal muscle. Glycans are historically underrepresented in the study of skeletal muscle ECM, even though studies from up to 30 years ago have demonstrated specific carbohydrates and glycoproteins to be concentrated in neuromuscular junctions (NMJs). Changes in glycan profile and distribution during myogenesis and synaptogenesis hint at an active involvement of glycoconjugates in muscle development. A modest amount of literature involves glycoconjugates in muscle ion housekeeping, but a recent surge of evidence indicates that glycosylation defects are causal for many congenital (neuro)muscular disorders, rendering glycosylation essential for skeletal muscle integrity. In this review, we focus on a single class of ECM-resident glycans and their emerging roles in muscle development, physiology, and pathology: heparan sulfate proteoglycans (HSPGs), notably their heparan sulfate (HS) moiety.
Collapse
Affiliation(s)
- Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, Nijmegen, The Netherlands
| | | | | |
Collapse
|
50
|
Greenberg SA, Walsh RJ. Molecular diagnosis of inheritable neuromuscular disorders. Part II: Application of genetic testing in neuromuscular disease. Muscle Nerve 2005; 31:431-51. [PMID: 15704143 DOI: 10.1002/mus.20279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular genetic advances have led to refinements in the classification of inherited neuromuscular disease, and to methods of molecular testing useful for diagnosis and management of selected patients. Testing should be performed as targeted studies, sometimes sequentially, but not as wasteful panels of multiple genetic tests performed simultaneously. Accurate diagnosis through molecular testing is available for the vast majority of patients with inherited neuropathies, resulting from mutations in three genes (PMP22, MPZ, and GJB1); the most common types of muscular dystrophies (Duchenne and Becker, facioscapulohumeral, and myotonic dystrophies); the inherited motor neuron disorders (spinal muscular atrophy, Kennedy's disease, and SOD1 related amyotrophic lateral sclerosis); and many other neuromuscular disorders. The role of potential multiple genetic influences on the development of acquired neuromuscular diseases is an increasingly active area of research.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Division of Neuromuscular Disease, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|