Caffarena ER, Grigera JR, Bisch PM. Stochastic molecular dynamics of peanut lectin PNA complex with T-antigen disaccharide.
J Mol Graph Model 2002;
21:227-40. [PMID:
12463641 DOI:
10.1016/s1093-3263(02)00119-5]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The stochastic boundary molecular dynamics simulation method was applied to investigate the structure of a complex comprised of a tetrameric peanut lectin and the tumour-associated disaccharide, Galbeta1-3GalNAc (T-antigen). Only a small region encompassing the active site was explicitly included in the calculations, but the electrical contribution of most outer atoms was taken into account by adding to the effective potential a term coming from an electrostatic potential grid that was pre-calculated and used to approximate the electrostatic energy and the force at any point in the interacting site. Results of simulating the intermolecular hydrogen bond network agree fairly well with X-ray experiments. An estimation of the direct and water-mediated interaction mean lifetimes and mean water residence times around the T-antigen oxygen atoms was computed over 400 ps. Monitoring the behaviour of water molecules within the active site revealed that there is a constant exchange of water with the bulk, especially in the proximity of ASN41, ASN127 and GLU129. The temporal evolution of the glycosidic linkage was also investigated and compared with simulations of T-antigen in solution. These studies of peanut lectins-sugar complexes clearly emphasize the importance of bound water molecules in generating carbohydrate specificity.
Collapse