1
|
Song C, Sun X, Wang Y, Bülow L, Mecklenburg M, Wu C, Meng Q, Xie B. Activity fingerprinting of AMR β-lactamase towards a fast and accurate diagnosis. Front Cell Infect Microbiol 2023; 13:1222156. [PMID: 37743856 PMCID: PMC10512244 DOI: 10.3389/fcimb.2023.1222156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Antibiotic resistance has become a serious threat to global public health and economic development. Rapid and accurate identification of a patient status for antimicrobial resistance (AMR) are urgently needed in clinical diagnosis. Here we describe the development of an assay method for activity fingerprinting of AMR β-lactamases using panels of 7 β-lactam antibiotics in 35 min. New Deli Metallo β-lactamase-1 (NDM-1) and penicillinase were demonstrated as two different classes of β-lactamases. The panel consisted of three classes of antibiotics, including: penicillins (penicillin G, piperacillin), cephalosporins (cefepime, ceftriaxone, cefazolin) and carbapenems (meropenem and imipenem). The assay employed a scheme combines the catalytic reaction of AMR β-lactamases on antibiotic substrates with a flow-injected thermometric biosensor that allows the direct detection of the heat generated from the enzymatic catalysis, and eliminates the need for custom substrates and multiple detection schemes. In order to differentiate classes of β-lactamases, characterization of the enzyme activity under different catalytic condition, such as, buffer composition, ion strength and pH were investigated. This assay could provide a tool for fast diagnosis of patient AMR status which makes possible for the future accurate treatment with selected antibiotics.
Collapse
Affiliation(s)
- Chenchen Song
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Xuan Sun
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yao Wang
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Changxin Wu
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Qinglai Meng
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Bin Xie
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Rapid Detection of Multiple Classes of β-Lactam Antibiotics in Blood Using an NDM-1 Biosensing Assay. Antibiotics (Basel) 2021; 10:antibiotics10091110. [PMID: 34572692 PMCID: PMC8468087 DOI: 10.3390/antibiotics10091110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 01/23/2023] Open
Abstract
Currently, assays for rapid therapeutic drug monitoring (TDM) of β-lactam antibiotics in blood, which might be of benefit in optimizing doses for treatment of critically ill patients, remain challenging. Previously, we developed an assay for determining the penicillin-class antibiotics in blood using a thermometric penicillinase biosensor. The assay eliminates sample pretreatment, which makes it possible to perform semicontinuous penicillin determinations in blood. However, penicillinase has a narrow substrate specificity, which makes it unsuitable for detecting other classes of β-lactam antibiotics, such as cephalosporins and carbapenems. In order to assay these classes of clinically useful antibiotics, a novel biosensor was developed using New Delhi metallo-β-lactamase-1 (NDM-1) as the biological recognition layer. NDM-1 has a broad specificity range and is capable of hydrolyzing all classes of β-lactam antibiotics in high efficacy with the exception of monobactams. In this study, we demonstrated that the NDM-1 biosensor was able to quantify multiple classes of β-lactam antibiotics in blood plasma at concentrations ranging from 6.25 mg/L or 12.5 mg/L to 200 mg/L, which covered the therapeutic concentration windows of the tested antibiotics used to treat critically ill patients. The detection of ceftazidime and meropenem was not affected by the presence of the β-lactamase inhibitors avibactam and vaborbactam, respectively. Furthermore, both free and protein-bound β-lactams present in the antibiotic-spiked plasma samples were detected by the NDM-1 biosensor. These results indicated that the NDM-1 biosensor is a promising technique for rapid TDM of total β-lactam antibiotics present in the blood of critically ill patients.
Collapse
|
3
|
Eyvazi S, Baradaran B, Mokhtarzadeh A, Guardia MDL. Recent advances on development of portable biosensors for monitoring of biological contaminants in foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Alhalaili B, Popescu IN, Kamoun O, Alzubi F, Alawadhia S, Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6591. [PMID: 33218097 PMCID: PMC7698809 DOI: 10.3390/s20226591] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is considered a public health emergency of international concern. The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused this pandemic has spread rapidly to over 200 countries, and has drastically affected public health and the economies of states at unprecedented levels. In this context, efforts around the world are focusing on solving this problem in several directions of research, by: (i) exploring the origin and evolution of the phylogeny of the SARS-CoV-2 viral genome; (ii) developing nanobiosensors that could be highly effective in detecting the new coronavirus; (iii) finding effective treatments for COVID-19; and (iv) working on vaccine development. In this paper, an overview of the progress made in the development of nanobiosensors for the detection of human coronaviruses (SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV) is presented, along with specific techniques for modifying the surface of nanobiosensors. The newest detection methods of the influenza virus responsible for acute respiratory syndrome were compared with conventional methods, highlighting the newest trends in diagnostics, applications, and challenges of SARS-CoV-2 (COVID-19 causative virus) nanobiosensors.
Collapse
Affiliation(s)
- Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, 130004 Targoviste, Romania
| | - Olfa Kamoun
- Physics of Semiconductor Devices Unit, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 1068, Tunisia;
| | - Feras Alzubi
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Sami Alawadhia
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Significant healthcare disparities resulting from personal wealth, circumstances of birth, education level, and more are internationally prevalent. As such, advances in biomedical science overwhelmingly benefit a minority of the global population. Point-of-Care Testing (POCT) can contribute to societal equilibrium by making medical diagnostics affordable, convenient, and fast. Unfortunately, conventional POCT appears stagnant in terms of achieving significant advances. This is attributed to the high cost and instability associated with conventional biorecognition: primarily antibodies, but nucleic acids, cells, enzymes, and aptamers have also been used. Instead, state-of-the-art biosensor researchers are increasingly leveraging molecularly imprinted polymers (MIPs) for their high selectivity, excellent stability, and amenability to a variety of physical and chemical manipulations. Besides the elimination of conventional bioreceptors, the incorporation of nanomaterials has further improved the sensitivity of biosensors. Herein, modern nanobiosensors employing MIPs for selectivity and nanomaterials for improved transduction are systematically reviewed. First, a brief synopsis of fabrication and wide-spread challenges with selectivity demonstration are presented. Afterward, the discussion turns to an analysis of relevant case studies published in the last five years. The analysis is given through two lenses: MIP-based biosensors employing specific nanomaterials and those adopting particular transduction strategies. Finally, conclusions are presented along with a look to the future through recommendations for advancing the field. It is hoped that this work will accelerate successful efforts in the field, orient new researchers, and contribute to equitable health care for all.
Collapse
|
6
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|
7
|
|
8
|
DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. SENSORS 2015; 15:14539-68. [PMID: 26102488 PMCID: PMC4507582 DOI: 10.3390/s150614539] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
Detection of disease at an early stage is one of the biggest challenges in medicine. Different disciplines of science are working together in this regard. The goal of nanodiagnostics is to provide more accurate tools for earlier diagnosis, to reduce cost and to simplify healthcare delivery of effective and personalized medicine, especially with regard to chronic diseases (e.g., diabetes and cardiovascular diseases) that have high healthcare costs. Up-to-date results suggest that DNA-based nanobiosensors could be used effectively to provide simple, fast, cost-effective, sensitive and specific detection of some genetic, cancer, and infectious diseases. In addition, they could potentially be used as a platform to detect immunodeficiency, and neurological and other diseases. This review examines different types of DNA-based nanobiosensors, the basic principles upon which they are based and their advantages and potential in diagnosis of acute and chronic diseases. We discuss recent trends and applications of new strategies for DNA-based nanobiosensors, and emphasize the challenges in translating basic research to the clinical laboratory.
Collapse
|
9
|
Rapid determination of the chemical oxygen demand of water using a thermal biosensor. SENSORS 2014; 14:9949-60. [PMID: 24915178 PMCID: PMC4118352 DOI: 10.3390/s140609949] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/12/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples.
Collapse
|
10
|
Askim JR, Mahmoudi M, Suslick KS. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 2014; 42:8649-82. [PMID: 24091381 DOI: 10.1039/c3cs60179j] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A comprehensive review is presented on the development and state of the art of colorimetric and fluorometric sensor arrays. Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties. This provides a high dimensionality to chemical sensing that permits high sensitivity (often down to ppb levels), impressive discrimination among very similar analytes and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, both in the gas and liquid phases.
Collapse
Affiliation(s)
- Jon R Askim
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Av., Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
11
|
Bai X, Gu H, Chen W, Shi H, Yang B, Huang X, Zhang Q. Immobilized Laccase on Activated Poly(Vinyl Alcohol) Microspheres For Enzyme Thermistor Application. Appl Biochem Biotechnol 2014; 173:1097-107. [DOI: 10.1007/s12010-014-0913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/07/2014] [Indexed: 11/28/2022]
|
12
|
Yakovleva M, Bhand S, Danielsson B. The enzyme thermistor—A realistic biosensor concept. A critical review. Anal Chim Acta 2013; 766:1-12. [DOI: 10.1016/j.aca.2012.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/29/2012] [Accepted: 12/02/2012] [Indexed: 11/27/2022]
|
13
|
Abstract
There is a need for analytical methods capable of monitoring blood antibiotic levels in real time. Here we present a method for quantifying antibiotic levels in whole blood that does not require any sample pretreatment. The tests employ the enzyme penicillinase to assay for penicillin G, penicillin V and ampicillin using a flow-injected biosensor, the Enzyme Thermistor. Optimal flow rates, sample volumes and pH were determined to be 0.5 mL/min, 100 μL and 7.0, respectively. Analysis of the antibiotics diluted in buffer gave a linear range of 0.17-5.0 mM. Calibration curves prepared using blood spiked with the antibiotics gave a linear range of 0.17-2.0 mM. Linear regression values for all of the calibration curves were 0.998 or higher. Assay cycle time was 5 min. The relative standard deviation value for 100 determinations of a mock blood sample spiked with penicillin G was 6.71%. Despite the elimination of sample pretreatment, no detectable clogging or signal drift was observed. The assay provides a fast, simple, reliable analytical method for determining antibiotic concentrations in blood without the need for any sample pretreatment. This is an important first step towards developing a device capable of real-time monitoring of antibiotic levels in whole blood. The technology has the potential to significantly improve the outcomes of patients undergoing critical care.
Collapse
Affiliation(s)
- Q Chen
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, China
| | | | | | | |
Collapse
|
14
|
Kakuta N, Fukuhara Y, Kondo K, Arimoto H, Yamada Y. Temperature imaging of water in a microchannel using thermal sensitivity of near-infrared absorption. LAB ON A CHIP 2011; 11:3479-3486. [PMID: 21869986 DOI: 10.1039/c1lc20261h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper presents a remote and preparation-free method of temperature imaging of aqueous solutions in microchannels of microfluidic chips. The principle of this method is based on the temperature dependency of the near-infrared (NIR) absorption band (ν(2) + ν(3) band) of water. Temperature images were constructed from absorbances in a narrow wavelength range including 1908 nm, the most sensitive to temperature in the band, measured by using an NIR camera and an optical narrow-bandpass filter. Calculation and calibration results demonstrated a linear relationship between the absorption coefficient and temperature with a temperature coefficient of 1.5 × 10(-2) K(-1) mm(-1). Temperature images of 50 μm thick water in a Y-shaped PDMS microchannel locally heated by a neighboring hot wire were obtained, in which thermal diffusion processes in the microchip were visualized. Temperature resolution was estimated to be approximately 0.2 K according to the temperature coefficient and noise level.
Collapse
Affiliation(s)
- Naoto Kakuta
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
15
|
Gruhl FJ, Rapp BE, Länge K. Biosensors for diagnostic applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 133:115-48. [PMID: 22223139 DOI: 10.1007/10_2011_130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors combine a transducer with a biorecognition element and thus are able to transform a biochemical event on the transducer surface directly into a measurable signal. By this they have the potential to provide rapid, real-time, and accurate results in a comparatively easy way, which makes them promising analytical devices. Since the first biosensor was introduced in 1962 as an "enzyme electrode" for monitoring glucose in blood, medical applications have been the main driving force for further biosensor development. In this chapter we outline potential biosensor setups, focusing on transduction principles, biorecognition layers, and biosensor test formats, with regard to potential applications. A summary of relevant aspects concerning biosensor integration in efficient analytical setups is included. We describe the latest applications of biosensors in diagnostic applications focusing on detection of molecular biomarkers in real samples. An overview of the current state and future trends of biosensors in this field is given.
Collapse
Affiliation(s)
- Friederike J Gruhl
- Karlsruhe Institute of Technology Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | | | |
Collapse
|
16
|
Risveden K, Dick KA, Bhand S, Rydberg P, Samuelson L, Danielsson B. Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications. NANOTECHNOLOGY 2010; 21:055102. [PMID: 20023308 DOI: 10.1088/0957-4484/21/5/055102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on SiN(x)-covered wafers. Two different reactors are shown: one with simple, one-dimensional nanorods and one with branched nanorod structures (nanotrees). Significantly higher enzymatic activity is found for the nanotree reactors than for the nanorod reactors, most likely due to the increased gold surface area and thereby higher enzyme binding capacity. A theoretical calculation is included to show how the enzyme kinetics and hence the sensitivity can be influenced and increased by the control of electrical fields in relation to the active sites of enzymes in an electronic biosensor. The possible effects of electrical fields employed in the RISFET on the function of acetylcholine esterase is investigated using quantum chemical methods, which show that the small electric field strengths used are unlikely to affect enzyme kinetics. Acetylcholine esterase activity is determined using choline oxidase and peroxidase by measuring the amount of choline formed using the chemiluminescent luminol reaction.
Collapse
Affiliation(s)
- Klas Risveden
- Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Huang X, Li S, Schultz J, Wang Q, Lin Q. A Capacitive MEMS Viscometric Sensor for Affinity Detection of Glucose. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2009; 18:1246-1254. [PMID: 24511213 PMCID: PMC3915933 DOI: 10.1109/jmems.2009.2034869] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper presents a capacitively based microelectromechanical systems affinity sensor for continuous glucose monitoring (CGM) applications. This sensor consists of a vibrating Parylene diaphragm, which is remotely driven by a magnetic field and situated inside a microchamber. A solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-ran-PAAPBA), a biocompatible glucose-sensitive polymer, fills the microchamber, which is separated from its surroundings by a semipermeable membrane. Glucose permeates through the membrane and binds reversibly to the phenylboronic acid moiety of the polymer. This results in a viscosity change of the sensing solution, causing a detectable change in the Parylene diaphragm vibration which can be measured capacitively. Experimental results demonstrate that the device is capable of detecting glucose at physiologically relevant concentrations ranging from 30 to 360 mg/dL. The response time of the sensor to glucose concentration changes is approximately 1.5 min, which can be further improved with optimized device designs. Excellent reversibility and stability are observed in sensor responses, as highly desired for long-term CGM.
Collapse
Affiliation(s)
- Xian Huang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027 USA
| | - Siqi Li
- Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, Columbia, SC 29208 USA
| | - Jerome Schultz
- Department of Bioengineering, University of California, Riverside, CA 92521 USA
| | - Qian Wang
- Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, Columbia, SC 29208 USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027 USA
| |
Collapse
|
18
|
Liu X, Lo RC, Gomez FA. Fabrication of a microfluidic enzyme reactor utilizing magnetic beads. Electrophoresis 2009; 30:2129-33. [PMID: 19582716 DOI: 10.1002/elps.200900041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An enzyme-catalyzed microfluidic assay using magnetic micro-beads is described. Here, diaphorase (DI) (E.C. 1.6.99) is covalently attached to the magnetic micro-beads (2.7 mum) and integrated into a short section of a microchip fabricated from PDMS. DI converts non-fluorescent resazurin to fluorescent resorufin in the presence of nicotinamide adenine dinucleotide phosphate (NADH). In this work, an embedded magnet holds the micro-beads in place within the microchannel while a solution of resazurin and NADH in buffer is flowed through the beads. Incorporation of the micro-beads into the microchannel requires only a few minutes and offers well-defined spatial resolution and reproducibility. At a flow rate of 41.2 microL/h, a stable state for the enzyme reaction in the microfluidic format was achieved within 50 s. The maximum conversion of the reaction was obtained at a concentration of 1.25 mM NADH. The reaction yield is affected by ZnCl(2) and at concentrations in excess of 90.0 mM, the activity of DI was almost double without ZnCl(2). At 5.2 mM potassium chloride, the activity of DI reached its maximum value. Overall, the conversion of resazurin in microfluidic format was more than twice than that in a batch assay.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA 90032-8202, USA
| | | | | |
Collapse
|
19
|
Huang X, Li S, Schultz JS, Wang Q, Lin Q. A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer. SENSORS AND ACTUATORS. B, CHEMICAL 2009; 140:603-609. [PMID: 24511207 PMCID: PMC3916006 DOI: 10.1016/j.snb.2009.04.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a MEMS affinity sensor that can potentially allow long-term continuous monitoring of glucose in subcutaneous tissue for diabetes management. The sensing principle is based on detection of viscosity changes due to affinity binding between glucose and poly(acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-ran-PAAPBA), a biocompatible, glucose-specific polymer. The device uses a magnetically driven vibrating microcantilever as a sensing element, which is fabricated from Parylene and situated in a microchamber. A solution of PAA-ran-PAAPBA fills the microchamber, which is separated from the surroundings by a semi-permeable membrane. Glucose permeates through the membrane and binds reversibly to the phenylboronic acid moiety of the polymer. This results in a viscosity change of the sensing solution, which is obtained by measuring the damped cantilever vibration using an optical lever setup, allowing determination of the glucose concentration. Experimental results demonstrate that the device is capable of detecting glucose at physiologically relevant concentrations from 27 mg/dL to 324 mg/dL. The glucose response time constant of the sensor is approximately 3 min, which can be further improved with device design optimization. Excellent reversibility and stability are observed in sensor responses, as highly desired for long-term, stable continuous glucose monitoring.
Collapse
Affiliation(s)
- Xian Huang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Siqi Li
- Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, Columbia, SC, USA
| | - Jerome S. Schultz
- Department of Bioengineering, University of California, Riverside, CA, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, Columbia, SC, USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
20
|
Kan J, Chen C, Jing G. The galactose biosensor based on microporous polyacrylonitrile. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500389553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Kyriacou G, Vadgama P, Wang W. Characterization of a laminar flow cell for the prevention of biosensor fouling. Med Eng Phys 2006; 28:989-98. [PMID: 16837233 DOI: 10.1016/j.medengphy.2006.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/04/2006] [Indexed: 11/23/2022]
Abstract
A flow cell using dual parallel laminar flows was designed and fabricated with the aim to prevent biosensor fouling. Y-shaped entrances allowed the introduction of sample and electrolyte streams, with the electrolyte serving as a mobile protective layer near the biosensor. Potassium permanganate was used to quantify the diffusion in the flow cell. Optical intensity analysis of potassium permanganate along a series of transverse lines across the flow cell was carried out under different flow conditions. It was found that the error function, erf(y/[square root](Dt)), where y was the position along the transverse line, D the diffusion coefficient of the solute and t was the time, gave reasonable approximation to the diffusion of potassium permanganate in the cell. The diffusion coefficient of potassium permanganate was determined in stop-flow measurements and the value, D=4.0 x 10(-5)cm(2)/s, agreed to previously reported values. Velocity distribution in the flow cell was simulated numerically to reveal the development of two inflows into one single laminar flow. Results from the study provided preliminary data on solute diffusion characteristics in the flow cell and supported the working principle of laminar flow cells in preventing biosensor fouling.
Collapse
Affiliation(s)
- G Kyriacou
- Interdisciplinary Research Centre in Biomedical Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | |
Collapse
|
22
|
Detection of dichlorvos residue by flow injection calorimetric biosensor based on immobilized chicken liver esterase. J FOOD ENG 2006. [DOI: 10.1016/j.jfoodeng.2005.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
|