1
|
Protein-peptide arrays for detection of specific anti-hepatitis D virus (HDV) genotype 1, 6, and 8 antibodies among HDV-infected patients by surface plasmon resonance imaging. J Clin Microbiol 2015; 53:1164-71. [PMID: 25631795 DOI: 10.1128/jcm.03002-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Liver diseases linked to hepatitis B-hepatitis D virus co- or superinfections are more severe than those during hepatitis B virus (HBV) monoinfection. The diagnosis of hepatitis D virus (HDV) infection therefore remains crucial in monitoring patients but is often overlooked. To integrate HDV markers into high-throughput viral hepatitis diagnostics, we studied the binding of anti-HDV antibodies (Abs) using surface plasmon resonance imaging (SPRi). We focused on the ubiquitous HDV genotype 1 (HDV1) and the more uncommon African-HDV6 and HDV8 genotypes to define an array with recombinant proteins or peptides. Full-length and truncated small hepatitis D antigen (S-HDAg) recombinant proteins of HDV genotype 1 (HDV1) and 11 HDV peptides of HDV1, 6, and 8, representing various portions of the delta antigen were grafted onto biochips, allowing SPRi measurements to be made. Sixteen to 17 serum samples from patients infected with different HDV genotypes were injected onto protein and peptide chips. In all, Abs against HDV proteins and/or peptides were detected in 16 out of 17 infected patients (94.12%), although the amplitude of the SPR signal varied. The amino-terminal part of the protein was poorly immunogenic, while epitope 65-80, exposed on the viral ribonucleoprotein, may be immunodominant, as 9 patient samples led to a specific SPR signal on peptide 65 type 1 (65#1), independently of the infecting genotype. In this pilot study, we confirmed that HDV infection screening based on the reactivity of patient Abs against carefully chosen HDV peptides and/or proteins can be included in a syndrome-based viral hepatitis diagnostic assay. The preliminary results indicated that SPRi studying direct physical HDAg-anti-HDV Ab interactions was more convenient using linear peptide epitopes than full-length S-HDAg proteins, due to the regeneration process, and may represent an innovative approach for a hepatitis syndrome-viral etiology-exploring array.
Collapse
|
2
|
Tsai NP, Wu YC, Chen JW, Wu CF, Tzeng CM, Syu WJ. Multiple functions of l0036 in the regulation of the pathogenicity island of enterohaemorrhagic Escherichia coli O157:H7. Biochem J 2006; 393:591-9. [PMID: 16248852 PMCID: PMC1360710 DOI: 10.1042/bj20051201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diarrhoeagenic enterohaemorrhagic Escherichia coli and enteropathogenic E. coli attach to human intestinal epithelium and efface brush-border microvilli, forming an A/E (attaching and effacing) lesion. These human pathogens are phenotypically similar to the mouse pathogen Citrobacter rodentium. Genetically, they all have a homologous set of virulent genes involved in the A/E lesion, and these genes are organized on a LEE (locus of enterocyte effacement), a pathogenicity island. This island comprises 41 specific open reading frames, of which most are organized at five operons, LEE1, LEE2, LEE3, LEE4 and tir (LEE5). The expression of the LEE genes is regulated in a complicated manner, and current knowledge is that there are at least two positive regulators, Ler (LEE-encoded regulator) and GrlA (global regulator of LEE activator), and one negative regulator, called GrlR (global regulator of LEE repressor). In enterohaemorrhagic E. coli, GrlA is encoded by l0043, whereas GrlR is encoded by l0044. Here we report a fourth regulatory gene located in LEE3, namely l0036. Its expression is tightly controlled. When overexpressed, this factor, named Mpc (multiple point controller), interacts with Ler and suppresses the expression of the LEE proteins. When the translation is not initiated or terminated before maturation, the type III secretion of effectors is completely abolished. Therefore, together with the fact that several cis elements reside in the region that l0036 spans, l0036 appeared to have multiple functions in the regulation of LEE expression.
Collapse
Affiliation(s)
- Nien-Pei Tsai
- *Institute of Microbiology and Immunology, National Yang-Ming University, 112 Taipei, Taiwan, Republic of China
| | - Yi-Chih Wu
- *Institute of Microbiology and Immunology, National Yang-Ming University, 112 Taipei, Taiwan, Republic of China
| | - Jenn-Wei Chen
- *Institute of Microbiology and Immunology, National Yang-Ming University, 112 Taipei, Taiwan, Republic of China
| | - Chih-Feng Wu
- *Institute of Microbiology and Immunology, National Yang-Ming University, 112 Taipei, Taiwan, Republic of China
| | - Chi-Meng Tzeng
- †Department of Research and Development, U-Vision Biotech Inc., 231 Hsin-Tien, Taiwan, Republic of China
| | - Wan-Jr Syu
- *Institute of Microbiology and Immunology, National Yang-Ming University, 112 Taipei, Taiwan, Republic of China
- To whom correspondence should be addressed (email )
| |
Collapse
|
3
|
Chiang YW, Wu JC, Wang KC, Lai CW, Chung YC, Hu YC. Efficient expression of histidine-tagged large hepatitis delta antigen in baculovirus-transduced baby hamster kidney cells. World J Gastroenterol 2006; 12:1551-7. [PMID: 16570347 PMCID: PMC4124287 DOI: 10.3748/wjg.v12.i10.1551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the baculovirus/mammalian cell system for efficient expression of functional large hepatitis delta antigen (L-HDAg).
METHODS: A recombinant baculovirus expressing histidine-tagged L-HDAg (L-HDAgH) was constructed to transduce baby hamster kidney (BHK) cells by a simplified transduction protocol.
RESULTS: The recombinant baculovirus transduced BHK cells with efficiencies higher than 90% as determined by flow cytometry. The expression level was significantly higher than that obtained by plasmid transfection and was further enhanced 3-fold to around 19 pg/cell by the addition of 10 mmol/L sodium butyrate. Importantly, the expressed L-HDAgH was localized to the cell nucleus and correctly isoprenylated as determined by immunofluorescence labeling and confocal microscopy. Moreover, L-HDAgH interacted with hepatitis B surface antigen to form virus-like particles.
CONCLUSION: The fusion with histidine tags as well as overexpression of L-HDAgH in the baculovirus-transduced BHK cells does not impair the biological functions. Taken together, the baculovirus/mammalian cell system offers an attractive alternative for high level expression of L-HDAgH or other proteins that require extensive post-translational modifications.
Collapse
Affiliation(s)
- Ying-Wei Chiang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, China
| | | | | | | | | | | |
Collapse
|
4
|
Chen JW, Sun CM, Sheng WL, Wang YC, Syu WJ. Expression Analysis of Up-Regulated Genes Responding to Plumbagin in Escherichia coli. J Bacteriol 2006; 188:456-63. [PMID: 16385035 PMCID: PMC1347270 DOI: 10.1128/jb.188.2.456-463.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Plumbagin is found in many medicinal plants and has been reported to have antimicrobial activities. We examined the molecular responses of Escherichia coli to plumbagin by using a proteomic approach to search for bacterial genes up-regulated by the drug. The protein profile obtained was compared with that of E. coli without the plumbagin treatment. Subsequent analyses of the induced proteins by mass spectroscopy identified several up-regulated genes, including ygfZ, whose function has not been defined. Analyses of the 5'-flanking sequences indicate that most of these genes contain a marbox-like stretch, and several of them are categorized as members of the mar/sox regulon. Representatives of these genes were cloned into plasmids, and the marbox-like sequences were modified by site-directed mutagenesis. It was proven that mutations in these regions substantially repressed the level of proteins encoded by the downstream genes. Furthermore, plumbagin's early effect was demonstrated to robustly induce SoxS rather than MarA, an observation distinctly different from that seen with sodium salicylate.
Collapse
Affiliation(s)
- Jenn-Wei Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, 155 Sec. 2, Li-Nong Street, Beitou, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Chiu HJ, Syu WJ. Functional analysis of EspB from enterohaemorrhagic Escherichia coli. MICROBIOLOGY-SGM 2005; 151:3277-3286. [PMID: 16207911 DOI: 10.1099/mic.0.28115-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In enterohaemorrhagic Escherichia coli (EHEC), the type III secretion protein EspB is translocated into the host cells and plays an important role in adherence, pore formation and effector translocation during infection. The secretion domain of EspB has been mapped previously. To define the other functional determinants of EspB, several plasmids encoding different fragments of EspB were created and analysed to see which of them lost the functions of the full-length molecule. One finding was that residues 118-190 of EspB were required for both efficient translocation of EspB and interaction of EspB with EspA. Additionally, the segment consisting of residues 217-312 was necessary for bacterial adherence. Furthermore, a predicted transmembrane domain (residues 99-118) was found to be critical for EHEC to cause red blood cell haemolysis, presumably by forming pores in the cell membrane. The same segment was also important for actin accumulation induced beneath the bacterial-attachment site. Taken together, these data indicate that the EspB protein (312 residues in total) has functions associated with its different regions. These regions may interact with each other or with other components of the type III system to orchestrate the intricate actions of EHEC during infection.
Collapse
Affiliation(s)
- Hao-Jie Chiu
- Institute of Microbiology and Immunology, National Yang-Ming University, Beitou 112, Taipei, Taiwan
| | - Wan-Jr Syu
- Institute of Microbiology and Immunology, National Yang-Ming University, Beitou 112, Taipei, Taiwan
| |
Collapse
|
6
|
Chuang CH, Chiu HJ, Hsu SC, Ho JY, Syu WJ. Comparison of Tir from enterohemorrahgic and enteropathogenic Escherichia coli strains: two homologues with distinct intracellular properties. J Biomed Sci 2005; 13:73-87. [PMID: 16228285 DOI: 10.1007/s11373-005-9034-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Accepted: 09/12/2005] [Indexed: 12/17/2022] Open
Abstract
Tir of enteropathogenic Escherichia coli (EPEC) or enterohemorrahgic E. coil (EHEC) is translocated by a type III secretion system to the host cell membranes where it serves as a receptor for the binding of a second bacterial membrane protein. In response to the binding, EPEC Tir is phosphorylated at Tyr474, and this phosphorylation is necessary for the signaling of pedestal formation. Tir of EHEC has no equivalent phosphorylation site but it is similarly needed for cytoskeleton rearrangement. How these two Tir molecules achieve their function by apparently different mechanisms is not completely clear. To examine their intrinsic differences, the two Tirs were expressed in HeLa cells and compared. Actin in complexes could be pelleted down from the lysate of cells expressing EHEC Tir but not EPEC Tir. By immunostaining, neither Tir molecule was found in phosphorylated state. In the cytoplasm, EHEC Tir was frequently found in fibrous structures whereas EPEC Tir was observed completely in a diffusive form. The determinant critical for the EHEC Tir fibrous formation was mapped to the C-terminal region of the molecule that deviates from the EPEC counterpart. This region may play a role in taking an alternative route different from Tyr474 phosphorylation to transduce signals.
Collapse
Affiliation(s)
- Chen-Hua Chuang
- Institute of Microbiology and Immunology, National Yang-Ming University, 155 Sec. 2, Li-Noong St., Beitou, Taipei, 112, Taiwan
| | | | | | | | | |
Collapse
|
7
|
Wang KC, Wu JC, Chung YC, Ho YC, Chang MDT, Hu YC. Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol Bioeng 2005; 89:464-73. [PMID: 15609271 DOI: 10.1002/bit.20385] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Baculovirus has been employed for a wide variety of applications. In this study, we further expanded the application to the high-level expression of hepatitis delta virus (HDV) antigens and the formation of virus-like particles (VLP) in transduced mammalian cells. To this end, two recombinant baculoviruses were constructed to express large hepatitis delta antigen (L-HDAg) and hepatitis B surface antigen (HBsAg) under mammalian promoters. With a simplified transduction protocol using unconcentrated virus, high transduction efficiencies were achieved in hepatoma cells, in which L-HDAg and HBsAg were expressed abundantly, allowing for easy colorimetric detection in Western blots. L-HDAg alone was nucleus-bound and HBsAg alone was secreted; formation and secretion of HDV-like particles were readily detected upon coexpression, indicating that the baculovirus-expressed proteins were processed correctly as the authentic proteins. Quantitative real-time PCR (Q-PCR) analyses quantitatively revealed that baculovirus transduction was more efficient than plasmid transfection with respect to DNA uptake and DNA transport to the nucleus. Furthermore, superinfection introduced more baculovirus DNA into cells in the long-term culture as revealed by Q-PCR, thereby enhancing and prolonging the expression. In summary, baculovirus transduction can be an attractive method as an alternative to the plasmid transfection commonly employed for HDV research thanks to the significantly higher gene delivery efficiencies as well as the abundant expression and proper processing. Baculovirus can also be envisaged as a useful tool for investigating protein-cell interactions and virus assembly.
Collapse
Affiliation(s)
- Kuei-Chun Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Wang SH, Syu WJ, Hu ST. Identification of the homotypic interaction domain of the core protein of dengue virus type 2. J Gen Virol 2004; 85:2307-2314. [PMID: 15269372 DOI: 10.1099/vir.0.80067-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dengue virus causes dengue haemorrhagic fever or dengue shock syndrome with a high mortality rate. The genome of dengue virus is a positive-sense, single-stranded RNA encoding three structural and seven non-structural proteins. The core protein is one of the three structural proteins and is the building block of the nucleocapsid of dengue virus. The core protein of dengue virus type 2 (DEN2) is composed of 100 aa with four alpha-helix domains. An internal hydrophobic domain located at aa 44-60 was identified. The DEN2 core protein was shown to form homodimers. Deletion of aa 1-36 or 73-100 decreased but did not completely abolish the core-to-core homotypic interaction, whereas deletion of a portion (aa 44-60) within aa 37-72 completely abolished the ability of the DEN2 core proteins to interact with each other. A recombinant DEN2 core protein corresponding to aa 37-72 was able to undergo homotypic interaction and bound to a native DEN2 core protein. The results of this study indicated that the homotypic interaction domain of the DEN2 core protein is located at aa 37-72 and that the internal hydrophobic domain located at aa 44-60 plays a pivotal role in core-to-core homotypic interaction.
Collapse
Affiliation(s)
- Shao-Hung Wang
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wan-Jr Syu
- Department of Microbiology and Immunology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Shiau-Ting Hu
- Department of Microbiology and Immunology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
9
|
Hsu SC, Wu JC, Sheen IJ, Syu WJ. Interaction and replication activation of genotype I and II hepatitis delta antigens. J Virol 2004; 78:2693-700. [PMID: 14990689 PMCID: PMC353722 DOI: 10.1128/jvi.78.6.2693-2700.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of hepatitis D viruses (HDV) vary 5 to 14% among isolates of the same genotype and 23 to 34% among different genotypes. The only viral-genome-encoded antigen, hepatitis delta antigen (HDAg), has two forms that differ in size. The small HDAg (HDAg-S) trans-activates viral replication, while the large form (HDAg-L) is essential for viral assembly. Previously, it has been shown that the packaging efficiency of HDAg-L is higher for genotype I than for genotype II. In this study, the question of whether other functional properties of the HDAgs are affected by genotype differences is addressed. By coexpression of the two antigens in HuH-7 cells followed by specific antibody precipitation, it was found that HDAgs of different origins interacted without genotypic discrimination. Moreover, in the presence of hepatitis B virus surface antigen, HDAg-S was incorporated into virion-like particles through interaction with HDAg-L without genotype restriction. As to the differences in replication activation of genotype I HDV RNA, all HDAg-S clones tested had some trans-activation activity, and this activity varied greatly among isolates. As to the support of HDV genotype II replication, only clones of HDAg-S from genotype II showed trans-activation activity, and this activity also varied among isolates. In conclusion, genotype has no effect on HDAg interaction and genotype per se only partly predicts how much the HDAg-S of an HDV isolate affects the replication of a second HDV isolate.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Institutes of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
10
|
Wu CF, Wang SH, Sun CM, Hu ST, Syu WJ. Activation of dengue protease autocleavage at the NS2B-NS3 junction by recombinant NS3 and GST-NS2B fusion proteins. J Virol Methods 2004; 114:45-54. [PMID: 14599678 DOI: 10.1016/j.jviromet.2003.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dengue virus possesses a protease complex made up of the non-structural proteins NS2B and NS3. This protease complex catalyzes autocleavage (cis) at the junction between NS2A and NS2B as well as between NS2B and NS3. It also catalyzes trans cleavage at the junctions between NS3 and NS4A as well as NS4B and NS5. The cis cleavage at the NS2B-NS3 junction has been demonstrated in Escherichia coli by linking a 40-residue hydrophilic segment of NS2B to a NS3 N-terminal protease domain carrying the NS2B-NS3 cleavage site. To explore whether the hydrophilic segment could be further shortened, residues from both N- and C-termini of the NS2B hydrophilic segment were deleted. The results indicate that the four C-terminal's consecutive Glu residues could be deleted, each one leading to a further loss of activity, whereas the N-terminal boundary needed to be absolutely preserved. To examine whether an NS2B peptide could be expressed independently and added to activate the NS3 protease domain, the hydrophilic region of NS2B was fused to the C-terminus of glutathione-S-transferase (GST). This recombinant protein was soluble in bacteria and easily purified by affinity chromatography. Without removing the GST, the fusion protein activated the NS3 protease domain allowing it to function at the adjacent NS2B-NS3 junction. Thus, the findings reported below have produced a feasible alternative for the assay of dengue viral protease and this should facilitate the development of a screening method for inhibitors of dengue protease.
Collapse
Affiliation(s)
- Chia-Fen Wu
- Institute of Biopharmaceutics, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Chuang CH, Hsu SC, Hsu CL, Hsu TC, Syu WJ. Construction of a tagging system for subcellular localization of proteins encoded by open reading frames. J Biomed Sci 2001; 8:170-5. [PMID: 11287747 DOI: 10.1007/bf02256409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We have previously characterized a monoclonal antibody (SC1D7) that is directed to maltose-binding protein (MBP) of Escherichia coli and other closely related enteric bacteria. SC1D7 does not cross-react with proteins in eucaryotes and appears to be a highly specific tool in immunochemical analyses. To better map the epitope, we took advantage of an available plasmid, pMAL-c2, that encodes the E. coli MBP-coding sequence and constructed plasmids to express MBP fragments. A construct containing the N-terminal portion of MBP does not react with SC1D7, whereas a second construct expressing glutathione S-transferase fused with the C-terminal half of MBP does react with SC1D7. To precisely define the epitope, random peptides displayed on M13 were used to react with SC1D7. Sequences of reactive peptides were aligned, and a consensus sequence of XDXRIPX was deduced. This sequence matches MBP with an amino acid stretch of KDPRIAA. To consolidate the mapping result, a sequence encoding this epitope was inserted into an expression vector and the resulting recombinant protein did react with SC1D7. Thereafter, this epitope was incorporated into a eucaryotic expression plasmid containing a previously defined hepatitis delta virus epitope for protein tagging. This two-epitope-tagging vector is useful in various molecular analyses. We demonstrate its usage for localization of a bacterial virulence factor in host cells. This vector should be applicable for high-throughput characterization of new open reading frames found in genome sequencing.
Collapse
Affiliation(s)
- C H Chuang
- Institute of Microbiology and Immunology, National Yang Ming University, Shih-Pai, Taipei 112, Taiwan, ROC
| | | | | | | | | |
Collapse
|