1
|
Zanatta D, Betanzos A, Azuara-Liceaga E, Montaño S, Orozco E. Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains. Int J Mol Sci 2024; 25:7609. [PMID: 39062867 PMCID: PMC11277477 DOI: 10.3390/ijms25147609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Entamoeba histolytica is the protozoan causative of human amoebiasis. The EhADH adhesin (687 aa) is a protein involved in tissue invasion, phagocytosis and host-cell lysis. EhADH adheres to the prey and follows its arrival to the multivesicular bodies. It is an accessory protein of the endosomal sorting complexes required for transport (ESCRT) machinery. Here, to study the role of different parts of EhADH during virulence events, we produced trophozoites overexpressing the three domains of EhADH, Bro1 (1-400 aa), Linker (246-446 aa) and Adh (444-687 aa) to evaluate their role in virulence. The TrophozBro11-400 slightly increased adherence and phagocytosis, but these trophozoites showed a higher ability to destroy cell monolayers, augment the permeability of cultured epithelial cells and mouse colon, and produce more damage to hamster livers. The TrophozLinker226-446 also increased the virulence properties, but with lower effect than the TrophozBro11-400. In addition, this fragment participates in cholesterol transport and GTPase binding. Interestingly, the TrophozAdh444-687 produced the highest effect on adherence and phagocytosis, but it poorly influenced the monolayers destruction; nevertheless, they augmented the colon and liver damage. To identify the protein partners of each domain, we used recombinant peptides. Pull-down assays and mass spectrometry showed that Bro1 domain interplays with EhADH, Gal/GalNAc lectin, EhCPs, ESCRT machinery components and cytoskeleton proteins. While EhADH, ubiquitin, EhRabB, EhNPC1 and EhHSP70 were associated to the Linker domain, and EhADH, EhHSP70, EhPrx and metabolic enzymes interacted to the Adh domain. The diverse protein association confirms that EhADH is a versatile molecule with multiple functions probably given by its capacity to form distinct molecular complexes.
Collapse
Affiliation(s)
- Dxinegueela Zanatta
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Elisa Azuara-Liceaga
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, Mexico City 03100, Mexico;
| | - Sarita Montaño
- Laboratory of Bioinformatics and Molecular Simulation, Faculty of Biological Chemistry Sciences, Autonomous University of Sinaloa, Sinaloa 80030, Mexico;
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| |
Collapse
|
2
|
Hong ZB, Huang JM, Tsai CM, Lin WC. Potential role of Acanthamoeba Rab7. Exp Parasitol 2022; 239:108312. [PMID: 35738459 DOI: 10.1016/j.exppara.2022.108312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Acanthamoeba castellanii is a free-living protozoan that causes several severe human parasitic diseases such as Acanthamoeba keratitis and granulomatous encephalitis. A. castellanii feeds on bacteria, yeasts, and other organic particles as food sources, but the mechanisms of digestion in acanthamoebal cells are unclear. Rab GTPases participate in endosomal delivery in eukaryotes after phagocytosis. This study aimed to determine the potential functions of A. castellanii Rab7 (AcRab7), which is involved in phagocytosis, and the relationship between AcRab7 and further cellular physiological phenomena. In this study, the inhibitor CID1067700 (CID) was used to specifically inhibit the binding of nucleotides to confirm the potential functions of AcRab7. Cellular proliferation and ATP assays were also used to detect underlying cellular physiological functions after blocking the phagocytosis pathway. We found that AcRab7 expression increased as the co-culture time with Escherichia coli increased. Immunofluorescence staining showed that AcRab7 colocalized with lysosomes in its GTP-activating form. In addition, AcRab7 inhibition resulted in a reduction in cell proliferation and ATP levels. Our results suggest that AcRab7 participates in endosomal delivery and dominates energy production and cell growth.
Collapse
Affiliation(s)
- Zih-Bin Hong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Jian-Ming Huang
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Ming Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Constantino‐Jonapa LA, Hernández‐Ramírez VI, Osorio‐Trujillo C, Talamás‐Rohana P. Eh
Rab21 mobilization during erythrophagocytosis in
Entamoeba histolytica. Microsc Res Tech 2018; 81:1024-1035. [DOI: 10.1002/jemt.23069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 05/03/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Luis A. Constantino‐Jonapa
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Verónica Ivonne Hernández‐Ramírez
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Carlos Osorio‐Trujillo
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Patricia Talamás‐Rohana
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| |
Collapse
|
4
|
Hendrick HM, Welter BH, Hapstack MA, Sykes SE, Sullivan WJ, Temesvari LA. Phosphorylation of Eukaryotic Initiation Factor-2α during Stress and Encystation in Entamoeba Species. PLoS Pathog 2016; 12:e1006085. [PMID: 27930733 PMCID: PMC5179133 DOI: 10.1371/journal.ppat.1006085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/22/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Entamoeba histolytica is an enteric pathogen responsible for amoebic dysentery and liver abscess. It alternates between the host-restricted trophozoite form and the infective environmentally-stable cyst stage. Throughout its lifecycle E. histolytica experiences stress, in part, from host immune pressure. Conversion to cysts is presumed to be a stress-response. In other systems, stress induces phosphorylation of a serine residue on eukaryotic translation initiation factor-2α (eIF2α). This inhibits eIF2α activity resulting in a general decline in protein synthesis. Genomic data reveal that E. histolytica possesses eIF2α (EheIF2α) with a conserved phosphorylatable serine at position 59 (Ser59). Thus, this pathogen may have the machinery for stress-induced translational control. To test this, we exposed cells to different stress conditions and measured the level of total and phospho-EheIF2α. Long-term serum starvation, long-term heat shock, and oxidative stress induced an increase in the level of phospho-EheIF2α, while short-term serum starvation, short-term heat shock, or glucose deprivation did not. Long-term serum starvation also caused a decrease in polyribosome abundance, which is in accordance with the observation that this condition induces phosphorylation of EheIF2α. We generated transgenic cells that overexpress wildtype EheIF2α, a non-phosphorylatable variant of eIF2α in which Ser59 was mutated to alanine (EheIF2α-S59A), or a phosphomimetic variant of eIF2α in which Ser59 was mutated to aspartic acid (EheIF2α-S59D). Consistent with the known functions of eIF2α, cells expressing wildtype or EheIF2α-S59D exhibited increased or decreased translation, respectively. Surprisingly, cells expressing EheIF2α-S59A also exhibited reduced translation. Cells expressing EheIF2α-S59D were more resistant to long-term serum starvation underscoring the significance of EheIF2α phosphorylation in managing stress. Finally, phospho-eIF2α accumulated during encystation in E. invadens, a model encystation system. Together, these data demonstrate that the eIF2α-dependent stress response system is operational in Entamoeba species. Entamoeba histolytica is the causative agent of amoebic dysentery and liver abscess and is prevalent in underdeveloped countries that lack proper sanitation. Infection is acquired by ingestion of the cyst form in contaminated food or water. During infection, the parasite experiences stress including demanding growth conditions and host immune pressure. Conversion to the infective cyst may be induced by such stress. In other organisms, stress causes a decrease in protein biosynthesis by inducing phosphorylation of eIF2α, which participates in translation initiation. We exposed E. histolytica to six different stress conditions and observed that some of these conditions (long-term serum starvation, long-term heat shock, and oxidative stress) induced an increase in the level of phospho-eIF2α. Long-term serum starvation was also accompanied by a decrease in mRNA translation. A cell line expressing a mutant version of eIF2α that behaves as a phosphomimetic exhibited decreased translation and increased survival during long-term serum starvation. Finally, phospho-eIF2α accumulated in cysts of E. invadens, a reptilian pathogen that readily encysts in vitro. Together, these data demonstrate that the eIF2α-dependent stress response system is operational in Entamoeba and may regulate encystation.
Collapse
Affiliation(s)
- Holland M. Hendrick
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
| | - Brenda H. Welter
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
| | - Matthew A. Hapstack
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
| | - Steven E. Sykes
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
| | - William J. Sullivan
- Department of Pharmacology and Toxicology Indiana University School of Medicine Indianaplois, IN United States of America
- Department of Microbiology and Immunology Indiana University School of Medicine Indianapolis, IN United States of America
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center (EPIC) Clemson University Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Perdomo D, Manich M, Syan S, Olivo-Marin JC, Dufour AC, Guillén N. Intracellular traffic of the lysine and glutamic acid rich protein KERP1 reveals features of endomembrane organization in Entamoeba histolytica. Cell Microbiol 2016; 18:1134-52. [PMID: 26857352 DOI: 10.1111/cmi.12576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
Abstract
The development of amoebiasis is influenced by the expression of the lysine and glutamic acid rich protein 1 (KERP1), a virulence factor involved in Entamoeba histolytica adherence to human cells. Up to date, it is unknown how the protein transits the parasite cytoplasm towards the plasma membrane, specially because this organism lacks a well-defined endoplasmic reticulum (ER) and Golgi apparatus. In this work we demonstrate that KERP1 is present at the cell surface and in intracellular vesicles which traffic in a pathway that is independent of the ER-Golgi anterograde transport. The intracellular displacement of vesicles enriched in KERP1 relies on the actin-rich cytoskeleton activities. KERP1 is also present in externalized vesicles deposited on the surface of human cells. We further report the interactome of KERP1 with its association to endomembrane components and lipids. The model for KERP1 traffic here proposed hints for the first time elements of the endocytic and exocytic paths of E. histolytica.
Collapse
Affiliation(s)
- Doranda Perdomo
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France.,Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Paris, France
| | - Maria Manich
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| | - Sylvie Syan
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| | | | - Alexandre C Dufour
- Bioimage Analysis Unit, Institut Pasteur, Paris, France.,CNRS UMR 3691, Paris, France
| | - Nancy Guillén
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| |
Collapse
|
6
|
Castellanos-Castro S, Cerda-García-Rojas CM, Javier-Reyna R, Pais-Morales J, Chávez-Munguía B, Orozco E. Identification of the phospholipid lysobisphosphatidic acid in the protozoan Entamoeba histolytica: An active molecule in endocytosis. Biochem Biophys Rep 2015; 5:224-236. [PMID: 28955828 PMCID: PMC5600446 DOI: 10.1016/j.bbrep.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/25/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Phospholipids are essential for vesicle fusion and fission and both are fundamental events for Entamoeba histolytica phagocytosis. Our aim was to identify the lysobisphosphatidic acid (LBPA) in trophozoites and investigate its cellular fate during endocytosis. LBPA was detected by TLC in a 0.5 Rf spot of total lipids, which co-migrated with the LBPA standard. The 6C4 antibody, against LBPA recognized phospholipids extracted from this spot. Reverse phase LC-ESI-MS and MS/MS mass spectrometry revealed six LBPA species of m/z 772.58–802.68. LBPA was associated to pinosomes and phagosomes. Intriguingly, during pinocytosis, whole cell fluorescence quantification showed that LBPA dropped 84% after 15 min incubation with FITC-Dextran, and after 60 min, it increased at levels close to steady state conditions. Similarly, during erythrophagocytosis, after 15 min, LBPA also dropped in 36% and increased after 60 and 90 min. EhRab7A protein appeared in some vesicles with LBPA in steady state conditions, but after phagocytosis co-localization of both molecules increased and in late phases of erythrophagocytosis they were found in huge phagosomes or multivesicular bodies with many intraluminal vacuoles, and surrounding ingested erythrocytes and phagosomes. The 6C4 and anti-EhADH (EhADH is an ALIX family protein) antibodies and Lysotracker merged in about 50% of the vesicles in steady state conditions and throughout phagocytosis. LBPA and EhADH were also inside huge phagosomes. These results demonstrated that E. histolytica LBPA is associated to pinosomes and phagosomes during endocytosis and suggested differences of LBPA requirements during pinocytosis and phagocytosis. LBPA is identified for the first time in the protozoan Entamoeba histolytica. LBPA is found in pinosomes and in 10–20 µm diameter phagosomes or multivesicular bodies. LBPA appeared associated with EhRab7A protein, a late endosomes marker. LBPA interacts with EhADH (an ALIX family protein) during phagocytosis.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- Departamento de Infectómica y Patogénesis Molecular, Mexico.,Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Dr. García Diego 168, CP 06720, D.F. México, México
| | - Carlos M Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Avenue IPN, 2508, CP 07360, D.F. México, México
| | | | | | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Mexico
| |
Collapse
|
7
|
Ralston KS. Chew on this: amoebic trogocytosis and host cell killing by Entamoeba histolytica. Trends Parasitol 2015; 31:442-52. [PMID: 26070402 DOI: 10.1016/j.pt.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023]
Abstract
Entamoeba histolytica was named 'histolytica' (from histo-, 'tissue'; lytic-, 'dissolving') for its ability to destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor that underlies tissue destruction, but the mechanism was unclear. We recently showed that, after attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this contributes to cell killing. We review this process, termed 'amoebic trogocytosis' (trogo-, 'nibble'), and how this process interplays with phagocytosis, or whole cell ingestion, in this organism. 'Nibbling' processes have been described in other microbes and in multicellular organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an evolutionarily conserved process for intercellular exchange.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Baig F, Fernando LP, Salazar MA, Powell RR, Bruce TF, Harcum SW. Dynamic transcriptional response of Escherichia coli to inclusion body formation. Biotechnol Bioeng 2014; 111:980-99. [PMID: 24338599 DOI: 10.1002/bit.25169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/09/2013] [Accepted: 12/02/2013] [Indexed: 01/27/2023]
Abstract
Escherichia coli is used intensively for recombinant protein production, but one key challenge with recombinant E. coli is the tendency of recombinant proteins to misfold and aggregate into insoluble inclusion bodies (IBs). IBs contain high concentrations of inactive recombinant protein that require recovery steps to salvage a functional recombinant protein. Currently, no universally effective method exists to prevent IB formation in recombinant E. coli. In this study, DNA microarrays were used to compare the E. coli gene expression response dynamics to soluble and insoluble recombinant protein production. As expected and previously reported, the classical heat-shock genes had increased expression due to IB formation, including protein folding chaperones and proteases. Gene expression levels for protein synthesis-related and energy-synthesis pathways were also increased. Many transmembrane transporter and corresponding catabolic pathways genes had decreased expression for substrates not present in the culture medium. Additionally, putative genes represented over one-third of the genes identified to have significant expression changes due to IB formation, indicating many important cellular responses to IB formation still need to be characterized. Interestingly, cells grown in 3% ethanol had significantly reduced gene expression responses due to IB formation. Taken together, these results indicate that IB formation is complex, stimulates the heat-shock response, increases protein and energy synthesis needs, and streamlines transport and catabolic processes, while ethanol diminished all of these responses.
Collapse
Affiliation(s)
- Faraz Baig
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, South Carolina, 29634
| | | | | | | | | | | |
Collapse
|
9
|
Localization of phosphatidylinositol 4,5-bisphosphate to lipid rafts and uroids in the human protozoan parasite Entamoeba histolytica. Infect Immun 2013; 81:2145-55. [PMID: 23545298 DOI: 10.1128/iai.00040-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Entamoeba histolytica is an intestinal protozoan parasite and is the causative agent of amoebiasis. During invasive infection, highly motile amoebae destroy the colonic epithelium, enter the blood circulation, and disseminate to other organs such as liver, causing liver abscess. Motility is a key factor in E. histolytica pathogenesis, and this process relies on a dynamic actomyosin cytoskeleton. In other systems, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is known to regulate a wide variety of cellular functions, including signal transduction, actin remodeling, and cell motility. Little is known about the role of PI(4,5)P2 in E. histolytica pathogenicity. In this study, we demonstrate that PI(4,5)P2 is localized to cholesterol-rich microdomains, lipid rafts, and the actin-rich fractions of the E. histolytica membrane. Microscopy revealed that the trailing edge of polarized trophozoites, uroids, are highly enriched in lipid rafts and their constituent lipid, PI(4,5)P2. Polarization and enrichment of uroids and rafts with PI(4,5)P2 were enhanced upon treatment of E. histolytica cells with cholesterol. Exposure to cholesterol also increased intracellular calcium, which is a downstream effector of PI(4,5)P2, with a concomitant increase in motility. Together, our data suggest that in E. histolytica, PI(4,5)P2 may signal from lipid rafts and cholesterol may play a role in triggering PI(4,5)P2-mediated signaling to enhance the motility of this pathogen.
Collapse
|
10
|
Abstract
The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling-Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation.
Collapse
|
11
|
Juárez-Hernández LJ, García-Pérez RM, Salas-Casas A, García-Rivera G, Orozco E, Rodríguez MA. Entamoeba histolytica: the over expression of a mutated EhRabB protein produces a decrease of in vitro and in vivo virulence. Exp Parasitol 2012; 133:339-45. [PMID: 23268174 DOI: 10.1016/j.exppara.2012.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022]
Abstract
Vesicular trafficking, which is implicated in secretion of cytolytic molecules as well as in phagocytosis, plays an important role in the pathogenic mechanism of Entamoeba histolytica, the protozoan parasite causative of human amoebiasis. Thus, Rab GTPases, that are key regulators of vesicle trafficking, should be considered as molecules involved in the parasite virulence. EhRabB is a Rab protein located in cytoplasmic vesicles that are translocated to phagocytic mouths during ingestion of target cells, suggesting that this Rab protein is involved in phagocytosis. To prove this hypothesis, we over expressed the wild type EhrabB gene and a mutant gene encoding for a protein (RabBN118I) unable to bind guanine nucleotides and therefore constitutively inactive. The over expression of the mutated protein in E. histolytica trophozoites provoked a dominant negative effect, reflected in a significant decrease of both phagocytosis and cytopathic effect as well as in a failure to produce hepatic abscesses in hamsters. These results confirm that EhRabB is involved in phagocytosis and virulence of E. histolytica.
Collapse
Affiliation(s)
- L J Juárez-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, México D.F. 07000, Mexico
| | | | | | | | | | | |
Collapse
|
12
|
Christy NCV, Petri WA. Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica. Future Microbiol 2011; 6:1501-19. [DOI: 10.2217/fmb.11.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica, the causative agent of the human disease amebiasis, has traditionally been distinguished from its nonpathogenic cousin Entamoeba dispar by its propensity for the ingestion of erythrocytes. This classic feature, along with the parasite’s ability to cause extensive host cell death, are critical mechanisms of pathogenesis during human infection. Recent advances have led to a greater understanding of the molecular components that allow E. histolytica to kill and phagocytose extracellular targets during human infection and include detailed studies of the role of the parasite’s cysteine proteinases and other effectors of cytotoxicity, as well as the mechanisms of ligand recognition, signaling and intracellular trafficking during phagocytosis.
Collapse
Affiliation(s)
- Nathaniel CV Christy
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | | |
Collapse
|
13
|
Javier-Reyna R, Hernández-Ramírez V, González-Robles A, Galván-Mendoza I, Osorio-Trujillo C, Talamás-Rohana P. Rab7 and actin cytoskeleton participate during mobilization of β1EHFNR in fibronectin-stimulated Entamoeba histolyticatrophozoites. Microsc Res Tech 2011; 75:285-93. [DOI: 10.1002/jemt.21056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/12/2011] [Indexed: 01/12/2023]
|
14
|
Reyes-López M, Bermúdez-Cruz RM, Avila EE, de la Garza M. Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica. Microbiology (Reading) 2011; 157:209-219. [DOI: 10.1099/mic.0.040063-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transferrin (Tf) is a host glycoprotein capable of binding two ferric-iron ions to become holotransferrin (holoTf), which transports iron in to all cells. Entamoeba histolytica is a parasitic protozoan able to use holoTf as a sole iron source in vitro. The mechanism by which this parasite scavenges iron from holoTf is unknown. An E. histolytica holoTf-binding protein (EhTfbp) was purified by using an anti-human transferrin receptor (TfR) monoclonal antibody. EhTfbp was identified by MS/MS analysis and database searches as E. histolytica acetaldehyde/alcohol dehydrogenase-2 (EhADH2), an iron-dependent enzyme. Both EhTfbp and EhADH2 bound holoTf and were recognized by the anti-human TfR antibody, indicating that they correspond to the same protein. It was found that the amoebae internalized holoTf through clathrin-coated pits, suggesting that holoTf endocytosis could be important for the parasite during colonization and invasion of the intestinal mucosa and liver.
Collapse
Affiliation(s)
- Magda Reyes-López
- Programa de Doctorado en Ciencias Biológicas de la Universidad Autónoma Metropolitana, Apdo Postal 23-181, México, DF 04960, Mexico
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo 14-740, México DF 07000, Mexico
| | - Eva E. Avila
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Colonia Noria Alta, Guanajuato, Gto, 36000, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo 14-740, México DF 07000, Mexico
| |
Collapse
|
15
|
Localization of phosphatidylinositol (3,4,5)-trisphosphate to phagosomes in entamoeba histolytica achieved using glutathione S-transferase- and green fluorescent protein-tagged lipid biosensors. Infect Immun 2009; 78:125-37. [PMID: 19901063 DOI: 10.1128/iai.00719-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is an intestinal protozoan parasite that causes amoebic dysentery and liver abscess. Phagocytosis by the parasite is a critical virulence process, since it is a prerequisite for tissue invasion and establishment of chronic infection. While the roles of many of the proteins that regulate phagocytosis-related signaling events in E. histolytica have been characterized, the functions of lipids in this cellular process remain largely unknown in this parasite. In other systems, phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), a major product of phosphoinositide 3 kinase (PI3-kinase) activity, is essential for phagocytosis. Pleckstrin homology (PH) domains are protein domains that specifically bind to PIP(3). In this study, we utilized glutathione S-transferase (GST)- and green fluorescent protein (GFP)-labeled PH domains as lipid biosensors to characterize the spatiotemporal aspects of PIP(3) distribution during various endocytic processes in E. histolytica. PIP(3)-specific biosensors accumulated at extending pseudopodia and in phagosomal cups in trophozoites exposed to erythrocytes but did not localize to pinocytic compartments during the uptake of a fluid-phase marker, dextran. Our results suggest that PIP(3) is involved in the early stages of phagosome formation in E. histolytica. In addition, we demonstrated that PIP(3) exists at high steady-state levels in the plasma membrane of E. histolytica and that these levels, unlike those in mammalian cells, are not abolished by serum withdrawal. Finally, expression of a PH domain in trophozoites inhibited erythrophagocytosis and enhanced motility, providing genetic evidence supporting the role of PI3-kinase signaling in these processes in E. histolytica.
Collapse
|
16
|
Overexpression of a mutant form of EhRabA, a unique Rab GTPase of Entamoeba histolytica, alters endoplasmic reticulum morphology and localization of the Gal/GalNAc adherence lectin. EUKARYOTIC CELL 2009; 8:1014-26. [PMID: 19377040 DOI: 10.1128/ec.00030-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. Vesicle trafficking events, such as phagocytosis and delivery of plasma membrane proteins, have been implicated in pathogenicity. Rab GTPases are proteins whose primary function is to regulate vesicle trafficking; therefore, understanding the function of Rabs in this organism may provide insight into virulence. E. histolytica possesses a number of unique Rabs that exhibit limited homology to host Rabs. In this study we examined the function of one such Rab, EhRabA, by characterizing a mutant overexpressing a constitutively GTP-bound version of the protein. Overexpression of mutant EhRabA resulted in decreased adhesion to and phagocytosis of human red blood cells and in the appearance of large tubular organelles that could be stained with endoplasmic reticulum (ER)-specific but not Golgi complex-specific antibodies. Consistent with the adhesion defect, two subunits of a cell surface adhesin, the galactose/N-acetylgalactosamine lectin, were mislocalized to the novel organelle. A cysteine protease, EhCP2, was also localized to the ER-like compartment in the mutant; however, the localization of two additional cell surface proteins, Igl and SREHP, remained unchanged in the mutant. The phenotype of the mutant could be recapitulated by treatment with brefeldin A, a cellular toxin that disrupts ER-to-Golgi apparatus vesicle traffic. This suggests that EhRabA influences vesicle trafficking pathways that are also sensitive to brefeldin A. Together, the data indicate that EhRabA directly or indirectly influences the morphology of secretory organelles and regulates trafficking of a subset of secretory proteins in E. histolytica.
Collapse
|
17
|
Saito-Nakano Y, Mitra BN, Nakada-Tsukui K, Sato D, Nozaki T. Two Rab7 isotypes, EhRab7A and EhRab7B, play distinct roles in biogenesis of lysosomes and phagosomes in the enteric protozoan parasite Entamoeba histolytica. Cell Microbiol 2007; 9:1796-808. [PMID: 17359234 DOI: 10.1111/j.1462-5822.2007.00915.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rab7 small GTPase plays a crucial role in the regulation of trafficking to late endosomes, lysosomes and phagosomes. While most eukaryotes encode a single Rab7, the parasitic protist Entamoeba histolytica possesses nine Rab7. In this study, to understand the significance of the presence of multiple Rab7 isotypes, a role of two representative Rab7 isotypes, EhRab7A and EhRab7B, was investigated. EhRab7B was exclusively localized to acidic vacuoles containing lysosomal proteins, e.g. amoebapore-A and cysteine protease. This lysosome localization of EhRab7B was in good contrast to EhRab7A, localized to a non-acidic compartment in steady state, and only partially colocalized with lysosomal proteins. Overexpression of EhRab7B resulted in augmentation of late endosome/lysosome acidification, similar to the EhRab7A overexpression. Expression of EhRab7B-GTP mutant caused dominant-negative phenotypes including decrease in late endosome/lysosome acidification and missecretion of lysosomal proteins, while EhRab7A-GTP enhanced acidification but did not affect either intracellular or secreted cysteine protease activity. Expression of either EhRab7B or EhRab7B-GTP mutant caused defect in phagocytosis, concomitant with the disturbed formation and disassembly of prephagosomal vacuoles, the compartment previously shown to be linked to efficient ingestion. Altogether, these data indicate that the two Rab7 isotypes play distinct but co-ordinated roles in lysosome and phagosome biogenesis.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|
18
|
Hernández-Ramírez VI, Rios A, Angel A, Magos MA, Pérez-Castillo L, Rosales-Encina JL, Castillo-Henkel E, Talamás-Rohana P. Subcellular distribution of theEntamoeba histolytica140 kDa FN-binding molecule during host-parasite interaction. Parasitology 2006; 134:169-77. [PMID: 17076927 DOI: 10.1017/s0031182006001260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/04/2006] [Accepted: 07/05/2006] [Indexed: 11/06/2022]
Abstract
Entamoeba histolyticatrophozoites recovered from the host-parasite interface during abscess development obtain different stimuli compared with long-term cultured cells. In order to have a better understanding about the mechanisms in which the 140 kDa fibronectin (FN)-binding molecule (EhFNR) is involved during the invasive process, we decided to compare the regulation process of this molecule among long-term cultured trophozoites, FN-stimulated trophozoites, and trophozoites recently recovered from a liver abscess. A cDNA clone (5A) containing a fragment of theEhFNR that shows identity to the C-terminal region of the intermediate galactose lectin subunit Igl, was selected with a mAb (3C10). Identity ofEhFNR with Igl was confirmed by immunoprecipitation with 3C10 and EH3015 (against the Gal/GalNAc intermediate subunit) mAbs. The 3C10 mAb was used as a tool to explore the modulation of the amoebic receptor (EhFNR). Our results showed specific regulation of theEhFNR in FN-interacted amoebas, as well as in trophozoites recovered at different stages of abscess development. This regulation involved mobilization of the receptor molecule from internal vesicles to the plasma membrane. Therefore, we suggest that in the host-parasite interface, theEhFNR (Igl) plays an important role in the adhesion process during abscess development.
Collapse
Affiliation(s)
- V I Hernández-Ramírez
- Superior School of Medicine, IPN, Plan de San Luis y Díaz Mirón, Col. Casco de Sto. Tomás México, D.F., 11340, México
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Powell RR, Welter BH, Hwu R, Bowersox B, Attaway C, Temesvari LA. Entamoeba histolytica: FYVE-finger domains, phosphatidylinositol 3-phosphate biosensors, associate with phagosomes but not fluid filled endosomes. Exp Parasitol 2006; 112:221-31. [PMID: 16387299 DOI: 10.1016/j.exppara.2005.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/09/2005] [Accepted: 11/10/2005] [Indexed: 11/24/2022]
Abstract
Endocytosis is an important virulence function for Entamoeba histolytica, the causative agent of amoebic dysentery. Although a number of E. histolytica proteins that regulate this process have been identified, less is known about the role of lipids. In other systems, phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-kinase (PI 3-kinase), has been shown to be required for endocytosis. FYVE-finger domains are protein motifs that bind specifically to PI3P. Using a PI3P biosensor consisting of glutathione-S-transferase (GST) fused to two tandem FYVE-finger domains, we have localized PI3P to phagosomes but not fluid-phase pinosomes in E. histolytica, suggesting a role for PI3P in phagocytosis. Treatment of cells with PI 3-kinase inhibitors impaired GST-2 x FYVE-phagosome association supporting the authenticity of the biosensor staining. However, treatment with PI 3-kinase inhibitors did not inhibit E. histolytica-particle interaction, indicating that PI3P is not required for the initial step, but is required for subsequent steps of phagocytosis.
Collapse
Affiliation(s)
- R R Powell
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
20
|
Salgado M, Villagómez-Castro JC, Rocha-Rodríguez R, Sabanero-López M, Ramos MA, Alagón A, López-Romero E, Sánchez-López R. Entamoeba histolytica: biochemical and molecular insights into the activities within microsomal fractions. Exp Parasitol 2005; 110:363-73. [PMID: 15913610 DOI: 10.1016/j.exppara.2005.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 03/30/2005] [Accepted: 04/02/2005] [Indexed: 11/22/2022]
Abstract
One of the most fascinating aspects of the Entamoeba histolytica trophozoite ultrastructure is the lack of a typical secretory pathway, particularly of rough endoplasmic reticulum and Golgi system, in a cell with such a high secretory activity. Here, we describe the isolation of amoeba cell structures containing ER-typical activities. Following isopycnic centrifugation of plasma membrane-free extracts, microsomes enriched in enzymatic activities such as dolichol-P-mannose synthase (DPMS; EC 2.4.1.83), UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (NAGPT; EC 2.7.8.15), and UDP-D-GlcNAc:dolichol-PP GlcNAc (NAGT; EC 2.4.1.141) were resolved from phagolysosomal fractions. Sec61alpha-subunit, an ER-marker involved in the translocation of nascent proteins to the ER, was found to co-fractionate with DPMS activity indicating that they are contained in microsomes with a similar density. Further, we optimized conditions for trophozoite homogenization and differential centrifugation that resulted in the separation of a 57,000 g-sedimenting microsomal fraction containing EhSec61alpha-subunit, EhDPMS, and EhPDI (protein disulfide isomerase, a soluble marker of the lumen of the ER). A relevant observation was the lack of ER markers associated to the nuclear fraction. Large macromolecular structures such as Ehproteasome were sedimented at a higher speed. Our knowledge of the molecular machinery involved in the biosynthesis of dolichol-linked oligosaccharide was enriched with the identification of putative genes related to the stepwise assembly of the dolichol-PP-GlcNAc(2)Man(5) core. No evidence of genes supporting further assembly steps was obtained at this time.
Collapse
Affiliation(s)
- Milena Salgado
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología (UNAM), Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Welter BH, Powell RR, Leo M, Smith CM, Temesvari LA. A unique Rab GTPase, EhRabA, is involved in motility and polarization of Entamoeba histolytica cells. Mol Biochem Parasitol 2005; 140:161-73. [PMID: 15760656 DOI: 10.1016/j.molbiopara.2004.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/27/2004] [Accepted: 12/27/2004] [Indexed: 11/19/2022]
Abstract
Entamoeba histolytica, an enteric protozoan parasite, infects 10% of the world's population leading to 50 million cases of invasive amoebiasis annually. Motility, which requires cell polarization, is important to the virulence of this pathogen, as it may result in destruction of host tissues and invasion. To gain insight into these processes in Entamoeba, a unique Rab GTPase, EhRabA, which localizes to the leading edge of cells, was characterized. Cell lines expressing a dominant negative version of EhRabA (EhRabA-DN) were generated. These mutant cells exhibited alterations in cell shape, polarity, and motility, supporting a role for this Rab in the regulation of these processes. Consistent with the notion that a dynamic actin cytoskeleton is crucial to cell polarity and motility, these mutants also exhibited alterations in the actin cytoskeleton. Cells expressing EhRabA-DN also displayed defects in several virulence functions including the ability to adhere to host cells, destroy host cells, and release cysteine proteases. Mislocalization of a prominent adhesion molecule, the galactose/N-acetylgalactosamine (Gal/GalNAc) adherence lectin and reorganization of ordered lipid domains, known as lipid rafts, also accompanied expression of EhRabA-DN. Interestingly, several endocytic processes were unaffected by expression of EhRabA-DN. Together, these data suggest that EhRabA may be involved in the regulation of polarization, motility and actin cytoskeletal dynamics: functions that participate in the pathogenicity of Entamoeba.
Collapse
Affiliation(s)
- Brenda H Welter
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
22
|
Shah PH, MacFarlane RC, Bhattacharya D, Matese JC, Demeter J, Stroup SE, Singh U. Comparative genomic hybridizations of Entamoeba strains reveal unique genetic fingerprints that correlate with virulence. EUKARYOTIC CELL 2005; 4:504-15. [PMID: 15755913 PMCID: PMC1087797 DOI: 10.1128/ec.4.3.504-515.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Accepted: 12/21/2004] [Indexed: 11/20/2022]
Abstract
Variable phenotypes have been identified for Entamoeba species. Entamoeba histolytica is invasive and causes colitis and liver abscesses but only in approximately 10% of infected individuals; 90% remain asymptomatically colonized. Entamoeba dispar, a closely related species, is avirulent. To determine the extent of genetic diversity among Entamoeba isolates and potential genotype-phenotype correlations, we have developed an E. histolytica genomic DNA microarray and used it to genotype strains of E. histolytica and E. dispar. On the basis of the identification of divergent genetic loci, all strains had unique genetic fingerprints. Comparison of divergent genetic regions allowed us to distinguish between E. histolytica and E. dispar, identify novel genetic regions usable for strain and species typing, and identify a number of genes restricted to virulent strains. Among the four E. histolytica strains, a strain with attenuated virulence was the most divergent and phylogenetically distinct strain, raising the intriguing possibility that genetic subtypes of E. histolytica may be partially responsible for the observed variability in clinical outcomes. This microarray-based genotyping assay can readily be applied to the study of E. histolytica clinical isolates to determine genetic diversity and potential genotypic-phenotypic associations.
Collapse
Affiliation(s)
- Preetam H Shah
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Meza I, Clarke M. Dynamics of endocytic traffic ofEntamoeba histolyticarevealed by confocal microscopy and flow cytometry. ACTA ACUST UNITED AC 2004; 59:215-26. [PMID: 15476263 DOI: 10.1002/cm.20038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entamoeba histolytica, the protozoan parasite of humans, manifests constitutive endocytosis to obtain nutrients and, when induced to express invasive behavior, as a means of ingesting and processing host cells and tissue debris. E. histolytica trophozoites were grown in liquid axenic medium that contained fluorescently labeled fluid-phase markers, so that the kinetics of uptake, the transit of loaded endosomes through the cytoplasm, and the time of release of the markers could be monitored by flow cytometry. Confocal microscopy of live trophozoites revealed uptake of fluid by avid macropinocytosis and the occurrence of fusion between young and older endosomes, as well as between pinosomes and phagosomes containing bacteria. Endosomes were rapidly acidified, then gradually neutralized; finally, indigestible material was released. Transit of endosomes containing fluid-phase markers required about 2 h. Uptake and release of fluid-phase markers were impaired by drugs that inhibited actin dynamics and actin-myosin interaction; uptake was also impaired by inhibition of PI 3-kinase. A striking feature of the trophozoites was the great heterogeneity of their endocytic behavior.
Collapse
Affiliation(s)
- Isaura Meza
- Departamento de Biomedicina Molecular, CINVESTAV del IPN, Mexico DF, Mexico.
| | | |
Collapse
|
24
|
Powell RR, Temesvari LA. Involvement of a Rab8-like protein of Dictyostelium discoideum, Sas1, in the formation of membrane extensions, secretion and adhesion during development. MICROBIOLOGY-SGM 2004; 150:2513-2525. [PMID: 15289548 DOI: 10.1099/mic.0.27073-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Establishment of cell-cell adhesions, regulation of actin, and secretion are critical during development. Rab8-like GTPases have been shown to modulate these cellular events, suggesting an involvement in developmental processes. To further elucidate the function of Rab8-like GTPases in a developmental context, a Rab8-related protein (Sas1) of Dictyostelium discoideum was examined, the expression of which increases at the onset of development. Dictyostelium cell lines expressing inactive (N128I mutant) and constitutively active (Q74L mutant) Sas1 as green fluorescent protein (GFP)-Sas1 chimeras were generated. Cells expressing Sas1Q74L displayed numerous actin-rich membrane protrusions, increased secretion, and were unable to complete development. In particular, these cells demonstrated a reduction in adhesion as well as in the levels of a cell adhesion molecule, gp24 (DdCAD-1). In contrast, cells expressing Sas1N128I exhibited increased cell-cell adhesion and increased levels of gp24. Counting factor is a multisubunit signalling complex that is secreted in early development and controls aggregate size by negatively regulating the levels of cell adhesion molecules, including gp24. Interestingly, the Sas1Q74L mutant demonstrated increased levels of extracellular countin, a subunit of counting factor, suggesting that Sas1 may regulate trafficking of counting factor components. Together, the data suggest that Sas1 may be a key regulator of actin, adhesion and secretion during development.
Collapse
Affiliation(s)
- Rhonda R Powell
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Lesly A Temesvari
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
25
|
Laughlin RC, McGugan GC, Powell RR, Welter BH, Temesvari LA. Involvement of raft-like plasma membrane domains of Entamoeba histolytica in pinocytosis and adhesion. Infect Immun 2004; 72:5349-57. [PMID: 15322032 PMCID: PMC517461 DOI: 10.1128/iai.72.9.5349-5357.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 05/22/2004] [Indexed: 01/11/2023] Open
Abstract
Lipid rafts are highly ordered, cholesterol-rich, and detergent-resistant microdomains found in the plasma membrane of many eukaryotic cells. These domains play important roles in endocytosis, secretion, and adhesion in a variety of cell types. The parasitic protozoan Entamoeba histolytica, the causative agent of amoebic dysentery, was determined to have raft-like plasma membrane domains by use of fluorescent lipid analogs that specifically partition into raft and nonraft regions of the membrane. Disruption of raft-like membrane domains in Entamoeba with the cholesterol-binding agents filipin and methyl-beta-cyclodextrin resulted in the inhibition of several important virulence functions, fluid-phase pinocytosis, and adhesion to host cell monolayers. However, disruption of raft-like domains did not inhibit constitutive secretion of cysteine proteases, another important virulence function of Entamoeba. Flotation of the cold Triton X-100-insoluble portion of membranes on sucrose gradients revealed that the heavy, intermediate, and light subunits of the galactose-N-acetylgalactosamine-inhibitible lectin, an important cell surface adhesion molecule of Entamoeba, were enriched in cholesterol-rich (raft-like) fractions, whereas EhCP5, another cell surface molecule, was not enriched in these fractions. The subunits of the lectin were also observed in high-density, actin-rich fractions of the sucrose gradient. Together, these data suggest that pinocytosis and adhesion are raft-dependent functions in this pathogen. This is the first report describing the existence and physiological relevance of raft-like membrane domains in E. histolytica.
Collapse
Affiliation(s)
- Richard C Laughlin
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
26
|
Welter BH, Temesvari LA. A unique Rab GTPase, EhRabA, of Entamoeba histolytica, localizes to the leading edge of motile cells. Mol Biochem Parasitol 2004; 135:185-95. [PMID: 15110460 DOI: 10.1016/j.molbiopara.2004.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/06/2004] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
Entamoeba histolytica, an enteric protozoan parasite, infects 10% of the world's population leading to 50 million cases of invasive amoebiasis annually. Parasite vesicle trafficking and motility, which relies on vesicle trafficking to deliver membrane and membrane components to the leading edge, are important for virulence however little is known about the molecular mechanisms regulating these functions. Since Rab GTPases are known modulators of vesicle trafficking we have characterized a Rab GTPase of Entamoeba, EhRabA. Sequence analysis revealed that EhRabA shared limited homology with any known Rab suggesting that it is a novel member of this protein family. Immunofluorescence microscopy using EhRabA-specific antibodies demonstrated that EhRabA did not colocalize with markers for the Golgi apparatus, endoplasmic reticulum, pinosomes, or phagosomes. These data suggest that this Rab may not play a role in vesicle trafficking between these organelles. In quiescent Entamoeba cells, EhRabA localized to vesicles throughout the cytoplasm consistent with a role in vesicle trafficking, however, in motile cells this protein localized to small vesicles in the leading edge. In addition, when E. histolytica trophozoites were exposed to an N-formyl peptide (N-formylmethionylleucylphenylalanine) cell polarization, the formation of membrane extensions, and the translocation of EhRabA to these membrane extensions was observed. Taken together, these results suggest that EhRabA may function in the formation of membrane extensions perhaps by regulating the delivery of membrane and/or cell surface molecules to the plasma membrane.
Collapse
Affiliation(s)
- Brenda H Welter
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
27
|
McGugan GC, Temesvari LA. Characterization of a Rab11-like GTPase, EhRab11, of Entamoeba histolytica. Mol Biochem Parasitol 2003; 129:137-46. [PMID: 12850258 DOI: 10.1016/s0166-6851(03)00115-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Entamoeba histolytica Rab11 family of small molecular weight GTPases consists of three members, EhRab11, EhRab11B, and EhRab11C. The functions of these Rabs in Entamoeba have not been determined. Therefore, as an approach to elucidate the role of the Rab11 family of GTPases in Entamoeba, immunofluorescence microscopy was undertaken to define the subcellular localization of one member of this family, EhRab11. Under conditions of growth, EhRab11 displayed a punctate pattern in the cytoplasm of trophozoites. EhRab11 did not colocalize with markers for the Golgi apparatus, endoplasmic reticulum, pinosomes, phagosomes, or compartments formed by receptor-mediated endocytosis, suggesting that this Rab may not play a role in vesicle trafficking between these organelles. Under conditions of iron and serum starvation, EhRab11 was translocated to the periphery of the cell. The altered cellular localization was accompanied by multinucleation of the cells as well as the acquisition of detergent resistance by the cells, features that are characteristic of Entamoeba cysts. The translocation of EhRab11 to the periphery of the cell during iron and serum starvation was specific as the subcellular localizations of two other Rab GTPases, EhRab7 and EhRabA, were not altered under the same conditions. In addition, the formation of multinucleated cells by inhibition of cytokinesis was not sufficient to induce the translocation of EhRab11 to the cell periphery. Taken together, the data suggest that iron and serum starvation may induce encystation in E. histolytica and that EhRab11 may play a role in this process. Moreover, these studies are the first to describe a putative role for a Rab GTPase in encystation in Entamoeba sp.
Collapse
Affiliation(s)
- Glen C McGugan
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634-1903, USA
| | | |
Collapse
|