1
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
2
|
Pusta A, Tertiș M, Cristea C, Mirel S. Wearable Sensors for the Detection of Biomarkers for Wound Infection. BIOSENSORS 2021; 12:1. [PMID: 35049629 PMCID: PMC8773884 DOI: 10.3390/bios12010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Infection represents a major complication that can affect wound healing in any type of wound, especially in chronic ones. There are currently certain limitations to the methods that are used for establishing a clinical diagnosis of wound infection. Thus, new, rapid and easy-to-use strategies for wound infection diagnosis need to be developed. To this aim, wearable sensors for infection diagnosis have been recently developed. These sensors are incorporated into the wound dressings that are used to treat and protect the wound, and are able to detect certain biomarkers that can be correlated with the presence of wound infection. Among these biomarkers, the most commonly used ones are pH and uric acid, but a plethora of others (lactic acid, oxygenation, inflammatory mediators, bacteria metabolites or bacteria) have also been detected using wearable sensors. In this work, an overview of the main types of wearable sensors for wound infection detection will be provided. These sensors will be divided into electrochemical, colorimetric and fluorimetric sensors and the examples will be presented and discussed comparatively.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Mihaela Tertiș
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Murilo Alves G, Soares Castro A, McCord BR, Oliveira MF. MDMA Electrochemical Determination and Behavior at Carbon Screen‐printed Electrodes: Cheap Tools for Forensic Applications. ELECTROANAL 2020. [DOI: 10.1002/elan.202060080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gustavo Murilo Alves
- Grupo de Eletroquímica, Eletroanalítica e Química Forense Departamento de Química Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Avenida Bandeirantes, 3900 Ribeirão Preto São Paulo Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Avenida do Café s/n°, Vila Monte Alegre Ribeirão Preto São Paulo Brazil
| | - Alex Soares Castro
- Grupo de Eletroquímica, Eletroanalítica e Química Forense Departamento de Química Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Avenida Bandeirantes, 3900 Ribeirão Preto São Paulo Brazil
| | - Bruce Royston McCord
- Chemistry Departament International Forensic Research Institute Florida International University 33199 Miami FL United States of America
| | - Marcelo Firmino Oliveira
- Grupo de Eletroquímica, Eletroanalítica e Química Forense Departamento de Química Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Avenida Bandeirantes, 3900 Ribeirão Preto São Paulo Brazil
| |
Collapse
|
4
|
Smart A, Westmacott KL, Crew A, Doran O, Hart JP. An Electrocatalytic Screen-Printed Amperometric Sensor for the Selective Measurement of Thiamine (Vitamin B1) in Food Supplements. BIOSENSORS-BASEL 2019; 9:bios9030098. [PMID: 31390812 PMCID: PMC6784362 DOI: 10.3390/bios9030098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022]
Abstract
An electrocatalytic screen-printed sensor has been investigated for the measurement of the biologically important biomolecule vitamin B1 (thiamine) for the first time in food supplements. Under basic conditions, the vitamin was converted to its electrochemically active thiolate anion species. It was shown that an electrocatalytic oxidation reaction occurred with the screen-printed carbon electrode containing the mediator cobalt phthalocyanine (CoPC-SPCE). This had the advantage of producing an analytical response current at an operating potential of 0 V vs. Ag/AgCl compared to +0.34 V obtained with plain SPCEs. This resulted in improved selectivity and limit of detection. Detailed studies on the underlying mechanism occurring with the sensor are reported in this paper. A linear response was obtained between 0.1 and 20 µg mL−1, which was suitable for the quantification of the vitamin in two commercial products containing vitamin B1. The mean recovery for a multivitamin tablet with a declared content of 5 mg was 101% (coefficient of variation (CV) of 9.6%). A multivitamin drink, which had a much lower concentration of vitamin B1 (0.22 mg/100 mL), gave a mean recovery of 93.3% (CV 7.2%). These results indicate that our sensor holds promise for quality control of food supplements and other food types.
Collapse
Affiliation(s)
- Amy Smart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kelly L Westmacott
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Adrian Crew
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Olena Doran
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - John P Hart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
5
|
Khaled E, Shoukry EM, Amin MF, Said BAM. Novel Calixarene/Carbon Nanotubes Based Screen Printed Sensors for Flow Injection Potentiometric Determination of Naproxen. ELECTROANAL 2018. [DOI: 10.1002/elan.201800602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elmorsy Khaled
- Microanalysis Laboratory, Applied Organic Chemistry DepartmentNational Research Centre, El Bohouthst., Dokki 12622- Giza Egypt
| | - Eman M. Shoukry
- Chemistry Department, Faculty of Science (Girls)Al Azhar University Naser City Egypt
| | - Mona F. Amin
- Chemistry Department, Faculty of Science (Girls)Al Azhar University Naser City Egypt
| | - Basmat Amal M. Said
- Chemistry Department, Faculty of Science (Girls)Al Azhar University Naser City Egypt
| |
Collapse
|
6
|
Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RM, Hart JP. Recent Advances in the Fabrication and Application of Screen-Printed Electrochemical (Bio)Sensors Based on Carbon Materials for Biomedical, Agri-Food and Environmental Analyses. BIOSENSORS 2016; 6:E50. [PMID: 27690118 PMCID: PMC5192370 DOI: 10.3390/bios6040050] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/16/2023]
Abstract
This review describes recent advances in the fabrication of electrochemical (bio)sensors based on screen-printing technology involving carbon materials and their application in biomedical, agri-food and environmental analyses. It will focus on the various strategies employed in the fabrication of screen-printed (bio)sensors, together with their performance characteristics; the application of these devices for the measurement of selected naturally occurring biomolecules, environmental pollutants and toxins will be discussed.
Collapse
Affiliation(s)
- Gareth Hughes
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kelly Westmacott
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kevin C Honeychurch
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Adrian Crew
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Roy M Pemberton
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - John P Hart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
7
|
Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.147] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Talanta 2012; 99:232-7. [PMID: 22967546 DOI: 10.1016/j.talanta.2012.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/11/2012] [Accepted: 05/19/2012] [Indexed: 12/30/2022]
Abstract
An electrochemical immunosensor for okadaic acid (OA) detection has been developed, and used in an indirect competitive immunoassay format under automated flow conditions. The biosensor was fabricated by injecting OA modified magnetic beads onto screen printed carbon electrode (SPCE) in the flow system. The OA present in the sample competed with the immobilized OA to bind with anti-okadaic acid monoclonal antibody (anti-OA-MAb). The secondary alkaline phosphatase labeled antibody was used to perform electrochemical detection. The current response obtained from the labeled alkaline phosphatase to 1-naphthyl phosphate decreased proportionally to the concentration of free OA in the sample. The calculated limit of detection (LOD) was 0.15 μg/L with a linear range of 0.19-25 μg/L. The good recoveries percentages validated the immunosensor application for real mussel samples. The developed system automatically controlled the incubation, washing and current measurement steps, showing its potential use for OA determination in field analysis.
Collapse
|
9
|
Mohamed GG, El-Shahat MF, Al-Sabagh AM, Migahed MA, Ali TA. Septonex-tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations. Analyst 2011; 136:1488-95. [PMID: 21286616 DOI: 10.1039/c0an00662a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A screen-printed electrode (SPE) was fabricated for the determination of 1-(ethoxycarbonyl)pentadecyltrimethylammonium bromide (Septonex) based on the use of Septonex-tetraphenylborate as the electroactive substance, and o-nitrophenyloctylether (o-NPOE) as the plasticizing agent. The electrode passes a near-Nernstian cationic slope of 59.33 ± 0.85 mV from activity between pH values of 2 to 9 with a lower detection limit of 9×10(-7) M and response time of about 5 s and exhibits an adequate shelf-life of 6 months. The method was applied for the determination of Septonex in pharmaceutical preparations. A percentage recovery of 99.88% was obtained with RSD=1.24%. The electrode was successfully applied in the determination of Septonex in laboratory-prepared samples by direct potentiometric, calibration curve and standard addition methods. Potentiometric titration of Septonex with sodium tetraphenylborate and phosphotungstic acid as a titrant was monitored with the modified screen-printed electrode as an end-point indicator electrode. Selectivity coefficients for Septonex relative to a number of potential interfering substances were determined. The sensor was highly selective for Septonex over a large number of compounds. Selectivity coefficient data for some common ions show negligible interference; however, cetyltrimethylammonium bromide and iodide ions interfere significantly. The analytical usefulness of the proposed electrode was evaluated by its application in the determination of Septonex in laboratory-prepared pharmaceutical samples with satisfactory results. The results obtained with the fabricated sensor are comparable with those obtained by the British Pharmacopeia method.
Collapse
Affiliation(s)
- Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | | | | | | |
Collapse
|
10
|
McGuire N, Honeychurch K, Hart J. The Electrochemical Behavior of Nitrazepam at a Screen-Printed Carbon Electrode and Its Determination in Beverages by Adsorptive Stripping Voltammetry. ELECTROANAL 2009. [DOI: 10.1002/elan.200904667] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|