1
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
2
|
Mellado S, Cuesta CM, Montagud S, Rodríguez‐Arias M, Moreno‐Manzano V, Guerri C, Pascual M. Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in neuroinflammation and cognitive dysfunctions induced by binge-like ethanol treatment in adolescent mice. CNS Neurosci Ther 2023; 29:4018-4031. [PMID: 37381698 PMCID: PMC10651955 DOI: 10.1111/cns.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are heterogeneous membrane vesicles secreted by cells in extracellular spaces that play an important role in intercellular communication under both normal and pathological conditions. Mesenchymal stem cells (MSC) are anti-inflammatory and immunoregulatory cells capable of secreting EVs, which are considered promising molecules for treating immune, inflammatory, and degenerative diseases. Our previous studies demonstrate that, by activating innate immune receptors TLR4 (Toll-like receptor 4), binge-like ethanol exposure in adolescence causes neuroinflammation and neural damage. AIMS To evaluate whether the intravenous administration of MSC-derived EVs is capable of reducing neuroinflammation, myelin and synaptic alterations, and the cognitive dysfunction induced by binge-like ethanol treatment in adolescent mice. MATERIALS & METHODS MSC-derived EVs obtained from adipose tissue were administered in the tail vein (50 microg/dose, one weekly dose) to female WT adolescent mice treated intermittently with ethanol (3.0 g/kg) during two weeks. RESULTS MSC-derived EVs from adipose tissue ameliorate ethanol-induced up-regulation of inflammatory genes (e.g., COX-2, iNOS, MIP-1α, NF-κB, CX3CL1, and MCP-1) in the prefrontal cortex of adolescent mice. Notably, MSC-derived EVs also restore the myelin and synaptic derangements, and the memory and learning impairments, induced by ethanol treatment. Using cortical astroglial cells in culture, our results further confirm that MSC-derived EVs decrease inflammatory genes in ethanol-treated astroglial cells. This, in turn, confirms in vivo findings. CONCLUSION Taken together, these results provide the first evidence for the therapeutic potential of the MSC-derived EVs in the neuroimmune response and cognitive dysfunction induced by binge alcohol drinking in adolescence.
Collapse
Affiliation(s)
- Susana Mellado
- Department of Physiology, School of Medicine and DentistryUniversity of ValenciaValenciaSpain
| | - Carlos M. Cuesta
- Department of Physiology, School of Medicine and DentistryUniversity of ValenciaValenciaSpain
| | - Sandra Montagud
- Department of Psychobiology, Facultad de PsicologíaUniversitat de ValenciaValenciaSpain
| | - Marta Rodríguez‐Arias
- Department of Psychobiology, Facultad de PsicologíaUniversitat de ValenciaValenciaSpain
| | | | | | - María Pascual
- Department of Physiology, School of Medicine and DentistryUniversity of ValenciaValenciaSpain
| |
Collapse
|
3
|
Saleem U, Khalid S, Chauhdary Z, Anwar F, Shah MA, Alsharif I, Babalghith AO, Khayat RO, Albalawi AE, Baokbah TAS, Farrukh M, Vargas-De-La-Cruz C, Panichayupakaranant P. The curative and mechanistic acumen of curcuminoids formulations against haloperidol induced Parkinson's disease animal model. Metab Brain Dis 2022; 38:1051-1066. [PMID: 36437394 DOI: 10.1007/s11011-022-01122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is slowly developing neurodegenerative disorder associated with gradual decline in cerebration and laboriousness to perform routine piece of work. PD imposed a social burden on society through higher medical cost and by loss of social productivity in current era. The available treatment options are expensive and associated with serious adverse effect after long term use. Therefore, there is a critical clinical need to develop alternative pharmacotherapies from natural sources to prevent and cure the pathological hall marks of PD with minimal cost. Our study aimed to scrutinize the antiparkinsonian potential of curcuminoids-rich extract and its binary and ternary inclusion complexes. In healthy rats, 1 mg/kg haloperidol daily intraperitoneally, for 3 weeks was used to provoke Parkinsonism like symptoms except control group. Curcuminoids rich extract, binary and ternary inclusion complexes formulations 15-30 mg/kg, L-dopa and carbidopa (100 + 25 mg/kg) were orally administered on each day for 3 weeks. Biochemical, histopathological and RT-qPCR analyses were conducted after neurobehavioral observations. Findings of current study indicated that all curcuminoids formulations markedly mitigated the behavioral abnormalities, recovered the level of antioxidant enzymes, acetylcholinesterase inhibitory activity and neurotransmitters. Histological analysis revealed that curcuminoids supplements stabilized the neuronal loss, pigmentation and Lewy bodies' formation. The mRNA expressions of neuro-inflammatory and specific PD pathological biomarkers were downregulated by treatment with curcuminoids formulations. Therefore, it is suggested that these curcuminoids rich extract, binary and ternary supplements should be considered as promising therapeutic agents in development of modern anti-Parkinson's disease medications.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Sundas Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Raiwind Road, Lahore, Pakistan
| | | | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, , Makkah, Saudi Arabia
| | - Rana O Khayat
- Biology Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam Farrukh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001, Lima, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, 15001, Lima, Peru
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy & Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand.
| |
Collapse
|
4
|
Fertan E, Brown RE. Age-Related Deficits in Working Memory in 5xFAD Mice in the Hebb-Williams Maze. Behav Brain Res 2022; 424:113806. [DOI: 10.1016/j.bbr.2022.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
|
5
|
Ledesma JC, Rodríguez‐Arias M, Gavito AL, Sánchez‐Pérez AM, Viña J, Medina Vera D, Rodríguez de Fonseca F, Miñarro J. Adolescent binge-ethanol accelerates cognitive impairment and β-amyloid production and dysregulates endocannabinoid signaling in the hippocampus of APP/PSE mice. Addict Biol 2021; 26:e12883. [PMID: 32043730 DOI: 10.1111/adb.12883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 11/29/2022]
Abstract
Previous research in rodents suggests that the long-term neurobehavioral disturbances induced by chronic ethanol (EtOH) exposure could be due to endocannabinoid system (ECS) alterations. Moreover, ECS failure has been proposed to mediate the cognitive impairment and β-amyloid production in Alzheimer disease (AD). Thus, in the present study, we evaluated the effects of adolescent EtOH binge drinking on the cognitive disturbances, hippocampal β-amyloid levels, and in the ECS expression on a transgenic mouse model (APP/PSEN, AZ) of AD. We exposed AZ and wild-type mice to a binge-drinking treatment during adolescence. At 6 and 12 months of age, we evaluated hippocampal-dependent learning and memory: β-amyloid concentrations and RNA and protein levels of cannabinoid type-2 receptors (CB2), diacylglycerol lipase-α (DAGLα), and monoacylglycerol lipase (MAGL) in the hippocampus. The results showed that binge-EtOH treatment worsens cognitive function and increases β-amyloid levels in AZ. At 6 months, EtOH heightens CB2 (RNA and protein) and DAGLα (RNA) expression in wild type but not in AZ. On the contrary, EtOH enhances MAGL RNA expression only in AZ. At 12 months, AZ displays increased levels of CB2 (RNA and protein) and DAGLα (protein) compared with control. Similar to what happens at 6 months, EtOH induces an increase in CB2 gene expression in wild type but not in AZ; however, it augments CB2 and DAGLα protein levels in both genotypes. Therefore, we propose that adolescent binge drinking accelerates cognitive deficits associated with aging and AD. It also accelerates hippocampal β-amyloid accumulation in AZ and affects differently the ECS response in wild type and AZ.
Collapse
Affiliation(s)
| | - Marta Rodríguez‐Arias
- Departament de Psicobiologia Universitat de València Valencia Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS‐Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
| | - Ana L. Gavito
- Instituto IBIMA, Hospital Regional Universitario de Málaga Unidad de Gestión de Salud Mental Málaga Spain
| | | | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine University of Valencia, CIBERFES Valencia Spain
| | - Dina Medina Vera
- Instituto IBIMA, Hospital Regional Universitario de Málaga Unidad de Gestión de Salud Mental Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Red Temática de Investigación Cooperativa en Salud (RETICS‐Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
- Instituto IBIMA, Hospital Regional Universitario de Málaga Unidad de Gestión de Salud Mental Málaga Spain
| | - José Miñarro
- Departament de Psicobiologia Universitat de València Valencia Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS‐Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
| |
Collapse
|
6
|
Pascual M, López‐Hidalgo R, Montagud‐Romero S, Ureña‐Peralta JR, Rodríguez‐Arias M, Guerri C. Role of mTOR-regulated autophagy in spine pruning defects and memory impairments induced by binge-like ethanol treatment in adolescent mice. Brain Pathol 2021; 31:174-188. [PMID: 32876364 PMCID: PMC8018167 DOI: 10.1111/bpa.12896] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adolescence is a brain maturation developmental period during which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. Different mechanism participates in adolescent brain maturation, including autophagy that plays a role in synaptic development and plasticity. Alcohol is a neurotoxic compound and its abuse in adolescence induces neuroinflammation, synaptic and myelin alterations, neural damage and behavioral impairments. Changes in synaptic plasticity and its regulation by mTOR have also been suggested to play a role in the behavioral dysfunction of binge ethanol drinking in adolescence. Therefore, by considering the critical role of mTOR in both autophagy and synaptic plasticity in the developing brain, the present study aims to evaluate whether binge ethanol treatment in adolescence would induce dysfunctions in synaptic plasticity and cognitive functions and if mTOR inhibition with rapamycin is capable of restoring both effects. Using C57BL/6 adolescent female and male mice (PND30) treated with ethanol (3 g/kg) on two consecutive days at 48-hour intervals over 2 weeks, we show that binge ethanol treatment alters the density and morphology of dendritic spines, effects that are associated with learning and memory impairments and changes in the levels of both transcription factor CREB phosphorylation and miRNAs. Rapamycin administration (3 mg/kg) prior to ethanol administration restores ethanol-induced changes in both plasticity and behavior dysfunctions in adolescent mice. These results support the critical role of mTOR/autophagy dysfunctions in the dendritic spines alterations and cognitive alterations induced by binge alcohol in adolescence.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
- Department of PhysiologySchool of Medicine and DentistryUniversity of ValenciaValenciaSpain
| | - Rosa López‐Hidalgo
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Juan R. Ureña‐Peralta
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| |
Collapse
|
7
|
Fuchsberger T, Yuste R, Martinez-Bellver S, Blanco-Gandia MC, Torres-Cuevas I, Blasco-Serra A, Arango R, Miñarro J, Rodríguez-Arias M, Teruel-Marti V, Lloret A, Viña J. Oral Monosodium Glutamate Administration Causes Early Onset of Alzheimer's Disease-Like Pathophysiology in APP/PS1 Mice. J Alzheimers Dis 2020; 72:957-975. [PMID: 31658055 DOI: 10.3233/jad-190274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamate excitotoxicity has long been related to Alzheimer's disease (AD) pathophysiology, and it has been shown to affect the major AD-related hallmarks, amyloid-β peptide (Aβ) accumulation and tau phosphorylation (p-tau). We investigated whether oral administration of monosodium glutamate (MSG) has effects in a murine model of AD, the double transgenic mice APP/PS1. We found that AD pathogenic factors appear earlier in APP/PS1 when supplemented with MSG, while wildtype mice were essentially not affected. Aβ and p-tau levels were increased in the hippocampus in young APP/PS1 animals upon MSG administration. This was correlated with increased Cdk5-p25 levels. Furthermore, in these mice, we observed a decrease in the AMPA receptor subunit GluA1 and they had impaired long-term potentiation. The Hebb-Williams Maze revealed that they had memory deficits. We show here for the first time that oral MSG supplementation can accelerate AD-like pathophysiology in a mouse model of AD.
Collapse
Affiliation(s)
- Tanja Fuchsberger
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Raquel Yuste
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Sergio Martinez-Bellver
- Department of Anatomy and Human Embriology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | | | | | - Arantxa Blasco-Serra
- Department of Anatomy and Human Embriology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Román Arango
- Department of Anatomy and Human Embriology, Faculty of Medicine, Universitat de València, Valencia, Spain.,Department of Computer Science, School of Engineering ETSE, Universitat de València, Burjassot, Spain
| | - Jose Miñarro
- Department of Psychobiology, Faculty of Psycology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psycology, Universitat de València, Valencia, Spain
| | - Vicent Teruel-Marti
- Department of Anatomy and Human Embriology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
8
|
Fertan E, Wong AA, Vienneau NA, Brown RE. Age and sex differences in motivation and spatial working memory in 3xTg-AD mice in the Hebb–Williams maze. Behav Brain Res 2019; 370:111937. [DOI: 10.1016/j.bbr.2019.111937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/16/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022]
|
9
|
Nikoui V, Ostadhadi S, Azhand P, Zolfaghari S, Amiri S, Foroohandeh M, Motevalian M, Sharifi AM, Bakhtiarian A. The effect of nitrazepam on depression and curiosity in behavioral tests in mice: The role of potassium channels. Eur J Pharmacol 2016; 791:369-376. [DOI: 10.1016/j.ejphar.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
|
10
|
Kupershmidt L, Amit T, Bar-Am O, Youdim MBH, Weinreb O. The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer's disease. Antioxid Redox Signal 2012; 17:860-77. [PMID: 22360429 DOI: 10.1089/ars.2011.4279] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS The aim of the present study was to evaluate the therapeutic effect of the novel neuroprotective multi-target nontoxic, lipophilic, brain permeable monoamine oxidase inhibitor and iron chelating-radical scavenging drug, M30, on the neuropathology and deficits of spatial learning and memory in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (Tg) Alzheimer's disease (AD) mice. RESULTS Here, we report that systemic treatment of APP/PS1 Tg mice with M30 for 9 months, significantly attenuated cognitive impairments in a variety of tasks of spatial learning and memory retention, working memory, learning abilities, anxiety levels, and memory for novel food and nesting behavior. Furthermore, we found that M30 reduced cerebral iron accumulation accompanied by a marked decrease in several AD-like phenotypes, including cerebral APP levels, amyloid β (Aβ) levels and plaques, phospho-APP and phospho-tau. Signaling studies revealed that M30 markedly downregulated the levels of phosphorylated cyclin-dependent kinase 5 and increased protein kinase B and glycogen synthase kinase 3β phosphorylation. INNOVATION Accumulation and deposition of brain iron is central to various neuropathological processes in AD, including oxidative stress, amyloid deposition, and tau phosphorylation. Thus, the concept of iron chelation holds considerable promise as a therapeutic strategy for AD pathogenesis. Here, for the first time, we demonstrated that, when systemically administered to APP/PS1 Tg mice, our novel multifunctional iron chelating/radical scavenging compound, M30, effectively reduced Aβ accumulation and tau phosphorylation, and attenuated memory deficits. CONCLUSIONS These findings suggest that M30 is a potential therapeutic agent for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Lana Kupershmidt
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Haifa, Israel
| | | | | | | | | |
Collapse
|
11
|
Vidal-Infer A, Aguilar MA, Miñarro J, Rodríguez-Arias M. Effect of intermittent exposure to ethanol and MDMA during adolescence on learning and memory in adult mice. Behav Brain Funct 2012; 8:32. [PMID: 22716128 PMCID: PMC3542061 DOI: 10.1186/1744-9081-8-32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/28/2012] [Indexed: 01/14/2023] Open
Abstract
Background Heavy binge drinking is increasingly frequent among adolescents, and consumption of 3,4-methylenedioxymethamphetamine (MDMA) is often combined with ethanol (EtOH). The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on learning and memory were evaluated in adult mice using the Hebb-Williams maze. Methods Adolescent OF1 mice were exposed to EtOH (1.25 g/kg) on two consecutive days at 48-h intervals over a 14-day period (from PD 29 to 42). MDMA (10 or 20 mg/kg) was injected twice daily at 4-h intervals over two consecutive days, and this schedule was repeated six days later (PD 33, 34, 41 and 42), resulting in a total of eight injections. Animals were initiated in the Hebb-Williams maze on PND 64. The concentration of brain monoamines in the striatum and hippocampus was then measured. Results At the doses employed, both EtOH and MDMA, administered alone or together, impaired learning in the Hebb-Williams maze, as treated animals required more time to reach the goal than their saline-treated counterparts. The groups treated during adolescence with EtOH, alone or plus MDMA, also presented longer latency scores and needed more trials to reach the acquisition criterion score. MDMA induced a decrease in striatal DA concentration, an effect that was augmented by the co-administration of EtOH. All the treatment groups displayed an imbalance in the interaction DA/serotonin. Conclusions The present findings indicate that the developing brain is highly vulnerable to the damaging effects of EtOH and/or MDMA, since mice receiving these drugs in a binge pattern during adolescence exhibit impaired learning and memory in adulthood.
Collapse
Affiliation(s)
- Antonio Vidal-Infer
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda, Blasco Ibáñez 21, 46010, Valencia, Spain
| | | | | | | |
Collapse
|
12
|
Peña Y, Prunell M, Rotllant D, Armario A, Escorihuela RM. Enduring effects of environmental enrichment from weaning to adulthood on pituitary-adrenal function, pre-pulse inhibition and learning in male and female rats. Psychoneuroendocrinology 2009; 34:1390-404. [PMID: 19481873 DOI: 10.1016/j.psyneuen.2009.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
Abstract
Environmental enrichment (EE) increases stimulation and provides richer sensory, cognitive and motor opportunities through the interaction with the social and physical environment. EE produces a wide range of neuroanatomical, neurochemical and behavioural effects in several animal species. However, the effects of EE have mainly been studied shortly after the treatment, so its long-lasting effects remain to be elucidated. Thus, we studied in male and female Sprague-Dawley rats the enduring effects of EE on tasks that measured emotional reactivity, social exploration and memory, sensorimotor gating and learning. After weaning, rats reared in EE were housed in single-sex groups of 12-14 in enriched cages during 12 weeks, whereas control rats were housed in single-sex groups of 2-3 animals in standard cages. Then, all rats were housed in pairs and successively exposed to different tests between 4 and 60 weeks post-EE. The results indicated that animals of both sexes reared in EE gained less weight during the enrichment period; differences disappeared in females during the post-EE period, but were maintained intact in males. Rats reared in EE showed an altered daily pattern of corticosterone and a lower hormone response to a novel environment (hole board, HB), although no differences in ACTH were found. EE resulted in more exploratory behaviour in the HB and higher number of entries in the open arms of the elevated plus maze (with no changes in the time spent in the open arms), suggesting a greater motivation to explore. Unexpectedly, rats reared in EE showed reduced pre-pulse inhibition (PPI), a measure of sensorimotor gating, suggesting lower capability to filter non-relevant information compared with control rats. EE increased social exploratory behaviour towards juvenile rats and social discrimination in males, but decreased social discrimination in females. Finally, in the Hebb-Williams maze, rats reared in EE showed better performance in terms of reduced number of errors and shorter distances travelled in the mazes. It is concluded that EE exposure from weaning to adulthood has important and long-lasting consequences on physiological and behavioural variables, most of them similar in both sexes, although sex differences in response to the EE are also reported.
Collapse
Affiliation(s)
- Yolanda Peña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|