1
|
Rezende WS, Neto AM, Corbi JJ, Corbi PP, de Paiva REF, Bergamini FRG. Coordination Compounds as Antivirals against Neglected Tropical Diseases. ChemMedChem 2024:e202400799. [PMID: 39591549 DOI: 10.1002/cmdc.202400799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Neglected tropical viral diseases are a burden to social and economic welfare being responsible for higher pathogen-related mortality rates and chronic debilitating patient conditions. Climatic changes have widened up the infectibility ratio of such diseases, with autochthonous transmission in formerly temperate-to-cold environments. The slow-paced development of potential vaccines followed by the inexistence of antiviral drugs for such diseases considerably worsens the situation. Coordination compounds are a class of molecules that have been extensively explored as antiviral drugs for viruses such as poliovirus, HIV and, more recently, SARS-CoV-2, figuring as potential molecules to be explored and capitalized as antivirals against neglected viral strains. In this review the current efforts from the inorganic medicinal chemistry to address viral neglected tropical diseases, with emphasis to coordination compounds, is presented. Since many of neglected viruses are also arthropod-borne viruses, relying on a vector for transmission, coordination entities able to mitigate vectors are also presented as a parallel strategy to prevent and control such diseases.
Collapse
Affiliation(s)
- Wallace S Rezende
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Antonio Marçal Neto
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Juliano J Corbi
- Department of Hydraulics and Sanitation, University of São Paulo-USP, 13566-590, São Carlos, São Paulo, Brazil
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
| | - Raphael E F de Paiva
- Donostia International Physics Center-DIPC, Paseo Manuel de Lardizabal, 4 Donostia, Euskadi, Gipuzkoa, 20018, Spain
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
2
|
Vogel JU, Schmidt S, Schmidt D, Rothweiler F, Koch B, Baer P, Rabenau H, Michel D, Stamminger T, Michaelis M, Cinatl J. The Thrombopoietin Receptor Agonist Eltrombopag Inhibits Human Cytomegalovirus Replication Via Iron Chelation. Cells 2019; 9:cells9010031. [PMID: 31861948 PMCID: PMC7017049 DOI: 10.3390/cells9010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
The thrombopoietin receptor agonist eltrombopag was successfully used against human cytomegalovirus (HCMV)-associated thrombocytopenia refractory to immunomodulatory and antiviral drugs. These effects were ascribed to the effects of eltrombopag on megakaryocytes. Here, we tested whether eltrombopag may also exert direct antiviral effects. Therapeutic eltrombopag concentrations inhibited HCMV replication in human fibroblasts and adult mesenchymal stem cells infected with six different virus strains and drug-resistant clinical isolates. Eltrombopag also synergistically increased the anti-HCMV activity of the mainstay drug ganciclovir. Time-of-addition experiments suggested that eltrombopag interfered with HCMV replication after virus entry. Eltrombopag was effective in thrombopoietin receptor-negative cells, and the addition of Fe3+ prevented the anti-HCMV effects, indicating that it inhibits HCMV replication via iron chelation. This may be of particular interest for the treatment of cytopenias after hematopoietic stem cell transplantation, as HCMV reactivation is a major reason for transplantation failure. Since therapeutic eltrombopag concentrations are effective against drug-resistant viruses, and synergistically increase the effects of ganciclovir, eltrombopag is also a drug-repurposing candidate for the treatment of therapy-refractory HCMV disease.
Collapse
Affiliation(s)
- Jens-Uwe Vogel
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Sophie Schmidt
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Daniel Schmidt
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Benjamin Koch
- Medizinische Klinik III, Nephrologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (B.K.); (P.B.)
| | - Patrick Baer
- Medizinische Klinik III, Nephrologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (B.K.); (P.B.)
| | - Holger Rabenau
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Detlef Michel
- Institut für Virologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (D.M.); (T.S.)
| | - Thomas Stamminger
- Institut für Virologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (D.M.); (T.S.)
| | - Martin Michaelis
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: (J.C.); (M.M.); Tel.: +49-69-678665-72 (J.C.); +44-1227-82-7804 (M.M.)
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
- Correspondence: (J.C.); (M.M.); Tel.: +49-69-678665-72 (J.C.); +44-1227-82-7804 (M.M.)
| |
Collapse
|
3
|
Fakharzadeh S, Kalanaky S, Hafizi M, Goya MM, Masoumi Z, Namaki S, Shakeri N, Abbasi M, Mahdavi M, Nazaran MH. The new nano-complex, Hep-c, improves the immunogenicity of the hepatitis B vaccine. Vaccine 2013; 31:2591-7. [PMID: 23583463 DOI: 10.1016/j.vaccine.2013.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/07/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
Prevention of hepatitis B requires a vaccine that stimulates the humoral and cellular immune responses in a balanced manner, particularly those associated with Th1 and cytotoxic T cells. Alum adjuvant is currently used in the hepatitis B vaccine formulations but it lacks the efficiency of establishing such immune responses. Therefore, for accessing a suitable vaccine to prevent this fatal disease, it is essential to design and construct a new adjuvant which can overcome the limitations of the alum adjuvant and can stimulate a strong Th1 response as used along with it. In the present study, the adjuvant effect of Hep-c, the first nano-complex which was synthesized by nanochelating technology to improve the immunogenicity of the vaccine against hepatitis B, had been evaluated. Female Balb/c mice were divided into 7 groups and were injected with 10μg/ml of the hepatitis B vaccine and different doses of Hep-c for 3 times. Groups merely treated with the vaccine, Hep-c or phosphate buffered solution were used as control. Total specific antibody, IgG1, IgG2a, IgG2b, IgM, interleukin-4 (IL-4) and interferon-gamma (IFN-γ) levels were examined by the ELISA method. The proliferative response of the splenocytes was evaluated using bromodeoxyuridine assay. Results showed that immunization with hepatitis B vaccine and Hep-c increased the lymphocyte proliferation and specific IgM and IgG2a compared to the hepatitis B vaccine immunized group. Also, this nano-complex significantly increased the IFN-γ and IL-4 cytokine levels compared to the hepatitis B vaccine immunized group. Our findings show that Hep-c can not only preserve the alum capacity to effectively stimulate production of the antibodies but also cover its inefficiency in inducing Th1 response and prompting cellular immunity. Thus, by boosting the performance of the hepatitis B vaccine, it seemed that this nano-adjuvant has the suitable potential to be used in the commercial HBS vaccine formulation.
Collapse
Affiliation(s)
- Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Costa N, Bombardieri C, Kuribayashi J, de Camargo M, Andrade L, Kagohara E, Espósito B. Antimicrobial Activity of Ethylenediaminedisuccinate Metal Complexes. Short Communication. Chem Biodivers 2008; 5:2156-2159. [DOI: 10.1002/cbdv.200890196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Michaelis M, Langer K, Arnold S, Doerr HW, Kreuter J, Cinatl J. Pharmacological activity of DTPA linked to protein-based drug carrier systems. Biochem Biophys Res Commun 2004; 323:1236-40. [PMID: 15451429 DOI: 10.1016/j.bbrc.2004.08.223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Indexed: 10/26/2022]
Abstract
The chelating agent diethylenetriaminepentaacetic acid (DTPA) inhibits human cytomegalovirus replication. Since chelating agents are known to exhibit anti-cancer effects, DTPA-induced cytotoxicity was evaluated in breast cancer cells (MCF-7) and neuroblastoma cells (UKF-NB-3). DTPA inhibited cancer cell growth in threefold lower concentrations compared to human foreskin fibroblasts (HFF). Antiviral and anti-cancer activity of chelating agents is caused by intracellular complexation of metal ions. DTPA, an extracellular chelator, was covalently coupled to human serum albumin (HSA) molecules, HSA nanoparticles (HSA-NP), gelatin type B (GelB) molecules, and GelB nanoparticles (GelB-NP) to increase cellular uptake. Coupling of DTPA to drug carrier systems increased its cytotoxic and antiviral activity by 5- to 8-fold. Confocal laser scanning microscope examination revealed uptake of DTPA-HSA-NP in UKF-NB-3 cells and HFF. Therefore, coupling of DTPA to protein-based drug carrier systems increases its antiviral and anti-cancer activity probably by mediating cellular uptake.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Zentrum der Hygiene, Klinikum der J.W. Goethe-Universität, Paul Ehrlich Str. 40, 60596 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|