1
|
Barrera-Téllez FJ, Prieto-Martínez FD, Hernández-Campos A, Martínez-Mayorga K, Castillo-Bocanegra R. In Silico Exploration of the Trypanothione Reductase (TryR) of L. mexicana. Int J Mol Sci 2023; 24:16046. [PMID: 38003236 PMCID: PMC10671491 DOI: 10.3390/ijms242216046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.
Collapse
Affiliation(s)
- Francisco J. Barrera-Téllez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fernando D. Prieto-Martínez
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz, Km. 4.5, Ucú 97357, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacal, Mérida 97302, Mexico
| | - Rafael Castillo-Bocanegra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Cutaneous/Mucocutaneous Leishmaniasis Treatment for Wound Healing: Classical versus New Treatment Approaches. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (ML) show clinical spectra that can range from a localized lesion (with a spontaneous healing process) to cases that progress to a generalized systemic disease with a risk of death. The treatment of leishmaniasis is complex since most of the available drugs show high toxicity. The development of an effective topical drug formulation for CL and ML treatment offers advantages as it will improve patient’s compliance to the therapy given the possibility for self-administration, as well as overcoming the first pass metabolism and the high costs of currently available alternatives. The most common dosage forms include solid formulations, such as membranes and semi-solid formulations (e.g., ointments, creams, gels, and pastes). Topical treatment has been used as a new route of administration for conventional drugs against leishmaniasis and its combinations, as well as to exploit new substances. In this review, we discuss the advantages and limitations of using topical drug delivery for the treatment of these two forms of leishmaniasis and the relevance of combining this approach with other pharmaceutical dosage forms. Emphasis will also be given to the use of nanomaterials for site-specific delivery.
Collapse
|
3
|
Arya R, Dhembla C, Makde RD, Sundd M, Kundu S. An overview of the fatty acid biosynthesis in the protozoan parasite Leishmania and its relevance as a drug target against leishmaniasis. Mol Biochem Parasitol 2021; 246:111416. [PMID: 34555376 DOI: 10.1016/j.molbiopara.2021.111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is one of the fast-growing parasitic diseases worldwide. The treatment of this fatal disease presents a daunting challenge because of its adverse effects, necessity for long-term treatment regime, unavailability of functional drugs, emergence of drug resistance and the related expenditure. This calls for an urgent need for novel drugs and the evaluation of new targets. Proteins of the fatty acid biosynthetic pathway are validated as drug targets in pathogenic bacteria and certain viruses. Likewise, this pathway has been speculated as a suitable target against parasite infections. Fatty acid synthesis in parasites seems to be very complex and distinct from the counterpart mammalian host due to the presence of unique mechanisms for fatty acid biosynthesis and acquisition. In recent times, there have been few evidences of the existence of this pathway in the bloodstream form of some pathogens. The fatty acid biosynthesis thus presents a viable and attractive target for emerging therapeutics. Understanding the mechanisms underlying fatty acid metabolism is key to identifying a potential drug target. However, investigations in this direction are still limited and this article attempts to outline the existing knowledge, while highlighting the scope and relevance of the fatty acid biosynthetic pathway as a drug target. This review highlights the advances in the treatment of leishmaniasis, the importance of lipids in the pathogen, known facts about the fatty acid biosynthesis in Leishmania and how this pathway can be manipulated to combat leishmaniasis, suggesting novel drug targets.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
4
|
Gontijo VS, Colombo FA, Ferreira Espuri P, Freitas PGD, Nunes JB, Alves LB, Veloso MP, Alves RB, Freitas RP, Marques MJ. In vivo evaluation of anti-Leishmania activity of alkyltriazoles and alkylphosphocholines by oral route. Exp Parasitol 2021; 226-227:108123. [PMID: 34144040 DOI: 10.1016/j.exppara.2021.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The failures in the treatment of leishmaniasis is an increasing problem around the world, especially related to resistance. Thus, we describe the synthesis and in vivo anti-Leishmania activity of alkylphosphocholine and alkyltriazoles; besides, their likely action mechanisms stem from some eventual inhibition of parasite enzymes using computational tools. These compounds were tested in an in vivo hamster model infected with Leishmania Leishmania infantum chagasi. Fifty days after parasite inoculation, the two compounds 12-azidedodecylphosphocholine (3) and 3-(1-(12-fluorododecyl)-1H-1,2,3-triazol-1-yl)propano-1-ol (9), were separately administered once a day as oral suspensions (25 and 12.5 mg/kg/day, respectively) during ten days, and their efficacy was compared to the reference compound pentavalent antimonial Glucantime (GLU). Compound 3 significantly reduced the number of parasites in the spleen (4.93 × 102 amastigotes/g) and liver (4.52 × 103 amastigotes/g). Compound 9 reduced the number of amastigotes in the spleen to 1.30 × 104 and 1.36 × 103 amastigotes/g in the liver. GLU was the most effective overall treatment (7.50 × 101 and 2.28 × 102 amastigotes/g in the spleen and liver, respectively). The high activity levels of these compounds in vivo may stem from their high in vitro leishmanicidal activity and lipophilicity. The in silico absorption, distribution, metabolism, and excretion studies also showed some anti-Leishmania potential. Compound 9 had more lipophilic characteristics than those of compound 3. In silico studies of the nine enzymes of compounds 3 and 9 showed significant evidence of interactions with nicotimidase and tyrosine aminotransferase, demonstrating possible inhibition enzymes present in L. (L.) infantum chagasi. These compounds could be a promising template for developing a new class of leishmanicidal agents, by oral route, and deserve further investigation to explore different therapeutic regimens.
Collapse
Affiliation(s)
- Vanessa Silva Gontijo
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Fabio Antônio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Patrícia Ferreira Espuri
- Departamento de Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Poliany Graziella de Freitas
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Juliana Barbosa Nunes
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, São Paulo, SP, Brazil
| | - Levy Bueno Alves
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Márcia Paranho Veloso
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Rosemeire Brondi Alves
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Rossimiriam Pereira Freitas
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcos José Marques
- Departamento de Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil.
| |
Collapse
|
5
|
Leishmaniasis: where are we and where are we heading? Parasitol Res 2021; 120:1541-1554. [PMID: 33825036 DOI: 10.1007/s00436-021-07139-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/24/2021] [Indexed: 01/19/2023]
Abstract
Leishmaniasis is a zoonotic disease in humans caused by the bite of a parasite-infected sandfly. The disease, widely referred to as "poor man's disease," affects millions of people worldwide. The clinical manifestation of the disease depends upon the species of the parasite and ranges from physical disfigurement to death if left untreated. Here, we review the past, present, and future of leishmaniasis in detail. The life cycle of Leishmania sp., along with its epidemiology, is discussed, and in addition, the line of therapeutics available for treatment currently is examined. The current status of the disease is critically evaluated, keeping emerging threats like human immunodeficiency virus (HIV) coinfection and post kala-azar dermal leishmaniasis (PKDL) into consideration. In summary, the review proposes a dire need for new therapeutics and reassessment of the measures and policies concerning emerging threats. New strategies are essential to achieve the goal of leishmaniasis eradication in the next few decades.
Collapse
|
6
|
Silva RCMC, Fox EGP, Gomes FM, Feijó DF, Ramos I, Koeller CM, Costa TFR, Rodrigues NS, Lima AP, Atella GC, Miranda K, Schoijet AC, Alonso GD, de Alcântara Machado E, Heise N. Venom alkaloids against Chagas disease parasite: search for effective therapies. Sci Rep 2020; 10:10642. [PMID: 32606423 PMCID: PMC7327076 DOI: 10.1038/s41598-020-67324-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
Chagas disease is an important disease affecting millions of patients in the New World and is caused by a protozoan transmitted by haematophagous kissing bugs. It can be treated with drugs during the early acute phase; however, effective therapy against the chronic form of Chagas disease has yet to be discovered and developed. We herein tested the activity of solenopsin alkaloids extracted from two species of fire ants against the protozoan parasite Trypanosoma cruzi, the aetiologic agent of Chagas disease. Although IC50 determinations showed that solenopsins are more toxic to the parasite than benznidazole, the drug of choice for Chagas disease treatment, the ant alkaloids presented a lower selectivity index. As a result of exposure to the alkaloids, the parasites became swollen and rounded in shape, with hypertrophied contractile vacuoles and intense cytoplasmic vacuolization, possibly resulting in osmotic stress; no accumulation of multiple kinetoplasts and/or nuclei was detected. Overexpressing phosphatidylinositol 3-kinase-an enzyme essential for osmoregulation that is a known target of solenopsins in mammalian cells-did not prevent swelling and vacuolization, nor did it counteract the toxic effects of alkaloids on the parasites. Additional experimental results suggested that solenopsins induced a type of autophagic and programmed cell death in T. cruzi. Solenopsins also reduced the intracellular proliferation of T. cruzi amastigotes in infected macrophages in a concentration-dependent manner and demonstrated activity against Trypanosoma brucei rhodesiense bloodstream forms, which is another important aetiological kinetoplastid parasite. The results suggest the potential of solenopsins as novel natural drugs against neglected parasitic diseases caused by kinetoplastids.
Collapse
Affiliation(s)
- Rafael C M Costa Silva
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Eduardo G P Fox
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Fabio M Gomes
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Daniel F Feijó
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Microbiology and Immunology, School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Tatiana F R Costa
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nathalia S Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana P Lima
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Alejandra C Schoijet
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Guillermo D Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina.
| | - Ednildo de Alcântara Machado
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
7
|
The effect of edelfosine on GRA1 and MIC3 expressions in acute toxoplasmosis. Parasitol Res 2020; 119:1371-1380. [PMID: 31970471 DOI: 10.1007/s00436-020-06601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
Phosphoinositide-dependent phospholipase-C (PI-PLC) triggers the calcium signaling pathway which plays an important role in dense granule and microneme secretion and pathogenesis of Toxoplasma gondii (T. gondii). There are limited data about the effects of phospholipid analogues against T. gondii. The current study assessed the effect of edelfosine, as a phospholipid analogue, on GRA1 and MIC3 expressions using in vitro and in vivo models of acute toxoplasmosis. Infected Vero cells were treated by edelfosine in two subgroups: 24 h following the cell infection and treatment at the same time of cell infection. Animal study was performed on forty mice in four groups including non-infected, infected untreated, infected edelfosine-treated, and infected pyrimethamine-treated. Gene and protein expression analyses were done using quantitative real-time PCR and western blot, respectively. Edelfosine significantly reduced the GRA1 (P < 0.01) and MIC3 (P < 0.01) mRNA and protein expressions in 24 h following the cell infection and at the same time of cell infection groups. In vivo study showed that the edelfosine significantly reduced the GRA1 expression in eye, and MIC3 expression in brain and liver. Moreover, the edelfosine-treated infected mice had significant higher survival rate compared with uninfected mice. The reducing effect of edelfosine on GRA1 and MIC3 mRNA and protein levels 24 h following the cell infection was more than treatment at the same time of cell infection group. Moreover, the effect of edelfosine on GRA1 and MIC3 expression in animal tissues was variable. These data showed that the edelfosine may decrease the T. gondii excretory/secretory antigens through inhibition of PI-PLC.
Collapse
|
8
|
Singh J, Mansuri R, Vijay S, Sahoo GC, Sharma A, Kumar M. Docking predictions based Plasmodium falciparum phosphoethanolamine methyl transferase inhibitor identification and in-vitro antimalarial activity analysis. BMC Chem 2019; 13:43. [PMID: 31384791 PMCID: PMC6661969 DOI: 10.1186/s13065-019-0551-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/08/2019] [Indexed: 11/10/2022] Open
Abstract
The increased multidrug resistance among antimalarial drugs produces the urgency of potent anti malarial to combat resistant malaria and the malaria burden worldwide. The protein which may prevent the growth or transmission of malaria parasite may be the great target for rational drug designing. Plasmodium falciparum phosphoethanolamine methyltransferase (Pfpmt) absent in human catalyzes triple methylation of ethanolamine into phosphocholine for phosphatidylcholine biosynthesis from serine decarboxylation phosphoethanolamine methyltransferase pathway for the membrane development at asexual as well as sexual stages of parasite. The Plasmodium requires production of membrane rapidly for growth and multiplication. Hence, the phosphoethanolamine methyltransferase of Plasmodium falciparum was selected as drug target for rational drug designing. Using Discovery studio 3.5 software the library of zinc compounds was screened against target and analyzed. The compounds with better druglike properties and docking affinity and binding interaction for target protein were procured for in vitro analysis against Plasmodium falciparum culture (IC50). Compounds ZINC02103914 and ZINC12882412 were found to have good druglike properties and affinity for Pfpmt also inhibited P. falciparum growth at very low µM IC50 concentration 3.0 µM and 2.1 µM respectively also found nontoxic in vitro against HEK-293 cells. Simulation study of best inhibitor revealed the specificity for the target protein. Hence, the compounds possessed the immense probability of being inhibitors of Pfpmt and may be optimized as antimalarial agent for combinational therapy to overcome the multidrug resistance and may also be used as template for optimization and rational drug designing.
Collapse
Affiliation(s)
- Jagbir Singh
- 1Division of Protein Biochemistry and Structural Biology, National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi 110 077 India.,5Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Rani Mansuri
- 2School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, India
| | - Sonam Vijay
- Division of ECD, Indian Council of India, New Delhi, India
| | - Ganesh Chandra Sahoo
- 4Department of Biomedical Sciences, Rajendra Memorial Research Institute, Patna, India
| | - Arun Sharma
- 1Division of Protein Biochemistry and Structural Biology, National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi 110 077 India
| | - Mahesh Kumar
- 5Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
9
|
Nazeer M, Waheed H, Saeed M, Ali SY, Choudhary MI, Ul-Haq Z, Ahmed A. Purification and Characterization of a Nonspecific Lipid Transfer Protein 1 (nsLTP1) from Ajwain (Trachyspermum ammi) Seeds. Sci Rep 2019; 9:4148. [PMID: 30858403 PMCID: PMC6411740 DOI: 10.1038/s41598-019-40574-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Ajwain (Trachyspermum ammi) belongs to the family Umbelliferae, is commonly used in traditional, and folk medicine due to its carminative, stimulant, antiseptic, diuretic, antihypertensive, and hepatoprotective activities. Non-specific lipid transfer proteins (nsLTPs) reported from various plants are known to be involved in transferring lipids between membranes and in plants defense response. Here, we describe the complete primary structure of a monomeric non-specific lipid transfer protein 1 (nsLTP1), with molecular weight of 9.66 kDa, from ajwain seeds. The nsLTP1 has been purified by combination of chromatographic techniques, and further characterized by mass spectrometry, and Edman degradation. The ajwain nsLTP1 is comprised of 91 amino acids, with eight conserved cysteine residues. The amino acid sequence based predicted three dimensional (3D) structure is composed of four α-helices stabilized by four disulfide bonds, and a long C-terminal tail. The predicted model was verified by using different computational tools; i.e. ERRAT, verify 3D web server, and PROCHECK. The docking of ajwain nsLTP1 with ligands; myristic acid (MYR), and oleic acid (OLE) was performed, and molecular dynamics (MD) simulation was used to validate the docking results. The findings suggested that amino acids; Leu11, Leu12, Ala55, Ala56, Val15, Tyr59, and Leu62 are pivotal for the binding of lipid molecules with ajwain nsLTP1.
Collapse
Affiliation(s)
- Meshal Nazeer
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humera Waheed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Maria Saeed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saman Yousuf Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Aftab Ahmed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
10
|
Lipase Precursor-Like Protein Promotes Miltefosine Tolerance in Leishmania donovani by Enhancing Parasite Infectivity and Eliciting Anti-inflammatory Responses in Host Macrophages. Antimicrob Agents Chemother 2018; 62:AAC.00666-18. [PMID: 30297367 DOI: 10.1128/aac.00666-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
The oral drug miltefosine (MIL) was introduced in the Indian subcontinent in the year 2002 for the treatment of visceral leishmaniasis (VL). However, recent reports on its declining efficacy and increasing relapse rates pose a serious concern. An understanding of the factors contributing to MIL tolerance in Leishmania parasites is critical. In the present study, we assessed the role of the lipase precursor-like protein (Lip) in conferring tolerance to miltefosine by episomally overexpressing Lip in Leishmania donovani (LdLip++). We observed a significant increase (∼3-fold) in the MIL 50% inhibitory concentration (IC50) at both the promastigote (3.90 ± 0.68 µM; P < 0.05) and intracellular amastigote (9.10 ± 0.60 µM; P < 0.05) stages compared to the wild-type counterpart (LdNeo) (MIL IC50s of 1.49 ± 0.20 µM at the promastigote stage and 3.95 ± 0.45 µM at the amastigote stage). LdLip++ parasites exhibited significantly (P < 0.05) increased infectivity to host macrophages and increased metacyclogenesis and tolerance to MIL-induced oxidative stress. The susceptibility of LdLip++ to other antileishmanial drugs (sodium antimony gluconate and amphotericin B) remained unchanged. In comparison to LdNeo, the LdLip++ parasites elicited high host interleukin-10 (IL-10) cytokine expression levels (1.6-fold; P < 0.05) with reduced expression of the cytokine tumor necrosis factor alpha (TNF-α) (1.5-fold; P < 0.05), leading to a significantly (P < 0.01) increased ratio of IL-10/TNF-α. The above-described findings suggest a role of lipase precursor-like protein in conferring tolerance to the oral antileishmanial drug MIL in L. donovani parasites.
Collapse
|
11
|
Ilari A, Genovese I, Fiorillo F, Battista T, De Ionna I, Fiorillo A, Colotti G. Toward a Drug Against All Kinetoplastids: From LeishBox to Specific and Potent Trypanothione Reductase Inhibitors. Mol Pharm 2018; 15:3069-3078. [PMID: 29897765 DOI: 10.1021/acs.molpharmaceut.8b00185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leishmaniasis, Chagas disease, and sleeping sickness affect millions of people worldwide and lead to the death of about 50 000 humans per year. These diseases are caused by the kinetoplastids Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, respectively. These parasites share many general features, including gene conservation, high amino acid identity among proteins, the presence of subcellular structures as glycosomes and the kinetoplastid, and genome architecture, that may make drug development family specific, rather than species-specific, i.e., on the basis of the inhibition of a common, conserved parasite target. However, no optimal molecular targets or broad-spectrum drugs have been identified to date to cure these diseases. Here, the LeishBox from GlaxoSmithKline high-throughput screening, a 192-molecule set of best antileishmanial compounds, based on 1.8 million compounds, was used to identify specific inhibitors of a validated Leishmania target, trypanothione reductase (TR), while analyzing in parallel the homologous human enzyme glutathione reductase (GR). We identified three specific highly potent TR inhibitors and performed docking on the TR solved structure, thereby elucidating the putative molecular basis of TR inhibition. Since TRs from kinetoplastids are well conserved, and these compounds inhibit the growth of Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, the identification of a common validated target may lead to the development of potent antikinetoplastid drugs.
Collapse
Affiliation(s)
- Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM CNR), Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Ilaria Genovese
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Fabiana Fiorillo
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Theo Battista
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Ilenia De Ionna
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM CNR), Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| |
Collapse
|
12
|
Armitage EG, Alqaisi AQI, Godzien J, Peña I, Mbekeani AJ, Alonso-Herranz V, López-Gonzálvez Á, Martín J, Gabarro R, Denny PW, Barrett MP, Barbas C. Complex Interplay between Sphingolipid and Sterol Metabolism Revealed by Perturbations to the Leishmania Metabolome Caused by Miltefosine. Antimicrob Agents Chemother 2018; 62:e02095-17. [PMID: 29463533 PMCID: PMC5923112 DOI: 10.1128/aac.02095-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/21/2018] [Indexed: 12/24/2022] Open
Abstract
With the World Health Organization reporting over 30,000 deaths and 200,000 to 400,000 new cases annually, visceral leishmaniasis is a serious disease affecting some of the world's poorest people. As drug resistance continues to rise, there is a huge unmet need to improve treatment. Miltefosine remains one of the main treatments for leishmaniasis, yet its mode of action (MoA) is still unknown. Understanding the MoA of this drug and parasite response to treatment could help pave the way for new and more successful treatments for leishmaniasis. A novel method has been devised to study the metabolome and lipidome of Leishmania donovani axenic amastigotes treated with miltefosine. Miltefosine caused a dramatic decrease in many membrane phospholipids (PLs), in addition to amino acid pools, while sphingolipids (SLs) and sterols increased. Leishmania major promastigotes devoid of SL biosynthesis through loss of the serine palmitoyl transferase gene (ΔLCB2) were 3-fold less sensitive to miltefosine than wild-type (WT) parasites. Changes in the metabolome and lipidome of miltefosine-treated L. major mirrored those of L. donovani A lack of SLs in the ΔLCB2 mutant was matched by substantial alterations in sterol content. Together, these data indicate that SLs and ergosterol are important for miltefosine sensitivity and, perhaps, MoA.
Collapse
Affiliation(s)
- Emily G Armitage
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
- GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences & Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Amjed Q I Alqaisi
- Department of Biosciences, Durham University, Lower Mountjoy, Durham, United Kingdom
- University of Baghdad, College of Science, Biology Department, Baghdad, Iraq
| | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Imanol Peña
- GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Alison J Mbekeani
- Department of Biosciences, Durham University, Lower Mountjoy, Durham, United Kingdom
| | - Vanesa Alonso-Herranz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Julio Martín
- GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Raquel Gabarro
- GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Paul W Denny
- Department of Biosciences, Durham University, Lower Mountjoy, Durham, United Kingdom
| | - Michael P Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences & Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
13
|
An evaluation of lipid metabolism in the insect trypanosomatid Herpetomonas muscarum uncovers a pathway for the uptake of extracellular insect lipoproteins. Parasitol Int 2018; 67:97-106. [DOI: 10.1016/j.parint.2017.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
|
14
|
Fernandez-Prada C, Sharma M, Plourde M, Bresson E, Roy G, Leprohon P, Ouellette M. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:165-173. [PMID: 29602064 PMCID: PMC6039308 DOI: 10.1016/j.ijpddr.2018.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022]
Abstract
Increasing drug resistance towards first line antimony-derived compounds has forced the introduction of novel therapies in leishmaniasis endemic areas including amphotericin B and miltefosine. However, their use is threatened by the emergence and spread of drug-resistant strains. In order to discover stage-dependent resistance genes, we have adapted the Cos-Seq approach through the introduction of macrophage infections in the pipeline. A L. infantum intracellular amastigote population complemented with a L. infantum cosmid library was submitted to increasing concentrations of miltefosine, amphotericin B and pentavalent antimonials in experimental infections of THP-1 cells. For each step of selection, amastigotes were extracted and cosmids were isolated and submitted to next-generation sequencing, followed by subsequent gene-enrichment analyses. Cos-Seq screen in amastigotes revealed four highly enriched loci for antimony, five for miltefosine and one for amphotericin B. Of these, a total of seven cosmids were recovered and tested for resistance in both promastigotes and amastigotes. Candidate genes within the pinpointed genomic regions were validated using single gene overexpression in wild-type parasites and/or gene disruption by means of a CRISPR-Cas9-based approach. This led to the identification and validation of a stage-independent antimony-resistance gene (LinJ.06.1010) coding for a putative leucine rich repeat protein and a novel amastigote-specific miltefosine-resistance gene (LinJ.32.0050) coding for a member of the SEC13 family of WD-repeat proteins. This study further reinforces the power of Cos-Seq approach to discover novel drug-resistance genes, some of which are life-stages specific. The Cos-Seq led to the discovery of several new genomic regions selected with drugs. This work led to the validation of novel drug-resistance genes in Leishmania. Gene LinJ.06.1010 is involved in antimony resistance in both life stages of the parasite. Gene LinJ.32.0050 is involved in miltefosine resistance in amastigotes. The amastigote screen is labour intensive but complements screens in promastigotes.
Collapse
Affiliation(s)
- Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Mansi Sharma
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie Plourde
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Eva Bresson
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Gaétan Roy
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
15
|
Ventin F, Cincurá C, Machado PRL. Safety and efficacy of miltefosine monotherapy and pentoxifylline associated with pentavalent antimony in treating mucosal leishmaniasis. Expert Rev Anti Infect Ther 2018; 16:219-225. [PMID: 29411659 DOI: 10.1080/14787210.2018.1436967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Mucosal Leishmaniasis (ML) is a difficult to treat and severe form of Leishmaniasis. In general, more than 40% of subjects with ML have therapeutic failure upon the use of pentavalent antimony (Sbv) at 20mg/kg/day during 30 days. Additionally, Sbv is a toxic drug that requires parenteral administration, and many patients will need several courses to be cured. In cases that cannot be treated or cured by Sbv, the alternative is amphotericin B, another toxic and parenteral drug. As a consequence, many ML patients will be cured only after years of disease and may present several morbidities due to the aggressiveness of the disease or toxicity related to the treatment. Areas covered: We aimed to review clinical trials with Miltefosine or Sbv associated with pentoxifylline in the treatment of ML. Expert commentary: There are few studies to define more effective and safer therapy in mucosal disease caused by Leishmania, with an urgent need to supporting and funding well designed trials. Miltefosine monotherapy, as well as pentoxifylline combined with Sbv are promising therapeutic approaches to increase the cure rate of this neglected disease.
Collapse
Affiliation(s)
- Fernanda Ventin
- a Serviço de Imunologia , Complexo Hospitalar Universitário Professor Edgard Santos , Salvador , Brazil
| | - Carolina Cincurá
- a Serviço de Imunologia , Complexo Hospitalar Universitário Professor Edgard Santos , Salvador , Brazil
| | - Paulo Roberto Lima Machado
- a Serviço de Imunologia , Complexo Hospitalar Universitário Professor Edgard Santos , Salvador , Brazil.,b Serviço de Imunologia , National Institute of Science and Technology in Tropical Diseases (INCT-DT), CNPq/MCT , Salvador , Brazil
| |
Collapse
|
16
|
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017; 11:e0006052. [PMID: 29240765 PMCID: PMC5730103 DOI: 10.1371/journal.pntd.0006052] [Citation(s) in RCA: 539] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reevaluation of treatment guidelines for Old and New World leishmaniasis is urgently needed on a global basis because treatment failure is an increasing problem. Drug resistance is a fundamental determinant of treatment failure, although other factors also contribute to this phenomenon, including the global HIV/AIDS epidemic with its accompanying impact on the immune system. Pentavalent antimonials have been used successfully worldwide for the treatment of leishmaniasis since the first half of the 20th century, but the last 10 to 20 years have witnessed an increase in clinical resistance, e.g., in North Bihar in India. In this review, we discuss the meaning of “resistance” related to leishmaniasis and discuss its molecular epidemiology, particularly for Leishmania donovani that causes visceral leishmaniasis. We also discuss how resistance can affect drug combination therapies. Molecular mechanisms known to contribute to resistance to antimonials, amphotericin B, and miltefosine are also outlined. Chemotherapy is central to the control and management of leishmaniasis. Antimonials remain the primary drugs against different forms of leishmaniasis in several regions. However, resistance to antimony has necessitated the use of alternative medications, especially in the Indian subcontinent (ISC). Compounds, notably the orally available miltefosine (MIL), parenteral paromomycin, and amphotericin B (AmB), are increasingly used to treat leishmaniasis. Although treatment failure (TF) has been observed in patients treated with most anti-leishmanials, its frequency of appearance may be important in patients treated with MIL, which has replaced antimonials within the kala-azar elimination program in the ISC. AmB is highly efficacious, and the associated toxic effects—when administered in its free deoxycholate form—are somewhat ameliorated in its liposomal formulation. Regrettably, laboratory experimentation has demonstrated a risk of resistance towards AmB as well. The rise of drug resistance impacts treatment outcome, and understanding its causes, spread, and impact will help us manage the risks it imposes. Here, we review the problem of TF in leishmaniasis and the contribution of drug resistance to the problem. Molecular mechanisms causing resistance to anti-leishmanials are discussed along with the appropriate use of additional available drugs, as well as the urgent need to consolidate strategies to monitor drug efficacy, epidemiological surveillance, and local policies. Coordination of these activities in national and international programs against leishmaniasis might represent a successful guide to further research and prevention activities.
Collapse
Affiliation(s)
- Alicia Ponte-Sucre
- Department of Physiological Sciences, Laboratory of Molecular Physiology, Institute of Experimental Medicine, Luis Razetti School of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- * E-mail: (BP); (APS)
| | - Francisco Gamarro
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López-Neyra, Spanish National Research Council (IPBLN-CSIC), Granada, Spain
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rogelio López-Vélez
- Department of Infectious Diseases, National Referral Unit for Tropical Diseases, Ramón y Cajal University Hospital, Madrid, Spain
| | - Raquel García-Hernández
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López-Neyra, Spanish National Research Council (IPBLN-CSIC), Granada, Spain
| | - Andrew W. Pountain
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roy Mwenechanya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, University Laval, Quebec, Canada
- * E-mail: (BP); (APS)
| |
Collapse
|
17
|
Villa-Pulgarín JA, Gajate C, Botet J, Jimenez A, Justies N, Varela-M RE, Cuesta-Marbán Á, Müller I, Modolell M, Revuelta JL, Mollinedo F. Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Negl Trop Dis 2017; 11:e0005805. [PMID: 28829771 PMCID: PMC5568728 DOI: 10.1371/journal.pntd.0005805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Background Leishmaniasis is the world’s second deadliest parasitic disease after malaria, and current treatment of the different forms of this disease is far from satisfactory. Alkylphospholipid analogs (APLs) are a family of anticancer drugs that show antileishmanial activity, including the first oral drug (miltefosine) for leishmaniasis and drugs in preclinical/clinical oncology trials, but their precise mechanism of action remains to be elucidated. Methodology/Principal findings Here we show that the tumor cell apoptosis-inducer edelfosine was the most effective APL, as compared to miltefosine, perifosine and erucylphosphocholine, in killing Leishmania spp. promastigotes and amastigotes as well as tumor cells, as assessed by DNA breakdown determined by flow cytometry. In studies using animal models, we found that orally-administered edelfosine showed a potent in vivo antileishmanial activity and diminished macrophage pro-inflammatory responses. Edelfosine was also able to kill Leishmania axenic amastigotes. Edelfosine was taken up by host macrophages and killed intracellular Leishmania amastigotes in infected macrophages. Edelfosine accumulated in tumor cell mitochondria and Leishmania kinetoplast-mitochondrion, and led to mitochondrial transmembrane potential disruption, and to the successive breakdown of parasite mitochondrial and nuclear DNA. Ectopic expression of Bcl-XL inhibited edelfosine-induced cell death in both Leishmania parasites and tumor cells. We found that the cytotoxic activity of edelfosine against Leishmania parasites and tumor cells was associated with a dramatic recruitment of FOF1-ATP synthase into lipid rafts following edelfosine treatment in both parasites and cancer cells. Raft disruption and specific FOF1-ATP synthase inhibition hindered edelfosine-induced cell death in both Leishmania parasites and tumor cells. Genetic deletion of FOF1-ATP synthase led to edelfosine drug resistance in Saccharomyces cerevisiae yeast. Conclusions/Significance The present study shows that the antileishmanial and anticancer actions of edelfosine share some common signaling processes, with mitochondria and raft-located FOF1-ATP synthase being critical in the killing process, thus identifying novel druggable targets for the treatment of leishmaniasis. Leishmaniasis is a major health problem worldwide, and can result in loss of human life or a lifelong stigma because of bodily scars. According to World Health Organization, leishmaniasis is considered as an emerging and uncontrolled disease, and its current treatment is far from ideal, with only a few drugs available that could lead to drug resistance or cause serious side-effects. Here, we have found that mitochondria and raft-located FOF1-ATPase synthase are efficient druggable targets, through which an ether lipid named edelfosine exerts its antileishmanial action. Edelfosine effectively kills Leishmania spp. promastigotes and amastigotes. Our experimental animal models demonstrate that oral administration of edelfosine exerts a potent antileishmanial activity, while inhibits macrophage pro-inflammatory responses. Our results show that both Leishmania and tumor cells share mitochondria and raft-located FOF1-ATPase synthase as major druggable targets in leishmaniasis and cancer therapy. These data, showing a potent antileishmanial activity of edelfosine and unveiling its mechanism of action, together with the inhibition of the inflammatory responses elicited by macrophages, suggest that the ether lipid edelfosine is a promising oral drug for leishmaniasis, and highlight mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Janny A Villa-Pulgarín
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Botet
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Alberto Jimenez
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Nicole Justies
- Department of Cellular Immunology, Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Rubén E Varela-M
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Álvaro Cuesta-Marbán
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Ingrid Müller
- Department of Medicine, Section of Immunology, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - José L Revuelta
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
18
|
Bruni N, Stella B, Giraudo L, Della Pepa C, Gastaldi D, Dosio F. Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int J Nanomedicine 2017; 12:5289-5311. [PMID: 28794624 PMCID: PMC5536235 DOI: 10.2147/ijn.s140363] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leishmaniasis is a vector-borne zoonotic disease caused by protozoan parasites of the genus Leishmania, which are responsible for numerous clinical manifestations, such as cutaneous, visceral, and mucocutaneous leishmaniasis, depending on the site of infection for particular species. These complexities threaten 350 million people in 98 countries worldwide. Amastigotes living within macrophage phagolysosomes are the principal target of antileishmanial treatment, but these are not an easy target as drugs must overcome major structural barriers. Furthermore, limitations on current therapy are related to efficacy, toxicity, and cost, as well as the length of treatment, which can increase parasitic resistance. Nanotechnology has emerged as an attractive alternative as conventional drugs delivered by nanosized carriers have improved bioavailability and reduced toxicity, together with other characteristics that help to relieve the burden of this disease. The significance of using colloidal carriers loaded with active agents derives from the physiological uptake route of intravenous administered nanosystems (the phagocyte system). Nanosystems are thus able to promote a high drug concentration in intracellular mononuclear phagocyte system (MPS)-infected cells. Moreover, the versatility of nanometric drug delivery systems for the deliberate transport of a range of molecules plays a pivotal role in the design of therapeutic strategies against leishmaniasis. This review discusses studies on nanocarriers that have greatly contributed to improving the efficacy of antileishmaniasis drugs, presenting a critical review and some suggestions for improving drug delivery.
Collapse
Affiliation(s)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Glycosomal bromodomain factor 1 from Trypanosoma cruzi enhances trypomastigote cell infection and intracellular amastigote growth. Biochem J 2015; 473:73-85. [DOI: 10.1042/bj20150986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
We characterized bromodomain factor 1 from Trypanosoma cruzi (TcBDF1), a developmentally regulated protein that localizes in the glycosomes of epimastigotes. The overexpression of wild-type TcBDF1 is detrimental for epimastigotes, but favours trypomastigote infection, whereas mutant TcBDF1 diminishes the infectivity rate.
Collapse
|
20
|
Kostadinova A, Topouzova-Hristova T, Momchilova A, Tzoneva R, Berger MR. Antitumor Lipids--Structure, Functions, and Medical Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:27-66. [PMID: 26572975 DOI: 10.1016/bs.apcsb.2015.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels.
Collapse
Affiliation(s)
- Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Martin R Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit, Heidelberg, Germany
| |
Collapse
|
21
|
Eissa MM, Barakat AMA, Amer EI, Younis LK. Could miltefosine be used as a therapy for toxoplasmosis? Exp Parasitol 2015; 157:12-22. [PMID: 26112396 DOI: 10.1016/j.exppara.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/05/2015] [Accepted: 06/14/2015] [Indexed: 02/08/2023]
Abstract
Toxoplasmosis is a zoonotic protozoal disease affecting more than a billion people worldwide. The shortfalls of the current treatment options necessitate the development of non-toxic and well-tolerated, efficient alternatives especially against the cyst form. The current study was undertaken to investigate, for the first time, the potential potency of miltefosine against Toxoplasma gondii infection in acute and chronic experimental toxoplasmosis. Results showed that there is no evidence of anti-parasitic activity of miltefosine against T. gondii tachyzoites in acute experimental toxoplasmosis. However, anti-parasitic activity of miltefosine against T. gondii cyst stage in chronic experimental toxoplasmosis could not be excluded as demonstrated by significant reduction in brain cyst burden. Moreover, considerable morphological changes in the cysts were revealed by light and electron microscopy study and also by amelioration of pathological changes in the brain. Future studies should focus on enhancement of anti-toxoplasma activity of miltefosine against chronic toxoplasmosis using formulation based nanotechnology. To the best of our knowledge, this is the first study highlighting efficacy of miltefosine against chronic toxoplasmosis, thus, increasing the list of diseases that can be targeted by this drug.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Eglal I Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Layla K Younis
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Vakil NH, Fujinami N, Shah PJ. Pharmacotherapy for Leishmaniasis in the United States: Focus on Miltefosine. Pharmacotherapy 2015; 35:536-45. [DOI: 10.1002/phar.1585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Niyati H. Vakil
- Department of Pharmacy; Cedars-Sinai Medical Center; Los Angeles California
| | - Noriko Fujinami
- Department of Pharmacy; Cedars-Sinai Medical Center; Los Angeles California
| | - Punit J. Shah
- Department of Pharmacy; Alexian Brothers Health System; Elk Grove Village Illinois
| |
Collapse
|
23
|
Quiñones W, Cáceres AJ, Ruiz MT, Concepción JL. Glycosomal membrane proteins and lipids from Leishmania mexicana. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:27-36. [DOI: 10.1016/j.cbpb.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022]
|
24
|
Markova AA, Plyavnik NV, Morozova NG, Maslov MA, Shtil AA. Antitumor phosphate-containing lipids and non-phosphorus alkyl cationic glycerolipids: chemical structures and perspectives of drug development. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0552-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Sangshetti JN, Kalam Khan FA, Kulkarni AA, Arote R, Patil RH. Antileishmanial drug discovery: comprehensive review of the last 10 years. RSC Adv 2015. [DOI: 10.1039/c5ra02669e] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the current aspects of leishmaniasis including marketed drugs, new antileishmanial agents, and possible drug targets of antileishmanial agents.
Collapse
Affiliation(s)
| | | | | | - Rohidas Arote
- Department of Molecular Genetics
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| | - Rajendra H. Patil
- Department of Biotechnology
- Savitribai Phule Pune University
- Pune 411007
- India
| |
Collapse
|
26
|
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114:10369-428. [PMID: 25253511 DOI: 10.1021/cr400552x] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | | | | | | | | |
Collapse
|
27
|
van Hoogevest P, Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. EUR J LIPID SCI TECH 2014; 116:1088-1107. [PMID: 25400504 PMCID: PMC4207189 DOI: 10.1002/ejlt.201400219] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 11/08/2022]
Abstract
In pharmaceutical formulations, phospholipids obtained from plant or animal sources and synthetic phospholipids are used. Natural phospholipids are purified from, e.g., soybeans or egg yolk using non-toxic solvent extraction and chromatographic procedures with low consumption of energy and minimum possible waste. Because of the use of validated purification procedures and sourcing of raw materials with consistent quality, the resulting products differing in phosphatidylcholine content possess an excellent batch to batch reproducibility with respect to phospholipid and fatty acid composition. The natural phospholipids are described in pharmacopeias and relevant regulatory guidance documentation of the Food and Drug Administration (FDA) and European Medicines Agency (EMA). Synthetic phospholipids with specific polar head group, fatty acid composition can be manufactured using various synthesis routes. Synthetic phospholipids with the natural stereochemical configuration are preferably synthesized from glycerophosphocholine (GPC), which is obtained from natural phospholipids, using acylation and enzyme catalyzed reactions. Synthetic phospholipids play compared to natural phospholipid (including hydrogenated phospholipids), as derived from the number of drug products containing synthetic phospholipids, a minor role. Only in a few pharmaceutical products synthetic phospholipids are used. Natural phospholipids are used in oral, dermal, and parenteral products including liposomes. Natural phospholipids instead of synthetic phospholipids should be selected as phospholipid excipients for formulation development, whenever possible, because natural phospholipids are derived from renewable sources and produced with more ecologically friendly processes and are available in larger scale at relatively low costs compared to synthetic phospholipids. Practical applications: For selection of phospholipid excipients for pharmaceutical formulations, natural phospholipids are preferred compared to synthetic phospholipids because they are available at large scale with reproducible quality at lower costs of goods. They are well accepted by regulatory authorities and are produced using less chemicals and solvents at higher yields. In order to avoid scale up problems during pharmaceutical development and production, natural phospholipid excipients instead of synthetic phospholipids should be selected whenever possible.
Collapse
Affiliation(s)
- Peter van Hoogevest
- Phospholipid Research Center Heidelberg, Im Neuenheimer Feld 582 Heidelberg, Germany
| | - Armin Wendel
- Phospholipid Research Center Heidelberg, Im Neuenheimer Feld 582 Heidelberg, Germany
| |
Collapse
|
28
|
Canuto GAB, Castilho-Martins EA, Tavares MFM, Rivas L, Barbas C, López-Gonzálvez Á. Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Anal Bioanal Chem 2014; 406:3459-76. [PMID: 24722876 DOI: 10.1007/s00216-014-7772-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 12/26/2022]
Abstract
Miltefosine (MT) (hexadecylphosphocholine) was implemented to cope with resistance against antimonials, the classical treatment in Leishmaniasis. Given the scarcity of anti- Leishmania (L) drugs and the increasing appearance of resistance, there is an obvious need for understanding the mechanism of action and development of such resistance. Metabolomics is an increasingly popular tool in the life sciences due to it being a relatively fast and accurate technique that can be applied either with a particular focus or in a global manner to reveal new knowledge about biological systems. Three analytical platforms, gas chromatography (GC), liquid chromatography (LC) and capillary electrophoresis (CE) have been coupled to mass spectrometry (MS) to obtain a broad picture of metabolic changes in the parasite. Impairment of the polyamine metabolism from arginine (Arg) to trypanothione in susceptible parasites treated with MT was in some way expected, considering the reactive oxygen species (ROS) production described for MT. Importantly, in resistant parasites an increase in the levels of amino acids was the most outstanding feature, probably related to the adaptation of the resistant strain for its survival inside the parasitophorous vacuole.
Collapse
Affiliation(s)
- Gisele A B Canuto
- Centro de Metabolómica y Bioanálisis (CEMBIO), Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
The HSP90 inhibitor 17-AAG potentiates the antileishmanial activity of the ether lipid edelfosine. Acta Trop 2014; 131:32-6. [PMID: 24299925 DOI: 10.1016/j.actatropica.2013.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 11/12/2013] [Accepted: 11/21/2013] [Indexed: 11/22/2022]
Abstract
HSP90 is an abundant protein in Leishmania parasites that plays a major role in the parasite survival under stress conditions. Here we found that the HSP90 inhibitor 17-AAG (≥100nM 17-AAG) induced cell cycle arrest at G0/G1 in Leishmania infantum and Leishmania panamensis promastigotes, and highly potentiated the induction of cell death by an apoptotic-like process mediated by the ether phospholipid edelfosine (5-20μM). These data suggest that the combined treatment of 17-AAG and edelfosine might be a novel and effective approach of combination therapy in the treatment of leishmaniasis.
Collapse
|
30
|
Kulshrestha A, Sharma V, Singh R, Salotra P. Comparative transcript expression analysis of miltefosine-sensitive and miltefosine-resistant Leishmania donovani. Parasitol Res 2014; 113:1171-84. [PMID: 24449447 DOI: 10.1007/s00436-014-3755-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022]
Abstract
Leishmania donovani is the causative agent of anthroponotic visceral leishmaniasis in the Indian subcontinent. Oral miltefosine therapy has recently replaced antimonials in endemic areas. However, the drug is at risk of emergence of resistance due to unrestricted use, and, already, there are indications towards decline in treatment efficacy. Hence, understanding the mechanism of miltefosine resistance in the parasite is crucial. We employed genomic microarray analysis to compare the gene expression patterns of miltefosine-resistant and miltefosine-sensitive L. donovani. Three hundred eleven genes, representing ∼3.9% of the total Leishmania genome, belonging to various functional categories including metabolic pathways, transporters, and cellular components, were differentially expressed in miltefosine-resistant parasite. Results in the present study highlighted the probable mechanisms by which the parasite sustains miltefosine pressure including (1) compromised DNA replication/repair mechanism, (2) reduced protein synthesis and degradation, (3) altered energy utilization via increased lipid degradation, (4) increased ABC 1-mediated drug efflux, and (5) increased antioxidant defense mechanism via elevated trypanothione metabolism. The study provided the comprehensive insight into the underlying mechanism of miltefosine resistance in L. donovani that may be useful to design strategies to increase lifespan of this important oral antileishmanial drug.
Collapse
Affiliation(s)
- Arpita Kulshrestha
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110029, India
| | | | | | | |
Collapse
|
31
|
Eisenberg T, Büttner S. Lipids and cell death in yeast. FEMS Yeast Res 2013; 14:179-97. [PMID: 24119111 PMCID: PMC4255311 DOI: 10.1111/1567-1364.12105] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 09/25/2013] [Indexed: 01/22/2023] Open
Abstract
Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | |
Collapse
|
32
|
A novel alkyl phosphocholine-dinitroaniline hybrid molecule exhibits biological activity in vitro against Leishmania amazonensis. Exp Parasitol 2013; 135:153-65. [PMID: 23845259 DOI: 10.1016/j.exppara.2013.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/24/2013] [Accepted: 06/26/2013] [Indexed: 11/22/2022]
Abstract
Parasitic protozoa of the Leishmania genus cause leishmaniasis, an important complex of tropical diseases that affect about 12 million people around the world. The drugs used to treat leishmaniasis are pentavalent antimonials, miltefosine, amphotericin B and pentamidine. In the present study, we evaluated the effect of a novel alkyl phosphocholine-dinitroaniline hybrid molecule, TC95, against Leishmania amazonensis promastigotes and intracellular amastigotes. Antiproliferative assays indicated that TC95 is a potent inhibitor of promastigotes and intracellular amastigotes with IC50 values of 2.6 and 1.2 μM, respectively. Fluorescence microscopy with anti-α-tubulin antibody revealed changes in the cytoskeleton, whilst scanning electron microscopy showed alterations in the shape, plasma membrane, length of the flagellum, and cell cycle. Flow cytometry confirmed the cell cycle arrest mainly in G1 phase, however a significant population appeared in sub G0/G1 and super-G2. The alterations in the plasma membrane integrity were confirmed by fluorometric analysis using Sytox Blue. Transmission electron microscopy also revealed an accumulation of lipid bodies, confirmed by fluorescence microscopy and fluorometric analysis using Nile Red. Important lesions were also observed in organelles such as mitochondrion, endoplasmic reticulum and Golgi complex. In summary, our study suggests that TC95, an alkyl phosphocholine-trifluralin hybrid molecule, is a promising novel compound against L. amazonensis.
Collapse
|
33
|
Abstract
The discovery, development and optimal utilization of pharmaceuticals can be greatly enhanced by knowledge of their modes of action. However, many drugs currently on the market act by unknown mechanisms. Untargeted metabolomics offers the potential to discover modes of action for drugs that perturb cellular metabolism. Development of high resolution LC-MS methods and improved data analysis software now allows rapid detection of drug-induced changes to cellular metabolism in an untargeted manner. Several studies have demonstrated the ability of untargeted metabolomics to provide unbiased target discovery for antimicrobial drugs, in particular for antiprotozoal agents. Furthermore, the utilization of targeted metabolomics techniques has enabled validation of existing hypotheses regarding antiprotozoal drug mechanisms. Metabolomics approaches are likely to assist with optimization of new drug candidates by identification of drug targets, and by allowing detailed characterization of modes of action and resistance of existing and novel antiprotozoal drugs.
Collapse
|
34
|
Campos MCO, Castro-Pinto DB, Ribeiro GA, Berredo-Pinho MM, Gomes LHF, da Silva Bellieny MS, Goulart CM, Echevarria A, Leon LL. P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitol Res 2013; 112:2341-51. [PMID: 23572046 PMCID: PMC3663987 DOI: 10.1007/s00436-013-3398-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/12/2013] [Indexed: 01/18/2023]
Abstract
Drug resistance in protozoan parasites has been associated with the P-glycoprotein (Pgp), an energy-dependent efflux pump that transports substances across the membrane. Interestingly, the genes TcPGP1 and TcPGP2 have been described in Trypanosoma cruzi, although the function of these genes has not been fully elucidated. The main goal of this work was to investigate Pgp efflux pump activity and expression in T. cruzi lines submitted to in vitro induced resistance to the compounds 4-N-(2-methoxy styryl)-thiosemicarbazone (2-Meotio) and benznidazole (Bz) and to verify the stability of the resistant phenotypes during the parasite life cycle. We observed that the EC50 values for the treatment of epimastigotes with 2-Meotio or Bz were increased at least 4.7-fold in resistant lines, and this phenotype was maintained in metacyclic trypomastigotes, cell-derived trypomastigotes, and intracellular amastigotes. However, in epimastigotes, 2-Meotio resistance is reversible, but Bz resistance is irreversible. When compared with the parental line, the resistant lines exhibited higher Pgp efflux activity, reversion of the resistant phenotypes in the presence of Pgp inhibitors, cross-resistance with Pgp modulators, higher basal Pgp ATPase activity, and overexpression of the genes TcPGP1 and TcPGP2. In conclusion, the resistance induced in T. cruzi by the compounds 2-Meotio and Bz is maintained during the entire parasite life cycle. Furthermore, our data suggest the participation of the Pgp efflux pump in T. cruzi drug resistance.
Collapse
Affiliation(s)
- Mônica Caroline Oliveira Campos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, IOC, Avenida Brasil 4365, Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pham TTH, Barratt G, Michel JP, Loiseau PM, Saint-Pierre-Chazalet M. Interactions of antileishmanial drugs with monolayers of lipids used in the development of amphotericin B-miltefosine-loaded nanocochleates. Colloids Surf B Biointerfaces 2013; 106:224-33. [PMID: 23434716 DOI: 10.1016/j.colsurfb.2013.01.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/21/2013] [Indexed: 11/15/2022]
Abstract
The emergence of strains of Leishmania resistant to existing drugs complicates the treatment of life-threatening visceral leishmaniasis. The development of new lipid formulation (nanocochleates), containing two active drugs: amphotericin B (AmB) and miltefosine (hexadecylphosphocholine, HePC), could increase effectiveness, decrease toxicity and reduce the risk of appearance of resistance. Nanocochleates are cigar-shaped structures of rolled negatively charged lipid bilayers bridged by calcium, prepared from dioleoylphosphatidylserine (DOPS) and cholesterol (Cho) and able to accommodate drugs. To determine the interaction, the orientation and the stability of the amphiphilic drugs in the lipid mixture and the optimal drugs/lipids ratio, the Langmuir film balance and BAM (Brewster angle microscopy) were used. The drugs were mixed with the lipids (DOPS or 9DOPS/1Cho) and spread at the air-water interface. A stability study showed that DOPS maintained HePC at the interface at low molar fraction of HePC; this effect became more marked in the presence of Cho. The fact that HePC can be stably associated with the monolayer at low molar fraction (below 10%) suggests that in the nanocochleates HePC is inserted between the lipid molecules rather than between the bilayers. Phase diagrams and BAM images showed that, even at low pressure, DOPS maintains AmB at low molar fraction (below 10%) in the "erect" rather than the horizontal form at the interface and that the presence of Cho reinforces this effect. These results allowed us to predict the organization and the orientation of these drugs in the nanocochleates and to determine the optimal drugs/lipids ratio.
Collapse
Affiliation(s)
- T T H Pham
- Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Univ Paris Sud, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | |
Collapse
|
36
|
Faciola AP, Broderick GA, Hristov A, Leão MI. Effects of lauric acid on ruminal protozoal numbers and fermentation pattern and milk production in lactating dairy cows. J Anim Sci 2012; 91:363-73. [PMID: 23097406 DOI: 10.2527/jas.2012-5168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to evaluate lauric acid (LA) as a practical ruminal protozoa-suppressing agent and assess effects of protozoal suppression on fermentation patterns and milk production in dairy cows. In a pilot study, 6 lactating Holstein cows fitted with ruminal cannulae were used in a randomized complete-block design trial. Cows were fed a basal total mixed ration (TMR) containing (DM basis) 15% alfalfa silage, 40% corn silage, 30% rolled high moisture shelled corn, and 14% solvent soybean meal, and assigned to 1 of 3 treatments: 1) control, 2) 160 g/d of LA, or 3) 222 g/d of sodium laurate, which is equimolar to 160 g/d of LA, all given as a single dose into the rumen via cannulae before feeding. Both agents showed high antiprotozoal activity when pulse dosed at these amounts via ruminal cannulae, reducing protozoa by 90% (P<0.01) within 2 d of treatment. Lauric acid reduced ruminal ammonia concentration by 60% (P<0.01) without altering DMI. Both agents reduced ruminal total free AA concentration (P<0.01) and LA did not affect ruminal pH or total VFA concentration. In a large follow-up feeding trial, 52 Holstein cows (8 with ruminal cannulae) were used in a randomized complete-block design trial. Cows were assigned to 1 of 4 diets and fed only that diet throughout the study. The TMR contained (DM basis) 29% alfalfa silage, 36% corn silage, 14% rolled high moisture shelled corn, and 8% solvent soybean meal. The 4 experimental diets were similar, except part of the finely ground dry corn was replaced with LA in stepwise increments from 0 to 0.97% of dietary DM, which provided (as consumed) 0, 83, 164, and 243 g/d of LA. Adding these amounts of LA to the TMR did not affect DMI, ruminal pH, or other ruminal traits, and milk production. However, LA consumed at 164 and 243 g/d in the TMR reduced the protozoal population by only 25% and 30% (P=0.05), respectively, showing that these levels, when added to the TMR, were not sufficient to achieve a concentration within the rumen that promoted the antiprotozoal effect of LA.
Collapse
Affiliation(s)
- A P Faciola
- Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
37
|
Dorlo TPC, Balasegaram M, Beijnen JH, de Vries PJ. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 2012; 67:2576-97. [PMID: 22833634 DOI: 10.1093/jac/dks275] [Citation(s) in RCA: 517] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Miltefosine is an alkylphosphocholine drug with demonstrated activity against various parasite species and cancer cells as well as some pathogenic bacteria and fungi. For 10 years it has been licensed in India for the treatment of visceral leishmaniasis (VL), a fatal neglected parasitic disease. It is the first and still the only oral drug that can be used to treat VL and cutaneous leishmaniasis (CL). The standard 28 day miltefosine monotherapy regimen is well tolerated, except for mild gastrointestinal side effects, although its teratogenic potential severely hampers its general use in the clinic and roll-out in national elimination programmes. The pharmacokinetics of miltefosine are mainly characterized by its long residence time in the body, resulting in extensive drug accumulation during treatment and long elimination half-lives. At the moment, different combination therapy strategies encompassing miltefosine are being tested in multiple controlled clinical trials in various geographical areas of endemicity, both in South Asia and East Africa. We here review the most salient pre-clinical and clinical pharmacological aspects of miltefosine, its mechanism of action against Leishmania parasites and other pathogens, and provide a systematic overview of the efficacy and safety data from all clinical trials of miltefosine, either alone or in combination, in the treatment of VL and CL.
Collapse
Affiliation(s)
- Thomas P C Dorlo
- Center for Tropical Medicine and Travel Medicine, Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Ponte CB, Alves ÉAR, Sampaio RNR, Urdapilleta AAA, Kückelhaus CDS, Muniz-Junqueira MI, Kückelhaus SAS. Miltefosine enhances phagocytosis but decreases nitric oxide production by peritoneal macrophages of C57BL/6 mice. Int Immunopharmacol 2012; 13:114-9. [DOI: 10.1016/j.intimp.2012.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/27/2012] [Accepted: 03/20/2012] [Indexed: 11/24/2022]
|
39
|
Coelho AC, Boisvert S, Mukherjee A, Leprohon P, Corbeil J, Ouellette M. Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing. PLoS Negl Trop Dis 2012; 6:e1512. [PMID: 22348164 PMCID: PMC3279362 DOI: 10.1371/journal.pntd.0001512] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023] Open
Abstract
Background Miltefosine (MF) is the first oral compound used in the chemotherapy against leishmaniasis. Since the mechanism of action of this drug and the targets of MF in Leishmania are unclear, we generated in a step-by-step manner Leishmania major promastigote mutants highly resistant to MF. Two of the mutants were submitted to a short-read whole genome sequencing for identifying potential genes associated with MF resistance. Methods/Principal Findings Analysis of the genome assemblies revealed several independent point mutations in a P-type ATPase involved in phospholipid translocation. Mutations in two other proteins—pyridoxal kinase and α-adaptin like protein—were also observed in independent mutants. The role of these proteins in the MF resistance was evaluated by gene transfection and gene disruption and both the P-type ATPase and pyridoxal kinase were implicated in MF susceptibility. The study also highlighted that resistance can be highly heterogeneous at the population level with individual clones derived from this population differing both in terms of genotypes but also susceptibility phenotypes. Conclusions/Significance Whole genome sequencing was used to pinpoint known and new resistance markers associated with MF resistance in the protozoan parasite Leishmania. The study also demonstrated the polyclonal nature of a resistant population with individual cells with varying susceptibilities and genotypes. Leishmania spp. are parasitic protozoa responsible for a spectrum of diseases known as leishmaniasis. There are few drugs available for the treatment of these diseases, and miltefosine is the first oral drug used in treatment of visceral leishmaniasis, a form of the disease that can be lethal if not treated. In this study, we seek to understand the mechanism of action and identify targets of the drug by generating promastigote mutants highly resistant to miltefosine. Two independent mutants were submitted to short read whole genome sequencing. Genome analysis of these mutants has permitted us to identify point mutations in three genes (P-type ATPase, pyridoxal kinase and α-adaptin like protein) that were also present in other independent miltefosine resistant mutants. Some of the new genes identified here could be useful as potential markers for miltefosine resistance in Leishmania. Moreover, our approach has permitted us to highlight that resistance can be highly heterogeneous at the population level with individual clones derived from this population differing both in terms of genotypes but also susceptibility phenotypes. This may have practical applications while studying resistance.
Collapse
Affiliation(s)
- Adriano C. Coelho
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | | | - Angana Mukherjee
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Jacques Corbeil
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
40
|
Leishmania donovani mitochondrial iron superoxide dismutase A is released into the cytosol during miltefosine induced programmed cell death. Mol Biochem Parasitol 2012; 183:42-51. [PMID: 22342963 DOI: 10.1016/j.molbiopara.2012.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 11/23/2022]
Abstract
The oxidative phosphorylation process is the main source of endogenous reactive oxygen species (ROS) such as superoxide in mitochondria. In mammals, manganese superoxide dismutase plays an important role in detoxification of superoxide before it interferes with mitochondrial function and causes programmed cell death. Here, we investigated the role of Leishmania donovani mitochondrial iron superoxide dismutase-A (LdFeSODA) in protecting the parasite from oxidative stress and in the control of programmed cell death events. We have shown that overexpression of LdFeSODA protects Leishmania donovani from miltefosine induced cytotoxicity and reduced mitochondrial-derived superoxide generation. Furthermore, parasites overexpressing LdFeSODA showed (i) lower level of phosphatidylserine exposure as measured by flow cytometry and fluorescent microscopy; and (ii) reduced level of TUNEL staining of parasites compared to the control parasites. Finally, prolonged incubation of the parasites with miltefosine induced the release of both cytochrome C and LdFeSODA into the cytosol as demonstrated by Western blotting and fluorescence microscopy indicating programmed cell death. The results indicate that LdFeSODA protects the mitochondria of Leishmania from oxidative stress thereby inhibiting programmed cell death.
Collapse
|
41
|
Effects of miltefosine treatment in fibroblast cell cultures and in mice experimentally infected with Neospora caninum tachyzoites. Parasitology 2012; 139:934-44. [PMID: 22309643 DOI: 10.1017/s0031182012000066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Miltefosine was investigated for its activity against Neospora caninum tachyzoites in vitro, and was shown to inhibit the proliferation of N. caninum tachyzoites cultured in human foreskin fibroblasts (HFF) with an IC50 of 5·2 μM. Treatment of infected cells with 25 μM miltefosine for a period of 10 h had only a parasitostatic effect, while after 20 h of treatment parasiticidal effects were observed. This was confirmed by transmission electron microscopy of N. caninum-infected and miltefosine-treated HFF. Administration of miltefosine to N. caninum-infected Balb/c female mice at 40 mg/kg/day for 14 days resulted in 6 out of 10 mice exhibiting weight loss, ruffled coat and apathy between days 7 and 13 post-infection. In the group that received placebo, only 2 out of 8 mice succumbed to infection, but the cerebral burden was significantly higher compared to the miltefosine treatment group. In a second experiment, the time-span of treatment was reduced to 5 days, and mice were maintained without further treatment for 4 weeks. Only 2 out of 9 mice in the miltefosine treatment group exhibited signs of disease, while 8 out of 10 mice succumbed to infection in the placebo group. These results showed that miltefosine hampered the dissemination of parasites into the CNS during experimental N. caninum infection in mice.
Collapse
|
42
|
Abstract
The control of the protozoan parasite Leishmania relies on few drugs with unknown cellular targets and unclear mode of action. Several antileishmanials, however, were shown to induce apoptosis in Leishmania and this death mechanism was further studied in drug-sensitive and drug-resistant Leishmania infantum. In sensitive parasites, antimonials (SbIII), miltefosine (MF) and amphotericin B (AMB), but not paromomycin (PARO), triggered apoptotic cell death associated with reactive oxygen species (ROS). In contrast, Leishmania mutants resistant to SbIII, MF or AMB not only failed to undergo apoptosis following exposure to their respective drugs, but also were more tolerant towards apoptosis induced by other antileishmanials, provided that these killed Leishmania via ROS production. Such tolerance favored the rapid acquisition of multidrug resistance. PARO killed Leishmania in a non-apoptotic manner and failed to produce ROS. PARO resistance neither protected against drug-induced apoptosis nor provided an increased rate of acquisition of resistance to other antileishmanials. However, the PARO-resistant mutant, but not SbIII-, MF- or AMB-resistant mutants, became rapidly cross-resistant to methotrexate, a model drug also not producing ROS. Our results therefore link the mode of killing of drugs to tolerance to cell death and to a facilitated emergence of multidrug resistance. These findings may have fundamental implications in the field of chemotherapeutic interventions.
Collapse
|
43
|
Zuo X, Djordjevic JT, Bijosono Oei J, Desmarini D, Schibeci SD, Jolliffe KA, Sorrell TC. Miltefosine induces apoptosis-like cell death in yeast via Cox9p in cytochrome c oxidase. Mol Pharmacol 2011; 80:476-85. [PMID: 21610197 DOI: 10.1124/mol.111.072322] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Miltefosine has antifungal properties and potential for development as a therapeutic for invasive fungal infections. However, its mode of action in fungi is poorly understood. We demonstrate that miltefosine is rapidly incorporated into yeast, where it penetrates the mitochondrial inner membrane, disrupting mitochondrial membrane potential and leading to an apoptosis-like cell death. COX9, which encodes subunit VIIa of the cytochrome c oxidase (COX) complex in the electron transport chain of the mitochondrial membrane, was identified as a potential target of miltefosine from a genomic library screen of the model yeast Saccharomyces cerevisiae. When overexpressed in S. cerevisiae, COX9, but not COX7 or COX8, led to a miltefosine-resistant phenotype. The effect of miltefosine on COX activity was assessed in cells expressing different levels of COX9. Miltefosine inhibited COX activity in a dose-dependent manner in Cox9p-positive cells. This inhibition most likely contributed to the miltefosine-induced apoptosis-like cell death.
Collapse
Affiliation(s)
- Xiaoming Zuo
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute and Sydney Emerging Infections and Biosecurity Institute, University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Shakya N, Bajpai P, Gupta S. Therapeutic switching in leishmania chemotherapy: a distinct approach towards unsatisfied treatment needs. J Parasit Dis 2011; 35:104-12. [PMID: 23024489 DOI: 10.1007/s12639-011-0040-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022] Open
Abstract
Current drugs for the treatment of visceral leishmaniasis are inadequate. No novel compound is in the pipeline. Since economic returns on developing a new drug for neglected disease, leishmaniasis is so low that therapeutic switching represents the only realistic strategy. It refers to "alternative drug use" discoveries which differ from the original intent of the drug. Amphotericin B, paromomycin, miltefosine and many other drugs are very successful examples of "new drugs from old". This article reviews the discovery, growth and current status of these drugs and concluded that the potential of this approach (therapeutic switching) may use in the development of new antileishmanials in future also.
Collapse
Affiliation(s)
- Nishi Shakya
- Division of Parasitology, Central Drug Research Institute, Chattar Manzil Palace, M.G. Road, Lucknow, 226001 UP India
| | | | | |
Collapse
|
45
|
Kroubi M, Karembe H, Betbeder D. Drug delivery systems in the treatment of African trypanosomiasis infections. Expert Opin Drug Deliv 2011; 8:735-47. [DOI: 10.1517/17425247.2011.574122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Belaunzarán ML, Lammel EM, de Isola ELD. Phospholipases a in trypanosomatids. Enzyme Res 2011; 2011:392082. [PMID: 21603263 PMCID: PMC3092542 DOI: 10.4061/2011/392082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/07/2011] [Indexed: 12/17/2022] Open
Abstract
Phospholipases are a complex and important group of enzymes widespread in nature, that play crucial roles in diverse biochemical processes and are classified as A1, A2, C, and D. Phospholipases A1 and A2 activities have been linked to pathogenesis in various microorganisms, and particularly in pathogenic protozoa they have been implicated in cell invasion. Kinetoplastids are a group of flagellated protozoa, including extra- and intracellular parasites that cause severe disease in humans and animals. In the present paper, we will mainly focus on the three most important kinetoplastid human pathogens, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., giving a perspective of the research done up to now regarding biochemical, biological, and molecular characteristics of Phospholipases A1 and A2 and their contribution to pathogenesis.
Collapse
Affiliation(s)
- María Laura Belaunzarán
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 13, C1121ABG Buenos Aires, Argentina
| | | | | |
Collapse
|
47
|
Seifert K. Structures, targets and recent approaches in anti-leishmanial drug discovery and development. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:31-9. [PMID: 21629509 PMCID: PMC3103891 DOI: 10.2174/1874104501105010031] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/12/2010] [Accepted: 06/20/2010] [Indexed: 11/22/2022]
Abstract
Recent years have seen a significant improvement in available treatment options for leishmaniasis. Two new drugs, miltefosine and paromomycin, have been registered for the treatment of visceral leishmaniasis (VL) in India since 2002. Combination therapy is now explored in clinical trials as a new treatment approach for VL to reduce the length of treatment and potentially prevent selection of resistant parasites. However there is still a need for new drugs due to safety, resistance, stability and cost issues with existing therapies. The search for topical treatments for cutaneous leishmaniasis (CL) is ongoing. This review gives a brief overview of recent developments and approaches in anti-leishmanial drug discovery and development.
Collapse
Affiliation(s)
- Karin Seifert
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
48
|
Sienkiewicz N, Ong HB, Fairlamb AH. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Mol Microbiol 2010; 77:658-71. [PMID: 20545846 PMCID: PMC2916222 DOI: 10.1111/j.1365-2958.2010.07236.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene knockout and knockdown methods were used to examine essentiality of pteridine reductase (PTR1) in pterin metabolism in the African trypanosome. Attempts to generate PTR1 null mutants in bloodstream form Trypanosoma brucei proved unsuccessful; despite integration of drug selectable markers at the target locus, the gene for PTR1 was either retained at the same locus or elsewhere in the genome. However, RNA interference (RNAi) resulted in complete knockdown of endogenous protein after 48 h, followed by cell death after 4 days. This lethal phenotype was reversed by expression of enzymatically active Leishmania major PTR1 in RNAi lines ((oe)RNAi) or by addition of tetrahydrobiopterin to cultures. Loss of PTR1 was associated with gross morphological changes due to a defect in cytokinesis, resulting in cells with multiple nuclei and kinetoplasts, as well as multiple detached flagella. Electron microscopy also revealed increased numbers of glycosomes, while immunofluorescence microscopy showed increased and more diffuse staining for glycosomal matrix enzymes, indicative of mis-localisation to the cytosol. Mis-localisation was confirmed by digitonin fractionation experiments. RNAi cell lines were markedly less virulent than wild-type parasites in mice and virulence was restored in the (oe)RNAi line. Thus, PTR1 may be a drug target for human African trypanosomiasis.
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
49
|
Zhang K, Beverley SM. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 2009; 170:55-64. [PMID: 20026359 DOI: 10.1016/j.molbiopara.2009.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 01/15/2023]
Abstract
In many eukaryotes, phospholipids (PLs) and sphingolipids (SLs) are abundant membrane components and reservoirs for important signaling molecules. In Leishmania, the composition, metabolism, and function of PLs and SLs differ significantly from those in mammalian cells. Although only a handful of enzymes have been experimentally characterized, available data suggest many steps of PL/SL metabolism are critical for Leishmania viability and/or virulence, and could be a source for new drug targets. Further studies of genes involved in the synthesis (de novo and salvage) and degradation of PLs and SLs will reveal their diverse effects on Leishmania pathogenesis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | | |
Collapse
|
50
|
Miltefosine efficiently eliminates Leishmania major amastigotes from infected murine dendritic cells without altering their immune functions. Antimicrob Agents Chemother 2009; 54:652-9. [PMID: 19995922 DOI: 10.1128/aac.01014-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As a treatment for leishmaniasis, miltefosine exerts direct toxic effects on the parasites. Miltefosine also modulates immune cells such as macrophages, leading to parasite elimination via oxidative radicals. Dendritic cells (DC) are critical for initiation of protective immunity against Leishmania through induction of Th1 immunity via interleukin 12 (IL-12). Here, we investigated the effects of miltefosine on DC in Leishmania major infections. When cocultured with miltefosine for 4 days, the majority of in vitro-infected DC were free of parasites. Miltefosine treatment did not influence DC maturation (upregulation of major histocompatibility complex II [MHC II] or costimulatory molecules, e.g., CD40, CD54, and CD86) or significantly alter cytokine release (IL-12, tumor necrosis factor alpha [TNF-alpha], or IL-10). Further, miltefosine DC treatment did not alter antigen presentation, since unrestricted antigen-specific proliferation of CD4+ and CD8+ T cells was observed upon stimulation with miltefosine-treated, infected DC. In addition, miltefosine application in vivo did not lead to maturation/emigration of skin DC. DC NO- production, a mechanism used by phagocytes to rid themselves of intracellular parasites, was also unaltered upon miltefosine treatment. Our data confirm prior studies indicating that in contrast to, e.g., pentavalent antimonials, miltefosine functions independently of the immune system, mostly through direct toxicity against the Leishmania parasite.
Collapse
|